Canad. Math. Bull. Vol. 16 (2), 1973

Letter to the Editor:

On the Equation $x^{3}+117 y^{3}=5$. In a recent paper [1], Finkelstein and London proved the integer unsolubility of the equation

$$
x^{3}+117 y^{3}=5
$$

using algebraic numbers.
Consider the congruence mod 9 instead of the equation. On account of $117 \equiv 0$ $\bmod 9$ ist reduces to $x^{3} \equiv 5 \bmod 9$, but $+1,-1$ and 0 are the only cubic residues $\bmod 9$. Thus the equation has no integer solutions.

Bibliography

1. R. Finkelstein and H. London, On D. J. Lewis equation $x^{3}+117 y^{3}=5$, Canad. Math. Bull. 14 (1971), p. 111.

Franz Halter-Koch,
Mathematisches Institut der Universität Köln, Cologne, Western Germany

