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1. Introduction. In this paper we consider measures determined by 
arbitrary functions G(x) for which finite right and left limits exist everywhere 
and indicate how some of these measures permit the definition of generalized 
integrals of constructive or Denjoy type. These definitions are related to 
corresponding descriptive definitions based on the Perron approach as given by 
Ward (6) and Henstock (2). An exposition of the introductory theory is given 
in (1). 

2. We shall denote by g the space of functions G(x) that are defined on 
X = ( — oo t co ) such that: 

(1) G(x+) and G(x~) exist and are finite everywhere. 
(2) For every x, either G(x~) < G(x) < G(x+) or G(x+) < G(x) < G(x~). 

In (1), (2) is called the Intermediate Value Property (IVP) and this space is 
called g. %BV and S'BV will denote the subsets of g consisting of functions of 
bounded variation and functions that are of bounded variation on every finite 
interval, respectively. 

Following Munroe let C denote the covering class of finite open intervals, Cd 

for arbitrary d > 0 the covering class of open intervals of length less than d. 
Defining r(0) = 0, r(a, b) = G{b~) — G{a+) leads to Method I outer measures 
M*(?,oo» M* G,a corresponding to C and Cd. For any sequence d t ^0 (i.e. d\ > d2.. . , 
lim di — 0) define 

V*(A) = /**<7,o(4) = Vim iJL*G>dl(A) < oo 
di^O 

for every subset A of X {A Ç P(X), the collection of all subsets of X). Then /x* 
is a Method II outer measure independent of the sequence chosen. If G is 
monotone, then all of the above outer measures coincide. 

As shown in (1), Condition 2 ensures that if G 6 g and \G\(x), G+(x), G~~(x) 
denote the total, positive, and negative variation functions of G(x) — G(0) 
(1, §2), then 

M = M G.Q ~ M \G\ = M G+ + M G-i 
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226 H. W. ELLIS AND R. L. JEFFERY 

and the /z*-measurable sets S coincide with the intersection SG+ H SG- of the 

/x*G+-and /x* G—measurable sets. There exists XQ Ç S with 

f(A) = K°^A
A\' ir^Y ( H a h n decomposit ion). 

(/x G-(A), ^ ï L CAo 

T h e signed measure /xs is then defined on S by 

M s — M G+ ~~ M G". 

Since for each G £ $ , /A* is a Method II outer measure: 
I. /x* is a metric outer measure (5, Theorem 13.3). 
I I . Every Borel set is Carathéodory measurable for /x* (5, Corollary 13.2.1). 

I I I . If AnÎA, then p*(An) î v*(A) < œ (5, Corollary 12.1.1). If An[A, 

An 6 5 , and there exists n with jj,(An) < °°, then n(An) | /x(^4)-

IV. Given 4̂ there exists a G 5 set B, B Z) A, with y,(B) = /x*(^4), i.e. /x* is a 
regular outer measure (5, p. 108). 

From I I I and IV we obtain 

V. If there exists an open set U containing A with n(U) < °°, then, given 

e > 0, there exists an open set Uf D A with/x*(yl) < /x ( [ / ' ) + «• 
T h e existence of right and left limits everywhere leads to a simple analogue of 

the Vitali Covering Theorem. 

T H E O R E M 2.1 (the /x*-Vitali Covering Theorem) . Let A be any subset of a finite 
interval (a, b) with n(a,b) < °o. Suppose that each x Ç A is the left end of a 
sequence of intervals vx>i = [x, x + hXti] with l i m ^ ^ hXti = 0. Let V denote this 
family of intervals {vXiU x £ A, i = 1, 2, . . .} which cover A in the Vitali sense. 
Then, given e > 0, there exists a finite disjoint subcollection {v t] with 

£ v*(A H vt) > »*(A) - e, L M(V i) < n*(A) + e. 

Proof. Given e > 0 there exists (by V) an open set U, (a, b) D U D A, with 

M*04) < M ( ^ ) < M * 0 4 ) + e. 
Writ ing 

oo 

1 

let 
£/d = U (« Ï , ^ - d), 

(i:bi—ai>d) 

Ad = {x G 4̂ : there exists Z ^ > d with [x, x + Z^, J C f/d}. 

Since Ad Î ,4 a s d j 0, thenn*(Ad) | M*G4) a s d j 0 by I I I and, for d sufficiently 
small, 

H*(A) ~ e<»*(Ad) <»*(A). 

Note also t h a t for each x (x, xz) J, 0 if xt —» x and by ( I I I ) 

/*(*, #<) | 0. 
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Let x'i = inf {x Ç Ad}. If x\ Ç Adl then set xi = x'i and fix hi = hXitj with 
hi > d and Vi = [xh xi + hi] C Z7rf. H X'I $ Ad, then there exists a sequence 
{#'i,*} in ^U with x'iti j x \ ; we fix xi = x'i,* with i sufficiently large so that 
M (^i, #1) < e/4 and choose hi and z>i as before. 

Let xr
2 = inf {x £ AdC\ (xi + hi, <»)}. If x'2 = Xi + &i Ç ^4d, then we can 

enlarge Vi to an interval with hi > 2d. Otherwise we proceed as for xi and 
obtain x2 > x'2, h2 > d, v2 C Ud, and n(x'2, x2) < e/8. We can continue this 
process to obtain a sequence of disjoint intervals {vt = [x*, Xj + hi]}, all in the 
Vitali covering F and contained in Ud with each ht > d. Since Ud C (#, b), the 
process terminates in a finite number of steps. The points of Ad not contained in 
these intervals are contained in the intervals (x'i, xt) and thus in a set with 
/z-measure not exceeding e/2. 

Since the intervals ut are disjoint and all contained in Ud, 

E /*(»<) < M ( ^ ) < M(C/) < M*(4) + 6. 

On the other hand 

£ M*U H »,) > M * ^ n ( U »,)) > M*U.) - e/2 >u*(A)-e. 

COROLLARY. The theorem extends to arbitrary A £ P p O if G Ç SBV ^ S'BV-

It can be shown that if 

An = AC\(-n, n), ^ w | ^ , and /x*(4 - 4 n ) J 0, 

the theorem applies to each / l n and can be established for A by first approximat
ing A by ^4n. 

3. Derived numbers and derivatives with respect to a function 
G Ç g. For F,G Ç g,x < y , define 

[V(;y+) - F(x~) ., n , _N , ^ +, 

[O, otherwise, 

DaF
+(x) = lim DGF{x,y), D0F~(y) = lim DQF(x,y) 

V^X X^V 

when these limits exist. When DG F+(x) = DG F~(x) with their common value 
finite, we write DG F(x) and call it the derivative of F with respect to G at x. 
Using upper and lower right and left limits, there are similar definitions of 
upper and lower right and left derivatives 

DGF+(x), DGF+(x), DGF~(x), DGF~(x). 

Remarks. If G(x) is non-decreasing, then G(y+) — G(x~) = y\x, y] and we 
sometimes write D^ F for D G F. 

If x is a point of discontinuity of G (x), then the limits exist and 

DGF{x) = [F(x+) - F{x-)]/[G(x+) - G{x~)]. 
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H F G ^Bvand G(x) is non-decreasing, arguments similar to those used for 
Lebesgue measure (G(x) = x) show that DG F(x) exists and is finite almost 
everywhere (/A*) and is measurable (/**). 

Given G G § , l e t £ + = {x: /x[x, x + h] < œ for some A > 0}. Then if x G £ + , 
/x[x, x + h] I M({^}) as h j 0. Let £ 0

+ = {x G £ + : /*[^, x + h'\ = 0 for some 
h' > 0}. I t is not difficult to show that/x(E0

+) = 0. Forx G E+ — Eo+aset^l is 
said to have right G-density D+ (A, x) at x if 

Z>+04, x) = Km M*C4 Pi [x, x + h])/n[x, x + h] 

exists (necessarily < 1 ) . With [x, x + h] replaced by [x — A, x], h > 0, there 
are similar definitions of left G-density D~(A, x) of A at x. When 

D+{A,x) = D~(A,x) 

we denote the common value by D(A, x) and call it the density of A at x. 
Approximate derivatives with respect to G, ADG F+, ADG F~~, ADG F, may 
now be defined in terms of G-density by analogy with the classical case 
(G(x) = x). 

We note that if /*(a, &)<«> , then (a, b) C E+ H £~, and if G Ç gBv or 
5'BV, then£+ = E~ = X. 

THEOREM 3.1. If G G S'BV> then at almost all (ju*) points of an arbitrary set A 
the G-density of A is 1. If A is measurable (/**), then at almost all points of A the 
density of CA is 0. 

The argument for the Lebesgue case (G(x) = x) (4, §5.2) applies with 
minor changes, using Theorem 2.1. 

THEOREM 3.2. Let G G S 'BV and let S denote the ix*-measurable sets. Then if 
f G Ll(X, S, M) and 

F(x) = J^œtX]fdfj,, 

D\G\ F(x) = DM F(x) = f(x) almost everywhere (n*). 

Proof, (i) Let / (x) be simple, i.e. 

n 

f(x) = H Ci xei, et G S, n(et) < œ. 
i 

Then, if x G eu 

D,F(x,y) = [/<(;y+) - F(x-)]/M[x, ;y] 
= L Ci j [ x , y ] xa dn/n[x, y] 

= Z Ciniet r\ [x, y])/n[x, y] 

if M[#, 3>] ̂  0; £>M F(x} y) = 0 otherwise. Thus DM F+(x) = c* and £>M 7v_(x) = cf 

a.e. in et; they vanish a.e. in C(\J\ et) by Theorem 3.1, and Theorem 3.2 is a 
direct consequence of the density theorem if f(x) is a simple function. 
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(ii) Assume next that fix) > 0. There is then a sequence {fn} of simple 
functions with/w î / a n d , for each [x, y], 

J ix,y] fn d}X | £L i J [Xty] f dp. 
Since 

A* ^(*> 3>) = j[x,y]fdp/p[x, y] > f[x,y]fndjjL/(j,[x, y], n = 1, 2, . . . , 

it follows that 

DM F±(x) > / w (x) a.e., w = 1, 2, . . . , 

and thus A* F±(x) > f(x) a.e. 
(iii) Assume next that 0 < f(x) < M < oo f i.e. tha t / (x) in (ii) is bounded. 

We can then assume that 

0 < f(x) - fn(x) < 1/n, n = 1,2, 
Then 

fiz.vifdn/n[x, y] <J[X,y] (fn + 1/n) dp/p[x, y] 

= f[z,vifn dp/p[x, y] + 1/n; 
and it follows that 

D„ F±(x) <fn(x) + 1/n <f(x) + 1/n, n = 1, 2, . . . a.e., 

D»F±{x) <f(x) a.e., 

completing the proof of the theorem when/(x) is bounded and non-negative. 
(iv) When fix) is non-negative but unbounded it is sufficient with (ii) to 

show that Dp F±(x) < f(x) a.e. Let En = {x:f(x) > n}. Then/(x) = fn(x) in 
CEn and p (En) —» 0, J#n / ^ —> 0 as w —» » . 

Let x be a point of C£w at which the density of E„ is zero. Then 

Ux.ylfdfl <f[z,vlfndn I En[x,y] f dp 

p[x,y] ^ M[^,y] »[%,y] 

and the limit of the first term on the right as y —» x is/w(x) = /(x) at almost all 
such points x. Now 

J tfnts.y] f dp = ) En +ilx,y] f dp + J EnÇ\CEn +i[x,y] f dp, 

and for each i, 

0 < 1 ^ + , - ^ / ^ < ( n + •) M ( & H [*, y]) _> 0 a s B 

p[x,y] p[x,y] 
Let 

$*(*) = lim jEn+i[X)V]f dp/p[x,y], 
y->x 

Then <5*(x) > ôi+i(x), i = 1, 2, . . . . If <5z(x) J, 0, given e > 0, we can first fix i 
with bt < e, and then obtain 

D,F+(x) < / ( * ) + e, 
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for almost all x, with similar arguments giving the same inequality for Z)M F~(x) 
at almost all x. 

Assume that there exists a set e' with jj* (ef) > 0 in which 

lim ôi(x) = <5(x) > 0. 

There then exists d > 0 and a subset e C ef with <5(x) > d for all x G e and with 
tx*(e) > 0. Forx G e there exists a sequence y;(x) j x w i t h 

JEn+i[x,vj]fdp > d . /z[x, y J. 

These intervals for all x, yj(x) cover e in the Vitali sense and thus there is a 
finite disjoint subset 

[xj,yj], j = l, 2 , . . . , w, 

with 

Thus 
TO W 

JEn+ifdfx > X) fEn+i[zj,yj]fdn > dY, /*[*;, y j > d(M*(e) - e), 
i= i l 

giving a contradiction for i sufficiently large. 
(v) Finally the general case is obtained by considering F(x) as the difference 

between the integrals of the positive and negative parts of/(x). 
Assume that G Ç 5BV> define JUS = MG+ - ^ - on S, the /z*-measurable sets, 

and let X0 be a measurable set as given by the Hahn decomposition (§2). Set 
Ll(X, S, fxs) = LX(X, S, fx) and, if/is measurable (S), write 

F(X) = Ï(-œ,x]fdv,s = Ji^œ,x]fdfXG+ — fl-atffdflQ-, 

where it is defined (in particular for all x if/ £ ^ ( X , S, Ms)). 

THEOREM 3.3. 

DlGlG(x) = D,G{x) = \ \ 
a.e. in XQ, 
a.e. in CX0. 

Note that 

X>IGIG(*) = lim [G(x,+) - G(x~)]/[|G|(x'+) - G(xT)] 
X'-}X 

= ! i m [f [*,*'] Xxo ^M — /[*,*'] Xcxo dfi]/n[x, x'] 
x'->x 

and apply Theorem 3.2. 

THEOREM 3.4. / / / £ LX(X} S, /us) and Fix) = ft-œ,X]f dnst then 

DGF(X) =f(x) a.e. (M*). 
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Proof. 

D0F
+(x) = lim [ f b . * ' ] /<W - J\*,x']/<W]/[G(*'+) - GOO] 

x'->x+ 

= i ; m hx,x']fdvG+ —Uz.z']fdnG- I G(x,+) - G(x~~) 
x>^x+ n[x,x'] I n[x, x] 

= / / / l = / a.e. i n l o , 
1 - / / - 1 = / a.e. in CX0. 

Analogous theorems hold if G G S'BV-

4. Derivatives with respect to G G g where G is BV or BV* on a 
closed set E. A function G(x) is of bounded variation (BV) on a set E if there 
exists M < oo with 

£|G(y<) - G ( x , ) | < M 

for every finite collection {(xu yt)} of non-overlapping intervals with end points 
in E. 

G (x) is BV* on a closed set E if it is BV on E and if, in addition, where 

CO CO 

CE = U (a, , &,), X 0, < oo where Ot = sup (/^(y) — F(x)\ 
1 1 ai<x<y<bi 

(Ot is called the oscillation of G (x) on (at-, #*)). 
Let E be an arbitrary closed set, 

a = inf {x G -£} > — °°, & = sup {x G £} < °° • 

Assume that G G g and that G is BV on E. Then define 

(G(x) in E, 
G(x) = <jG(a~) if x < a, 

[G(b+) if x > b. 

and define G(x) to be linear and given by the line segment joining (au G(a*+)) 
and (bi, G(bi~)), i = 1, 2, . . . , in CE. Then G G 5 B v and determines finite 
positive measures p* = M*G,O, M+* = M*G+,and/Z_* = MG~*

 a s above. 

THEOREM 4.1. Assume that G G S a w ^ ^ ^ £ ^ BV cw /fee c/osed set E. Then, 
defining G and /z* as above, p(E) > fx(E). 

Proof. We observe that for every x G E, 

M({*}) = M(!X}) = |G(x+) - G ( x - ) | . 

Thus there is no loss of generality in assuming that E has no isolated points. 
Now E = E Pi [a, b] is closed. Let U^a*, £z) denote the complement of E 
relative to [a, b]> A = {a, b, au bif i = 1, 2, . . .j.Thenyl C £ and 

p(A) = v{A) = E * M ( W ) + Ei/*({*i}) +/*({«}) + M ( { * } ) < M ( £ ) < » . 
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Let [au Pi], i = 1, 2, . . . , n + 1 denote the closed intervals on [a, b] comple
mentary to U^ (au bf). Then 

/x(£) = n[a,b] - £ \x{aubi) 
i 

W+l oo oo oo 

= M(-4) + E H(altpt) - E /*({ai}) - E /*({&<}) - E P(fli,bt), 
n+1 re+1 n+1 

TO+1 

I 
1 

ftTA 

/*(£ - A) - 2 3 /*(<**, Pi) ->0 a s w - ^ o o , 

Le t B = {#*} denote the points of £ t h a t are points of discontinuity of G(x). 

Then M ( 5 ) = /z(5) < jn(£) < oo and 

CO OO 

Note also t ha t 

oo 

23 M(#*, fr*) —> 0 as n —> oo. 
n 

Let e > 0 be fixed and fix 8 > 0 with 

(i)/»*<,.»(£) > M ( £ ) - «• 
Fix n sufficiently large such t h a t 

(ii) 

(iii) 

(iv) 

(v) 

bi — cii < 8/4:, i > n 

oo 

23 M C M ) < €, 
«+1 

CO 

23 fl{aubi) < e, 
rc+l 

n+1 

M ( £ » ^ ) - 23 P(cti,Pi) < e. 

By (1 , Theorem 4.1), jx(auPi) = FG(«i, Pi). T h u s there exist par t i t ions 
{ai < Xn < . . . < a;a < Pi (k = k(i))} with 

fc-i 

M (a*, l8i) > 2 3 |G(*M+i) - ô ( x ^ ) | > FG(a<, pt) - et = /z(a<, £<) - e,, 

E €< < e, 

and the same inequality holds for any refinement of this par t i t ion. We replace 
this par t i t ion by a doubly infinite part i t ion for which the intervals [xir, xz > r + i] 
cover E C\ (au pt) for each i, and assume tha t xitT+i — xir < <5/4 for every r 
and i. 

Using an a rgument similar to (1 , Theorem 5), we can replace the points of 
xir t h a t coincide with points Xj,j < n, by points of cont inui ty wi thout chang-
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ing the sums by more than e. Thus the points xir which are points of discon
tinuity are included in \xj,j > n\ and, using (iii), 

(*) £ P(at, pt) > £ S |6'(*«.,+i) - <?(*«,) I - e 
1 i r 

> E E |<?(*7.N.i)-<?(*fr)l - 3 6 . 

Our next step is to replace G in (*) by G. This can be done at once for the 
points xir 6 E. Assume that xir (? E. Then aj < xir < bj for some j > w. If 
xitT+i < bj, omit the interval (xir, xitT+i). 

Assuming x it r+i > bJt let yk laj}yk a point of continuity of G(x), k = 1,2, . . . . 
Then 

\G(yk) - G(yk)\ < \G(yk) +G(a+)\ + \G(yk) - G(a,+)|->0 asj-> » . 

Then 

\G{x~UT+l) - G(yk)\ < \G{xritr+1) - G(x+Ur)\ + /z(a„ J,) + \G(yk) - G(y*)|, 

^2,r+i — yk < i$- We can make |G(yk) — G(yk)\ arbitrarily small by choice of k. 
We can modify intervals with right end point not in E in a similar manner. 
Denoting the modified intervals by (tirj ti,r+i)t we have titT+i — titT < 5/2, 

n+l 

X ) n(0Lu fit) > L z E i | < ? ( a f < fr+l) ~ G(x+
itT)\ ~ 3 e 

1 
oo 

> E i Ey |G(r< l I + i) - G ( ^ , r ) | - 4e - 2 £ jB(a„ ft,) 

> E< Zj \G(rUr+1) - G{t+i,r)\ - 6e, by (iv), 

and suitable choices of the points yk. Then 

Ui,r[ti,rJi,r+1]DUi[En (ai9pt)]. 

We next show that if ti>r Ç E, we can modify one of (/*,,—i, ^-,r), (^,r, ^,r+i) to 
cover /j- t r . If /i>r Ç JS, it is a limit on the right or left of points of E. Assume that 
there is a sequence Sj I titT with Sj £ E. Then 

\G(sj+) - G(t~ur^)\ < |G(*+,,r) ~ G(t-i,r^)\ + \G(sj+) - G(*+<,r)|, 

where the last term can be made arbitrarily small by taking j sufficiently large. 
Then titT is covered by the interval (ti)r-h Sj) and we can assume that 

Sj titT—.\ <C 4^0. 

Having modified the intervals to cover the points of E that are limit points on 
the right of points of E we can apply a similar process to the points that are 
points of E on the left keeping the length of the intervals <<5. Denoting the 
final intervals by (t'iT, tf

 itT+\), their union covers 
n 

u [En («i,pt)] 
l 
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and 

n+1 

£ p{au Pi) > Hi E j \G(t~i,T+i) - G(t+
ir\ - 6e 

>ZiZJ\G(C+1)-G(t£)\-7e 
w+1 

> E »*GAE n («.-, 00] - 7é 
1 

W+1 

> E / ^ n U ^ i , / ^ ) ] - ^ by (i), 
1 

W+1 

p(£ - i ) > Z r f £ n U(a<, 0i)] - 9e by (v). 

Letting n —* °° , 

whence, by III , 

w+i 

U [£ H (a, 0,)] I £ - A 
1 

j3(£ - ^ ) > /x(£ - ^ 4 ) - 9e. 

Since e is arbitrary,/z(£ — 4̂ ) > JU(£ — ^4), whence jû(£) > n(E). 

THEOREM 4.2. 7/G G $isBV* on adosed setEythen jl(E) = /x(£). 

Proof. Using Theorem 4.1, we need only prove that /l(£) < ^(E), and III 
shows that we may assume that (a, 6) is finite. 

Given e > 0, there exists ô with 

M(£) > /***(£) - e/2, d < 5 (M*d = M*G.d). 

Since £ is compact, there is a finite covering of E by intervals (cj, dj) in Cd 
with 

(**) M V £ ) > Z |G(dr) - G(c,+)| - a/2 

and, as in (1, Theorem 4.1 ), we can assume that each point of X is contained in 
at most two of these intervals. 

Fix n sufficiently large that 

oo 

E 8t < «/*• 
w+1 

For the points c$, dj in E we can replace G by G in (**). The remaining points 
fall in the intervals (au b{), complementary to E, and no such interval can 
intersect more than four of the (cjy dj) intervals assuming that each of the 
latter intersects E. 

Assume that a Ï < Cj < bt < dj, i < n. Then, since G (bf) = G{br), 

\G(CJ+) - G(CJ+)\ < \G(br) ~ G(CJ+)\ + \G(br) ~ G(CJ+)\ 
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and this is near zero if d has been fixed sufficiently small. It follows that d can be 
fixed small enough that G can be replaced by G for the cjt dj falling in the 
intervals (at, b/), i < n, without increasing the sum in (**) by more than e/2. 

Hat < Cj < biOVdi < dj < bt,i > n, 

\G(cj+) - G(cj+)\ < 201 or \G{dr) ~ G(dr)\ < 26,. 

Thus for d < <5, d sufficiently small, Cjand/or d3 in 

OO 

U (ahbi), 
n+1 

oo 

\L\G(dr) - G{c+)\ - Z\G(dr) _ ê ( C / ) | | < 4 g 0< < e, 

M(£) > MÎ (£) - e/2 >Z\G(a3r) _ (?(,.+)| _ 2^^ 

>»<;.** (E) - 2 e > / z (£ ) - 3e. 

THEOREM 4.3. / / G is BV ow //ze closed set E and ACE, then p.* (A) > n*(A). 
IfGisBV*onEandA C E,thenft*(A) = n*(A). 

Proof. A minor modification of the argument of Theorem 4.1 gives 
jl(A) = JJL(A) it A is closed. We show that if U is open, A closed, then 
p(A r\ U) = /x(^ H f/). Let 

oo 

?7 = U (at,b,). 
1 

Then 

^ ( ^ n (at,bt)) =p(An[aubt]) -H({at}) - n({bt}) 

>»(A^[ai,bi}) -p({at\) -n({bt}) = v(A C\ (au bt)) 

and fi (A H U) > M 04 P\ [/) is obtained from the countable additivity of fj, and 
/Z. If B is an arbitrary subset of E there exists (using §2, IV) a sequence of open 
sets Un, UnlU' DB with jx{U') = p*(B). Now UnC\E [Uf C\E with 
J7 'D l / ' H E D 5 s o t h a t / z ( C / ' n £ ) = fi* (B). Now »(Unr\ E) < /*(£)< °° 
so that, by III,/*(£/» H £ ) [ n(U' C\ E) > M*(£), whence 

jB*(3) = lim js(C7» O £ ) = lim M(I7n H E) > u*(B). 
n->oo w->oo 

To prove the last part let Er Q E be closed, CEf = VĴ  (a'if b'/). Then 
E = Ef r\ (\Ji E n (a\-, b'i)) and 

»(E) = M ( £ ) = M^O + L i M ^ n C a ' ^ i ' O ) = js(E') + L , / z ( £ n ( a ' < , &'<)). 

With the first part this implies that 

/.(£') = fi(E'), „ ( £ H (a'„ ft',)) = JB(£ H (a\ , ft',)). 

It is then easy to show that for any A C. E, 

p*(A) = (i[E C\ U') = /*(£ H Z7') > yu%4) 
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as in the first part. If A is measurable (/**), 

n(E r\ (Uf - A)) < n(E H (£/' - A)) = 0 

and jl(A) = M 04)- Thus /x = /Z on the Borel sets. If 4̂ is an arbitrary subset of 
£ , IV implies that there exists a GÔ s e t ^ containing^ with M(5) = /z*(^4).We 
can assume that B C £ so that/I (5) = /x(5). Then 

H*(A) <jl(B) = »(B) = M * ( ^ ) . 

It follows that the /x*- and /z*-null and measurable subsets of E coincide. In the 
following almost everywhere in E, measurable subset of E will refer to both /x* 
and /Z*. 

THEOREM 4.4. Assume that G is BV* on /Ae c/osed se/ £ . TAen D^ G(x) — 1 a.e. 
w E. 

Proof. At a point of discontinuity in E 

[G(x') - G(pr)]/[G(x') - G(x-)] -> [G(x+) - G(x-)]/[G(x+) - G(x~)] = 1, 

since G(x+) = G(x+), G(x~) = G(x~). The end points of the intervals comple
mentary to E that are points of continuity of G form a null set. At an interior 
point of E the result is trivial. Thus we need only consider the set £* of points 
of E that are points of continuity of G, limit points of both E and CE on the 
right and left, and points of G-density of E. I t follows that AD^ G(x) = 1 a.e. 
in E. This result remains valid if the BV* condition is replaced by the weaker 
BV condition on E. To prove the theorem we need 

LEMMATA. For almost points x G E*,whereCE = \Ji(aubi), 

(#) ïîm" St/pÇE H (*, a,]) = 0. 
ai->x + 

Proof. For rj > 0 let 

Ev = {x e E*: limai_>x+ 0,//z(E D (x, a<]) > ??} 

and assume that there exists ?7 with #*(£,) > 0. Fix e > 0 and <5 such that 

( i :6 i -a i<5) 

For each x £ Ev there is a sequence {a;} = {a^)} writh aj —* x+, ôy — a ; < 5, 
and 

dj/ii(Er\ (x,aj]) > v. 
By Theorem 2.1 there is a finite set of disjoint closed intervals vt = [xj, a!y\ 
Xj G Ev for which 

i:/I*(E, n »,)>**(£,)-«. 

(i:bi—ai<6) 
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This contradicts (**) if e is sufficiently small. 
To complete the proof of the theorem, let X0 denote the Hahn decomposition 

set for G and set E0 = E C\ X0. By Theorem 3.3, 

DmlG(x) = 

Thus 
- { - : 

D^G(x) = DmlG(x)/DmG(x) = 

a.e. in E0, 
a.e. in E — E0. 

D\Q\ G(X) a.e. in E0, 
— D\Q\ G(X) a.e. in E — E0. 

Let x G E* P\ E0 be a point where (*) holds. Then if at < x' < bu x' is a 
point of continuity of G and 

n _ rtr *>\ - G(at+) - G(x) + G ^ - G{-a^ 
|G| l ' j " \G\{x) - \G\{x) + \G\{x) - |G|(*) ' 

Now the first term on the right is 

G (at
+) - G(x) G (at) - G(x) ;z(x, a«) = p Q R 

G(at
+) - G(x) ' \G\(a%

+) ~ \G\(x) ' ji(x,x) '*' ' y* 

Now P = 1 since au x £ E; Q —» 1 as a* —> x, x G £o, (? —» — l , x £ E — £0 , 
and i? = Ji(E r\ (x, x;))/jl(x, xf) —> 1 since x is a point of (5-density of £ . Now 

G(xf) - G(at) 
\G\(x) - \G\(x) 

G(x') - G(at) 
JI(E n o,aj) 

jg(£ H (*, at]) 
jx(x,x ) 

< 6i/jl(E H (#, a*]) —> 0 as x' —> x"1 

Write fs(x) =
 /(X)XE, where x# denotes the characteristic function of E. 

For/* Ç LHX, S,/*)set 

^ ( * 0 = /(-co,*] / * ^ = /(-oo.x] / * ^M+ — /(-co,*] / * ^M~-

COROLLARY 4.1. AImost everywhere inEyDG FE(x) = f(x). 

Proof. By Theorem 3.2, Do FE(x) = f(x) a.e. in E. By Theorem 4.4, 
DGG(x) = 1 a.e. in E. Thus a.e. in E, 

DGFE(x) = DÔFE(X)/DÔG(X) = f(x). 

5. Integrals with respect to base functions G Ç g which are BVG*. A 
function G is BVG* on X if 

X = U £* 
7 1 = 1 

with each set En closed and with G(x) BV* on each En. 
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To each En corresponds Gn G gBv> finite positive measures /zw, //„+, /z„ , /xw, 
and Hahn decomposition sets EnQ C En as in /4 with 

pn(A) = M U ) = | \ o 
4 C £„o, 
if 4 C £« - £«o, 

l o 
A Q E„ — En0, 
iîAC En0. 

LetXo = Uw Ew0. Note that if A C En0 (^ Em0, jin(A) = pm(A) = /x(/l)with 
similar relations if A C (En — En0) H (£m — Ew0). Suppose that 

A = Eno H (jËm — Emo). 

Thena.e. in A, D-Qn G (x) = l ,D^ m G(x) = —1 by Theorem 4.3. Thus a. e. in A 

DonGm(x) = DcnG(x)/DcmG(x) = - 1 . 

However, this is false at a point of discontinuity of G and at any point x that is a 
limit point of points of A. In the latter case there is a sequence xt —•» x with 
Dë„ G(x?:, x) orDôn Gm(x, xt) = 1. It follows that if/x(^4) = 0,then 

M^U) = /zmU) = 0; 
M(X 0 H (£n - En0)) = 0, / i ^ o H CX0) = 0 ; « = 1 , 2 , . . . . 

Thus, if .4 C £ n , 

/x«.*04) = pn(A H £n0) - /z»(̂ 4 r\ (En - En0)) 
= jiM n i o ) - Pn(A n cx0) 
== ix(A n i o ) - M(^ n cxo). 

We use this expression to extend the définition of signed measures by setting 

fi8(A) = fi(A H Xo) ~ n(A C\ CXo) 

for the sets A in S for which the right side is defined in the extended reals, that 
is except for the case where both terms on the right are infinite. In particular 
the right side will be defined and finite if A can be covered by a finite number of 
the sets En. 

We call an S-measurable function/(x) absolutely integrable if/ £ El(X, S, /z), 
which implies that |/| £ Ll(X, S, /x). We denote by Ll(X, S, JU,) the space of 
absolutely integrable functions considered with respect to /x6. rather than y, and 
set 

Fs(x) = J(-œ,x]fdfLs = j(-œ,x]fxo dfi — f(-œ,x]fcxo dji. 

The last expression can be written in terms of sums of the positive and negative 
measures Jln

+ and /Zw~~. 

THEOREM 5.1. Iff £ Ll(X, S, /zg), DG Fs(x) = f(x) almost everywhere (/**). 
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Proof. Since for non-overlapping intervals (xu x\-) 

D \F8(x'i) - Fs(xi)\ = £ \!(X'i,xi]fdns\ < Hfix'iai] \f\dfj, <f\f\dn, 

Fs is BV on X and therefore BV* on every En. If x £ £w, 

^0*0 = j(-00,X]fEndiJLs — J(^00tX]fCEndiJLs. 

By Corollary 4.1, the derivative with respect to G of the first expression on the 
right isf(x) and of the second 0 almost everywhere in En. 

To conclude this paper we consider Denjoy type extensions of the absolute 
integrals with respect to n and /JLS when these measures are determined by 
functions G in g that are BVC7*. The generalized integral of an S (--measurable 
function with respect to fis will be defined in a finite or transfinite number of 
steps and will be denoted by G(f, e) for suitable measurable sets e. 

Definition 1. If e C En, G (J, e) = Jfe djj,s. 

Since each point is in some set En, G(f,{x}) is defined and finite for every 
point if f(x) is finite at every point of discontinuity of G. As is usual for non-
absolutely convergent integrals, G(f, e) may fail to be defined or may be defined 
but not finite over some measurable sets. We require it to be defined and finite 
over intervals and additive over disjoint intervals and points, i.e. we require 

(A) G(f3(a,b)) = G(f,(a,x]) +G(f,(x,b)) = G({,(a, x)) + G(f,[x, b))} 

G(f,(a,x]) = G(f,(a,x)) + G(f,{x}), etc. 

Definition 2. Suppose that G(J,(a/ b')) has been defined over every interval 
(#', br) C (a, b) (and satisfies (A)). Then if for a < x0 < b, 

lim G(f, (a', so)) = a, Km G(f, (*„, V)) = 0 
a'ia b'\b 

exist, we define 

G(f,(a,b)) =a + p + G(f,{xo\). 

It is then easy to verify that G(J) satisfies (A) on (a, b). 

Definition 3. Let (/, m) be an interval such that for some n with 

^ (flu bt) = CEn H (/, w), 

G(/, (ai, bt)) has been defined for every i and 

T,i6i<c°, 0t= sup \G(J, (au x]) - G(f, (aty])\. 
ai<x<y<bi 

Then define 
F(f, V, m)) = ÎEn(Khm)fdHs + HiG(f, (flU bt)). 

Again it is easy to verify that G (J) satisfies (A) on (/, m). 
A measurable function/will be called c7-totalizable if 

LfEn e Li(X,&,tJis),n = 1 , 2 , . . . . 
II. The limits in (2) always exist. 
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III . fis such that if A is any closed set for which G(f,(aiy bf)) has been deter
mined for all open intervals (au bi), CA = KJi{au bt), there exists (/, m) with 
A C\ (/, m) non-empty and £(z,m) 0{ < °°. (If at < I < bx for some 2, then dt 

will mean the oscillation over (/, bi). A similar convention will hold if 
at < m < bt.) 

THEOREM 5.2. If f is G-totalizable, G(f,(—c°, °°)) can be determined in a 
countable number of steps and G (J) is additive over finite sets of disjoint intervals 
and points. 

Proof. Let A± denote the set of points for which there is no neighbourhood 
over which / is absolutely integrable. Clearly Ai is closed. If (a, b) is any 
interval, Baire's Theorem implies that there is a subinterval (/, m) and an 
integer n with (/, m) = EnC\ (/, m). By (I), / is absolutely integrable over 
(/, m). Thus A i is nowhere dense. 

Let CA\ = \Jt(a
fi, bfi). Then associated with each x £ CA\ is an open 

interval containing x over which/is absolutely integrable. If a'i < a < $ < b' u 

then [a, fi] is covered by a finite set of such open intervals and thus / is absolutely 
integrable over (a, /3). Condition II and Definition 2 then extend G(f) to 
G (Jj (af

u V t)) for every i. 
Let A 2 denote the points x for which there is no neighbourhood (a, fi) of x 

over which fAl is absolutely integrable and S(a,j8) 0t < °° • Again A 2 is nowhere 
dense in^li and closed. If CA2 = ^J % (af, bt

2) and at
2 < a < /3 < bt

2, there are 
a finite number of points in [a, /?] for which the corresponding neighbourhoods 
cover [ay /3]. I t follows that Definition 3 applies to determine G(f, (a, /3)). Then 
Condition II and Definition 2 determine G (J, (a*2, b2)) for each i. Standard 
procedures apply to give G(f, (— °°, °°)) in a finite or countable number of 
steps; cf. (4, Theorem 5.6). 

I f / is G-totalizable, thenfx = fx(-œ,x] 1S G-totalizable and thus 

F(x) = £ ( / , ( - « > , * ] ) = G ( / ; , ( - » , » ) ) 

is defined and finite for every x. 

THEOREM 5.3. If fis G-totalizable, D G F(x) = f(x) almost everywhere. 

Proof. With the notation of the preceding theorem consider 

(a,/3), a'i < a < 0 < 6',. 

Then/x(a,/3) £ £X(X> S, /xs) and a.e. in (a, /3), writing 

/* = /x<«.fl, /*(*) = G ( / * , (a,x]), 

by Theorem 5.1. I t follows that DG F(x) = f(x) a.e. in C4i. 
Consider [a, 0], at

2 <a <p < b^.Setf* = fxta,n, F*(x) = G ( / * , ( - œ , x]). 
Then in (a, 0) F(x) - F*(x) = G(f, ( - « , « ) ) so that D G F(x) = DGF*(x). 
Now, for a < x < (3, 

F*(x) = fAi(\[a,ftfdHs + T,[a,x] Qi, 
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with X![«,/3] Oi < °°- For any sequence {(xif yi)} of non-overlapping intervals 
with**, yt G Ah 

Zi \F*(yt) - F*(xt)\ </Aln[«,« \f\dp + Z M ] 0,. 

I t follows that F*(x) is BV* on A i Pi [a, 0]. As in Theorem 4.4 and Corollary 
4.1, Z) G ^*(x) = / ( * ) a.e. in i i H ( a , /3). 11 now follows easily that DGF(x) =f(x) 
a.e. in CA2. Similar arguments apply at each extension stage and, since only a 
countable number of extensions are required to exhaust X, the final exceptional 
set is /x-null. 
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