FUNCTIONALPEARLS

An optimal, purely functional implementation of the Garsia-Wachs algorithm

RICHARD S. BIRD (1)
Department of Computer Science, Oxford University, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
(e-mail: bird@cs.ox.ac.uk)

1 Introduction

The Garsia-Wachs algorithm is an algorithm for building a binary leaf tree whose cost is as small as possible. The problem and the algorithm are described in more detail below, but the task is essentially the same as that of building a Huffman coding tree with the added constraint that the fringe of the tree has to be exactly the given list of inputs (in Huffman coding, the fringe of the tree can be any permutation of the input). As we will show below, the Garsia-Wachs algorithm can be implemented with a linearithmic running time-a running time of $O(n \log n)$ steps for an input of length n, the same time bound as for Huffman coding.

The problem has an interesting history. It was first discussed in terms of restricted Huffman coding in Gilbert \& Moore (1959), where a cubic-time algorithm was proposed. Knuth gave a quadratic-time algorithm in Knuth (1971) for a version of the problem in terms of binary search trees and the expected frequencies of occurrence of the elements in a search. A different method of attack was proposed by Hu \& Tucker (1971); see also Hu (1982) and the first edition of Knuth (1998). However, a rigorous proof of the correctness of the algorithm was obtained only later. Then along came a simplification of the Hu -Tucker algorithm in Garsia \& Wachs (1977). This algorithm was adopted in place of the Hu -Tucker algorithm in the second edition of Knuth (1998). The best current proofs of its correctness, while not exactly simple, are given in Kingston (1988) and Karpinski et al. (1997); Kingston's proof also appears in Knuth (1998). All these references describe only a simpler, quadratic-time algorithm. There is a fairly short appendix to Garsia \& Wachs (1977), written by Robert E. Tarjan, that outlines how to implement the linearithmic version, but some details are missing. Knuth also asks for the linearithmic algorithm in an exercise (6.2.2, Exercise 45) in Knuth (1998), which is answered fairly briefly on page 713 with the suggestion that a doubly linked list should be used.

In 2008, Filliâtre (2008) wrote a very nice pearl on the implementation of the GarsiaWachs algorithm in ML. His algorithm depended on mutable references and local side effects, so it was "mostly functional" in his words. He described only the quadratic version
of the problem, mainly so that he could compare it to Knuth's implementation in C. Our aim in this pearl is to give a purely functional description of the Garsia-Wachs algorithm in Haskell that does achieve the linearithmic bound.

2 The problem

The problem concerns building a binary tree of the following kind:

```
data Tree a Leaf a Fork (Tree a)(Tree a)
```

Such a tree will be referred to as a leaf tree to distinguish it from another kind of tree needed later on. The fringe of a leaf tree is defined by

$$
\begin{aligned}
& \text { fringe }:: \text { Tree } a \rightarrow[a] \\
& \text { fringe }(\text { Leaf } x) \quad=[x] \\
& \text { fringe }\left(\text { Fork } t_{1} t_{2}\right)=\text { fringe } t_{1}+\text { fringe }_{2}
\end{aligned}
$$

By definition, the depth of a leaf is the length of the path from the root of the tree to the leaf. The depths of the leaves in fringe order are defined by

```
depths :: Tree \(a \rightarrow[\) Int \(]\)
depths \(=\) from 0 where
    fromd (Leaf \(x\) ) \(=[d]\)
    from \(d\left(\right.\) Fork \(\left.t_{1} t_{2}\right)=\) from \((d+1) t_{1}+\) from \((d+1) t_{2}\)
```

Both fringe and depths can be improved to take linear time; the optimisation, which uses an accumulating parameter, is a standard one and we won't go into details.

In Huffman coding, the input consists of a list of distinct values, usually characters, paired with a measure of their likelihood of occurring in a text, a measure usually called the weight of the value. To keep things simple, we will omit the values and suppose the input consists only of a list of positive integer weights. The aim is to construct a leaf tree whose fringe is exactly the given list of weights and whose cost is as small as possible, where

```
type Weight \(=\) Int
cost \(::\) Tree Weight \(\rightarrow\) Int
\(\operatorname{cost} t=\operatorname{sum}(z i p W i t h(\times)(\) fringe \(t)(\) depths \(t))\)
```

In words, the cost of a tree is the sum of the weighted path lengths from the root to the leaves. For example, the tree of Figure 1 has cost

$$
32 \times 3+12 \times 4+20 \times 4+51 \times 2+57 \times 2+18 \times 3+37 \times 3=605
$$

which happens to be the cheapest tree for the weights [32, 12, 20, 51, 57, 18, 37].

3 The algorithm

The Garsia-Wachs algorithm is a two-stage process. In the first stage, we build a leaf tree from the given list of weights and in the second stage we rebuild it:

Fig. 1. A minimum cost tree.

```
gwa :: [Weight \(] \rightarrow\) Tree Weight
gwa \(w s=\) rebuild \(w s(\) build \(w s)\)
```

With Label as another synonym for Int, the types of build and rebuild are

```
build \(::[\) Weight \(] \rightarrow\) Tree Label
rebuild \(::[\) Weight \(] \rightarrow\) Tree Label \(\rightarrow\) Tree Weight
```

The result of build ws is a tree whose fringe is not ws but some permutation of the labels [$1 \ldots n$], where n is the length of $w s$. The critical property of this tree concerns the depths of its leaves. Suppose the depths are $d_{1}, d_{2}, \ldots, d_{n}$, where d_{j} is the depth of Leaf j. Then there is a tree with minimum cost and fringe $w s$ in which the depth of the leaf labelled with w_{j} is d_{j}. As an example, suppose build applied to [32, 12, 20, 51, 57, 18, 37] produces the tree

The list of depths in numerical order of leaf value is $[3,4,4,2,2,3,3]$. The claim, which we will not prove, is that there is a minimum cost tree for the given input whose depths in fringe order are exactly this list, and that tree is just the tree in Figure 1.

The tree in Figure 1 can be obtained from the one above by starting with a list of pairs; the first component of each pair being a leaf containing the label w_{j} and the second component being the depth d_{j}. For our example, this is the list

$$
(32,3),(12,4),(20,4),(51,2),(57,2),(18,3),(37,3)
$$

in which a pair (w, d) represents (Leaf $w, d)$. This list of pairs is reduced to a single pair by repeatedly combining the first two adjacent trees on the list with the same depth until only a single pair remains. When two trees with a common depth are combined, the depth is reduced by 1. Thus, for our example, we get the sequence of steps pictured in Figure 2, ending with a single tree and a final depth of 0 . The trees in Figure 2 are displayed using parentheses, so the tree of Figure 1 is displayed as

$$
(((32(1220)) 51)(57(1837)))
$$

$(32,3),(12,4),(20,4),(51,2),(57,2),(18,3),(37,3)$
$(32,3),((1220), 3)$,
$\left(\begin{array}{ll}(31,2), & (57,2),(18,3),(37,3) \\ (((32(1220)), 2), & (51,2),(57,2),(18,3),(37,3) \\ (((32(1220)) 51), 1), & (57,2),(18,3),(37,3) \\ (((32(1220)) 51), 1), & (57,2)((1837), 2) \\ ((((32(1220)) 51) & (57(1837))), 0)\end{array}\right.$

Fig. 2. Combining trees.

This process is not guaranteed to work for any list of depths, but only those that result from the first stage of the Garsia-Wachs algorithm. For example, the tree ((13)2) has depths $[2,1,2]$ in numerical order of leaf label, but no adjacent pair has the same depth so no pair can be combined and the reduction process fails to make progress.

The obvious way to implement this reduction process is by a function reduce, defined by

```
reduce :: \([(\) Tree Label, Depth \()] \rightarrow\) Tree Label
reduce \(=\) extract \(\cdot\) until singleton step where
    step \((x: y: x s)=\mathbf{i f}\) depth \(x==\) depth \(y\)
        then join \(x y\) : \(x s\)
        else \(x: \operatorname{step}(y: x s)\)
```

where Depth is a synonym for Int, depth $=$ snd and singleton is a test for whether a list is a singleton. The functions extract and join are defined by

```
extract \(::[(\) Tree Label, Depth \()] \rightarrow\) Tree Label
\(\operatorname{extract}[(t,-)]=t\)
join \(::(\) Tree Label, Depth \() \rightarrow(\) Tree Label, Depth \() \rightarrow(\) Tree Label, Depth \()\)
join \(\left(t_{1}, d\right)\left(t_{2}, \quad-\right)=\left(\right.\) Fork \(\left.t_{1} t_{2}, d-1\right)\)
```

The function step is applied repeatedly until it produces a singleton list. However, this definition of reduce can take quadratic time because step can take linear time. The inefficiency arises because if step finds the first pair to be joined at positions k and $k+1$, then the next call of step will repeat the unsuccessful search on the first $k-2$ elements when it could begin a new search at position $k-1$, the earliest position at which two depths could be the same. One way to avoid the inefficiency is to use a foldl and a recursive definition of step, redefining reduce to read

```
reduce \(::[(\) Tree Label, Depth \()] \rightarrow\) Tree Label
reduce \(=\) extract \(\cdot\) foldl step [] where
    step []\(y=[y]\)
    step \((x: x s) y=\mathbf{i f}\) depth \(x==\) depth \(y\)
        then step xs (join \(x y\) )
        else \(y: x: x s\)
```

The first argument to step maintains the invariant that no two adjacent pairs on the list have the same depth; this list is kept in reverse order for efficiency. To maintain the invariant, step is called recursively whenever two pairs are joined. Each call of step takes time proportional to the number of join operations, and there are exactly $n-1$ of these operations in total, so reduce now takes linear time.

Having dealt with reduce, we can now define rebuild:

```
rebuild \(::[\) Weight \(] \rightarrow\) Tree Label \(\rightarrow\) Tree Weight
rebuild ws \(t=\) reduce (zip (map Leaf ws) (sortDepths \(t)\) )
```

The function sortDepths sorts the depths of a tree into increasing order of label value. Since labels take the form [$1 \ldots n$], where n is the number of nodes in the tree, sorting can be accomplished in linear time using an array:

```
sortDepths \(::\) Tree Label \(\rightarrow\) [Depth]
sortDepths \(t=\operatorname{elems}(\operatorname{array}(1\), size \(t)(z i p(f r i n g e t)(\) depths \(t)))\)
```

The functions size, which counts the number of nodes in a tree, fringe and depths can all be computed in linear time, so sortDepths and rebuild each take linear time.

It remains to deal with the first stage, the function build. This is where the intricacy of the Garsia-Wachs algorithm resides. The plan of attack is to develop a quadratic-time solution first and then improve it to a linearithmic one by a suitable choice of data structure.

For input $\left[w_{1}, w_{2}, \ldots, w_{n}\right]$ the starting point is a list

$$
\left(0, w_{0}\right),\left(1, w_{1}\right),\left(2, w_{2}\right), \ldots,\left(n, w_{n}\right)
$$

of pairs of leaves and weights, so (j, w) abbreviates (Leaf $j, w)$. The first pair $\left(0, w_{0}\right)$ is a sentinel pair in which $w_{0}=\infty$. Use of a sentinel simplifies the description of the algorithm but is not essential. The following two steps are now repeated until just two pairs remain, the sentinel pair and one other:

1. Given the current list $\left(0, w_{0}\right), \ldots,\left(t_{p}, w_{p}\right)$, where $p>1$, find the largest j with $1 \leqslant j<p$ such that $w_{j-1}+w_{j} \geqslant w_{j}+w_{j+1}$, equivalently $w_{j-1} \geqslant w_{j+1}$. Such a j is guaranteed to exist since $w_{0}=\infty$. Replace the pairs $\left(t_{j}, w_{j}\right)$ and $\left(t_{j+1}, w_{j+1}\right)$ by a single pair

$$
\left(t_{*}, w_{*}\right)=\left(\operatorname{Fork}_{j} t_{j+1}, w_{j}+w_{j+1}\right)
$$

giving a new list $\left(0, w_{0}\right),\left(t_{1}, w_{1}\right), \ldots,\left(t_{j-1}, w_{j-1}\right),\left(t_{*}, w_{*}\right),\left(t_{j+2}, w_{j+2}\right), \ldots,\left(t_{p}, w_{p}\right)$.
2. Now move $\left(t_{*}, w_{*}\right)$ to the right over all pairs (t, w) for which $w<w_{*}$.

At the end of this process there are just two pairs left, the sentinel and a second pair whose first component is the required tree. It is difficult to give a convincing intuition as to why this process works, except to say that it is similar in outline to the way Huffman's algorithm proceeds. In Huffman's algorithm the trees are kept in order of weight, and at each step the two lightest trees are combined. The resulting tree is inserted into the remaining list in such a way as to maintain weight order. With the Garsia-Wachs algorithm the process is more complicated.

Here is an example. Suppose we begin with the list

$$
(0, \infty),(1,32),(2,12),(3,20),(4,51),(5,57),(6,18),(7,37)
$$

The first pair to be combined is $(6,18)$ and $(7,37)$ (because $57 \geqslant 37)$. The result is shifted zero places to the right, giving

$$
(0, \infty),(1,32),(2,12),(3,20),(4,51),(5,57),((67), 55)
$$

The next pair to be combined is $(2,12)$ and $(3,20)$ (because $32 \geqslant 30)$. The result is shifted zero places to the right, giving

$$
(0, \infty),(1,32),((23), 32),(4,51),(5,57),((67), 55)
$$

The next pair to be combined is $(1,32)$ and $((23), 32)$ (because $\infty \geqslant 32)$. The result is shifted three places to the right, giving

$$
(0, \infty),(4,51),(5,57),((67), 55),((1(23)), 64)
$$

The remaining three steps are similar in that they all involve combining the second two pairs:

$$
\begin{aligned}
& (0, \infty),((67), 55),((1(23)), 64),((45), 108) \\
& (0, \infty),((45), 108),(((67)(1(23))), 119) \\
& (0, \infty),(((45)((67)(1(23)))), 227)
\end{aligned}
$$

The first component of the second pair is the final tree. Note that the sentinel plays a passive role and is never combined with another pair.

The obvious way to implement this algorithm is repeatedly to scan the whole list from right to left at each step, looking for the largest j such that $w_{j-1} \geqslant w_{j+1}$. However, a better way of organising the search stems from the following observation. Say that a sequence w_{1}, w_{2}, \ldots is two-sorted, if $w_{1}<w_{3}<w_{5}<\ldots$ and $w_{2}<w_{4}<w_{6}<\ldots$ It follows from the definition of j in step 1 that the sequence w_{j}, \ldots, w_{p} is two-sorted. Suppose that the following sequence of w-values is produced by step 2 :

$$
w_{0}, w_{1}, w_{2}, \ldots, w_{j-1}, w_{j+2}, \ldots, w_{k-1}, w_{*}, w_{k}, \ldots, w_{p}
$$

Again, both w_{k}, \ldots, w_{p} and $w_{j+2}, \ldots, w_{k-1}, w_{*}$ are two-sorted because $w_{k-2}<w_{*}$. Furthermore, we know that $w_{j+r}<w_{*} \leqslant w_{k}$ for $2 \leqslant r<k-j$. That means the next pair to be combined is the first one on the following list of three possibilities:

1. w_{k} and w_{k+1}, provided $w_{*} \geqslant w_{k+1}$;
2. w_{j+2} and w_{j+3}, provided $w_{j-1} \geqslant w_{j+3}$;
3. w_{i} and w_{i+1}, provided $1 \leqslant i<j-1$ and $w_{i-1} \geqslant w_{i+1}$.

These three cases can be captured by expressing build in terms of foldr:

```
build \(::[\) Weight \(] \rightarrow\) Tree Label
build ws \(=\operatorname{extract~(foldr~combine~[]~(zip~(map~Leaf~[0..])~(infinity~:~ws))~)~}\)
    where extract \(\left.\left[-,(t,)_{-}\right)\right]=t\)
        infinity \(=\) sum ws
```

No weight arising during the algorithm can be greater than the sum of the input weights, so this definition of infinity is adequate. The function foldr combine [] scans the input from right to left, looking for the next pair to be combined. To define combine, we first introduce
type Pair $=($ Tree Label, Weight $)$
weight $::$ Pair \rightarrow Weight
weight $(t, w)=w$
Then combine is defined by

```
combine \(::\) Pair \(\rightarrow\) [Pair \(] \rightarrow[\) Pair \(]\)
combine \(x(y: z: x s)=\) if weight \(x \geqslant\) weight \(z\)
    then combine \(x\) (insert (fork \(y z\) ) xs)
    else \(x: y: z: x s\)
combine \(x=x: x s\)
fork : : Pair \(\rightarrow\) Pair \(\rightarrow\) Pair
fork \(\left(t_{1}, w_{1}\right)\left(t_{2}, w_{2}\right)=\left(\right.\) Fork \(\left.t_{1} t_{2}, w_{1}+w_{2}\right)\)
insert \(::\) Pair \(\rightarrow[\) Pair \(] \rightarrow[\) Pair \(]\)
insert \(x x s=y s+\) combine \(x z\) where \((y s, z s)=\) split \(x x s\)
split \(::\) Pair \(\rightarrow[\) Pair \(] \rightarrow([\) Pair \(],[\) Pair \(])\)
split \(x x s=\operatorname{span}(\lambda y\). weight \(y<\) weight \(x) x s\)
```

The function insert makes use of an instance split of the general utility function span to find the right place for a combined pair to be inserted and calls combine again to deal with Case 1. The recursive call to combine in the definition of combine deals with Case 2, and Case 3 is handled by the right-to-left search in foldr combine []. Note that the second argument of combine and insert is always a two-sorted list, a fact we will exploit later on.

In the worst case, each pass through the data leads to a single pair being combined, so the running time of build is quadratic in the length of the input. One worst case is when the list of weights takes the form

$$
[k, k, k+1, k+1, \ldots, 2 \times k-1,2 \times k-1]
$$

In such a case, the first two trees are combined at each step and inserted at the end of the list. The culprit is the function insert, which takes linear time at each step. If we could arrange that insert took logarithmic time, then the total running time of the Garsia-Wachs algorithm would be reduced to a linearithmic number of steps. Such an implementation is indeed possible because the second argument to insert is not an arbitrary list of pairs but one that is two-sorted on second components.

4 An improved algorithm

The revised implementation is carried out in two stages. The first stage is to rewrite build in terms of a new data type List Pair, designed for representing lists of pairs of leaf trees and weights that are two-sorted on weights. The following six operations are to be provided:

```
emptyL :: Lista
nullL \(\quad::\) List \(a \rightarrow\) Bool
consL \(\quad:: a \rightarrow\) List \(a \rightarrow\) List \(a\)
deconsL \(::\) List \(a \rightarrow(a\), List \(a)\)
concatL \(::\) List \(a \rightarrow\) List \(a \rightarrow\) List a
splitL \(\quad::\) Pair \(\rightarrow\) List Pair \(\rightarrow(\) List Pair, List Pair \()\)
```

Most of these operations are self-explanatory. Only the last function, splitL is specific to lists of pairs; the others work for lists of any type. The function splitL is the analogue of split used in the definition of insert. The function build is replaced by a new version

Fig. 3. A two-sorted binary search tree.
buildL, basically the same as before except that [Pair] operations are replaced by List Pair operations:

```
gwaL :: [Weight] \(\rightarrow\) Tree Weight
gwaL ws = rebuild ws (buildL ws)
buildL :: [Weight] \(\rightarrow\) Tree Label
buildL ws \(=\operatorname{extractL}(\) foldr combineL emptyL (zip (map Leaf [0. .]) (infinity: ws)))
    where infinity \(=\) sum ws
```

The new functions extract L and combineL are defined by

```
extractL :: List Pair \(\rightarrow\) Tree Label
extract \(L x s=t\) where \(\left.\left((t,)^{\prime}\right), \quad\right)=\operatorname{deconsL}(\) snd \((\operatorname{deconsL} \operatorname{xs}))\)
combineL \(::\) Pair \(\rightarrow\) List Pair \(\rightarrow\) List Pair
combineL \(x x s=\) if nullL \(x s \vee\) nullL \(y s \vee\) weight \(x<\) weight \(z\)
    then consL \(x\) xs else combineL \(x\) (insertL (fork \(y z\) zs)
    where \((y, y s)=\) decons \(L x s\)
        \((z, z s)=\) deconsLys
insertL :: Pair \(\rightarrow\) List Pair \(\rightarrow\) List Pair
insertL \(x x s=\) concatL \(y s(\) combineL \(x z s)\) where \((y s, z s)=s p l i t L x x s\)
```

The second stage is to implement List Pair so that the six operations above take at most logarithmic time. Then buildL will take linearithmic time. There are various options and we choose an implementation based on a modification of balanced binary search trees, also called AVL trees after their inventors, Georgy Adelson-Velsky and Evgenii Landis, see Knuth (1998). To motivate the modification, consider the AVL tree in Figure 3 whose nodes are labelled with pairs of leaf trees and their weights, although only the weights are shown. Flattening this tree produces a list of weights [$6,8,12,10,14,15,20$] which is two-sorted but not sorted. Now suppose we want to insert a new pair with weight w into this AVL tree. We cannot use straightforward binary search because the labels of the tree are not in increasing order of weight. Instead, as well as comparing w to the weight of the leaf tree at the root, we have also to compare it with the weight of the preceding leaf tree in the list. Only if w is greater than both these weights, we can continue by searching the right subtree; otherwise, we have to search the left subtree. In order to avoid repeatedly having to discover the weight of the preceding leaf tree, we can install the preceding leaf tree at the root of an AVL tree, rather than just its weight. If there is no preceding leaf tree, then we can artificially install a copy of the leaf tree. That leads to the tree of Figure 4.

The data type List Pair is now introduced as an instance of
data List $a=$ Null \mid Node Height (List a) $(a, a)($ List $a)$
type Height $=$ Int
$(12,10)$

Fig. 4. An augmented two-sorted binary search tree.

The first label of a Node records the height of the AVL tree, needed to maintain balance. The second label is a pair of values. The data type invariant on List a is that flattening a list produces a list of the form $\left(x_{1}, x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right), \ldots,\left(x_{n-1}, x_{n}\right)$; when each x is a Pair, the list $x_{1}, x_{2}, \ldots, x_{n}$ is two-sorted on weight components.

The implementations of empty L and nullL are immediate:

```
emptyL :: List a
empty \(L=\) Null
nullL :: List \(a \rightarrow\) Bool
nullL Null \(=\) True
null \(L_{-}=\)False
```

The operation cons L adds a new pair as a leftmost element of a binary tree:

```
consL \(:: a \rightarrow\) List \(a \rightarrow\) List \(a\)
consL \(x\) Null \(=\) node Null \((x, x)\) Null
consL \(x\left(\right.\) Node \(\left._{-} t_{1}(y, z) t_{2}\right)=\mathbf{i f}\) nullL \(t_{1}\)
    then balance (consL xt \(\left.t_{1}\right)(x, z) t_{2}\)
    else balance (consL \(\left.x t_{1}\right)(y, z) t_{2}\)
```

For an empty tree t, the operation consLxt creates a new node with label (x, x). For a non-empty tree t whose left subtree is empty, consLxt creates a new node with label (x, x) and, since x is now the predecessor of t, assigns x as the new predecessor of t. Otherwise cons $L x$ is applied to the left subtree of t. The code makes use of two smart constructors, node and balance. The function node is defined by

```
node \(::(\) List \(a) \rightarrow(a, a) \rightarrow\) List \(a \rightarrow\) List \(a\)
node \(t_{1} x y t_{2}=\) Node \(h t_{1}\) xy \(t_{2}\) where \(h=1+\max \left(\right.\) height \(\left.t_{1}\right)\left(\right.\) height \(\left.t_{2}\right)\)
height Null \(=0\)
height \((\) Node _ _ _ \()=h\)
```

The function balance has the same type as node and is needed for restoring balance in an AVL tree. The value balance $t_{1} x t_{2}$ is defined only for two trees t_{1} and t_{2} whose heights differ by at most 2 . We will not give the code for balance since it is completely standard. However, in a moment we will define a second, more general balancing function gbalance that can be applied to two trees of arbitrarily different heights.

Next, the function deconsL is defined by

```
deconsL \(::\) List \(a \rightarrow(a\), List a)
deconsL \(\left(\right.\) Node \(\left.\quad t_{1} x y t_{2}\right)=\) if nullL \(t_{1}\) then \(\left(\right.\) snd \(\left.x y, t_{2}\right)\) else \(\left(z\right.\), balance \(\left.t_{3} x y t_{2}\right)\)
    where \(\left(z, t_{3}\right)=\) deconsL \(t_{1}\)
```

This function searches along the left spine of a tree to find the first element.

Next, the function concat L is defined by

```
concatL \(::\) List \(a \rightarrow\) List \(a \rightarrow\) List \(a\)
concatL \(t_{1}\) Null \(=t_{1}\)
concatL Null \(t_{2}=t_{2}\)
concatL \(t_{1} t_{2}=\) gbalance \(t_{1}\left(\right.\) last \(\left.L t_{1}, y\right) t_{3}\) where \(\left(y, t_{3}\right)=\operatorname{deconsL} t_{2}\)
```

The subsidiary function last L returns the last value in a non-empty tree:

```
lastL \(::\) List \(a \rightarrow a\)
lastL \(\left(\right.\) Node _ \(\left.t_{1} x y t_{2}\right)=\) if nullL \(t_{2}\) then snd xy else lastL \(t_{2}\)
```

In the third clause of concat $t_{1} t_{2}$, the last value in t_{1} and the first value in t_{2} are combined as a new root. The new function is gbalance which is defined for two trees of arbitrarily different heights. To compute gbalance $t_{1} x t_{2}$, suppose firstly that $a b s\left(h_{1}-h_{2}\right) \leqslant 2$. Then gbalance can be defined as an instance of balance. Now suppose $h_{1}>h_{2}+2$. In this case, the subtrees r_{1}, r_{2}, \ldots along the right spine of t_{1} can be traversed to find a subtree $r=r_{k}$ satisfying

$$
0 \leqslant \text { height } r-\text { height } t_{2} \leqslant 1
$$

Such a tree is guaranteed to exist because the subtrees r_{1}, r_{2}, \ldots decrease in height by at least 1 and at most 2 at each step. Furthermore, if l is the left sibling of r, then

$$
\text { abs }\left(\text { height } l-\text { height }\left(\text { noder } x t_{2}\right)\right) \leqslant 2
$$

because t_{1} is a balanced tree and abs (height $l-$ height r) $\leqslant 1$. That means l and node $r x t_{2}$ can be combined with balance. Rebalancing can increase the height of a tree by at most 1 , so further rebalancing up the tree maintains the precondition on balance. The case $h_{2}>h_{1}+2$ is dual, except that the left spine of t_{2} is traversed. With that explanation, the complete definition of gbalance is as follows:

```
gbalance \(::\) List \(a \rightarrow(a, a) \rightarrow\) List \(a \rightarrow\) List \(a\)
gbalance \(t_{1} x t_{2}\)
    |abs \(\left(h_{1}-h_{2}\right) \leqslant 2=\) balance \(t_{1} \times t_{2}\)
    \(\mid h_{1}>h_{2}+2=\) balanceR \(t_{1} \times t_{2}\)
    \(\mid h_{1}+2<h_{2} \quad=\) balanceL \(t_{1} \times t_{2}\)
```

 where \(h_{1}=\) height \(t_{1} ; \quad h_{2}=\) height \(t_{2}\)
 The subsidiary functions balanceR and balanceL are defined by

$$
\begin{aligned}
& \text { balanceR, balanceL :: List } a \rightarrow(a, a) \rightarrow \text { List } a \rightarrow \text { List a } \\
& \text { balanceR (Node _lyr) } x t_{2}=\text { if height } r \geqslant \text { height } t_{2}+2 \\
& \text { then balance ly (balanceR } r x t_{2} \text {) } \\
& \text { else balance ly (node rxt } t_{2} \text {) } \\
& \text { balanceL } t_{1} x(\text { Node_ } l y r)=\text { if height } l \geqslant \text { height } t_{1}+2 \\
& \text { then balance (balanceL } \left.t_{1} x l\right) y r \\
& \text { else balance (node } \left.t_{1} x l\right) y r
\end{aligned}
$$

It is clear that balanceR $t_{1} x t_{2}$ takes $O\left(h_{1}-h_{2}\right)$ steps, where h_{1} and h_{2} are the heights of t_{1} and t_{2}. Dually, balanceL $t_{1} x t_{2}$ takes $O\left(h_{2}-h_{1}\right)$ steps. It follows that gbalance $t_{1} x t_{2}$ takes
$O\left(\right.$ abs $\left.\left(h_{1}-h_{2}\right)\right)$ steps and that concatL $t_{1} t_{2}$ applied to two balanced trees of sizes m and n takes $O(\log n+\log m)$ steps.

The final function we have to implement is splitL. The function splitL x has to split a tree t into a pair of trees $\left(t_{1}, t_{2}\right)$ in which t_{1} consists of the initial segment of t whose weight components are all less than weight x, and t_{2} is the remaining final segment of t. Thus, concatL $t_{1} t_{2}=t$. To carry out this process, we split a tree into pieces and then sew the pieces together again to make the final pair of trees. Thus,

```
splitL \(::\) Pair \(\rightarrow\) List Pair \(\rightarrow\) (List Pair, List Pair)
splitL \(x t=\operatorname{sew}(\) pieces \(x t)\)
```

A piece consists of a tree minus one of its subtrees, so it consists of a label and either a left or right subtree:

```
data Piece a =LP(List a) (a,a)|RP(a,a)(List a)
```

A left piece $L P t_{1} x y$ is missing its right subtree, and a right piece $R P x y t_{2}$ is missing its left subtree. To see how to define pieces x, consider the tree of Figure 4 and suppose the weight of pair x is 11 . The root of the tree has value $(12,10)$ and 11 is not greater than both these weights, so we construct a right piece and continue by searching the left subtree. If the weight of x were, say 13 , then we construct a left piece and continue searching the right subtree. The idea of breaking a tree into pieces is similar to Huet's zipper function, see Huet (1997). The function pieces is defined by

```
pieces \(::\) Pair \(\rightarrow\) List Pair \(\rightarrow\) [Piece Pair \(]\)
pieces \(x t=\) addPieces \(t[]\) where
    addPieces Null ps \(=p s\)
    addPieces (Node \(\left.t_{1}(y, z) t_{2}\right) p s=\)
        if \(w>\max\) (weight \(y\) ) (weight \(z\) )
        then addPieces \(t_{2}\left(L P t_{1}(y, z): p s\right)\)
        else addPieces \(t_{1}\left(R P(y, z) t_{2}: p s\right)\)
    \(w=\) weight \(x\)
```

For example, with weight $x=11$, the tree of Figure 4 produces the three pieces

in which the missing tree is indicated by a dashed line.
Finally, we can sew a list of pieces into a pair of trees by

```
sew \(::\) [Piece Pair] \(\rightarrow\) (List Pair, List Pair)
sew \(=\) foldl step \((\) Null, Null \()\)
        where \(\operatorname{step}\left(t_{1}, t_{2}\right)(L P t x)=\left(\right.\) gbalance \(\left.t x t_{1}, t_{2}\right)\)
        step \(\left(t_{1}, t_{2}\right)(R P x t)=\left(t_{1}\right.\), gbalance \(\left.t_{2} x t\right)\)
```

For example, sewing the three pieces above produces the two trees

We claim that split $x t$ takes $O(h)$ steps, where $h=h e i g h t t$. Certainly, pieces $x t$ takes this time, so we have to show that sew does too. If we define the height of a piece to be the height of the tree associated with the piece, then pieces $x t$ produces a list of pieces whose heights $h_{1}, h_{2}, \ldots, h_{k}$ are strictly increasing and bounded above by h. For example, the pieces pictured above have heights $0,1,2$. The total cost of sew is proportional to

$$
\left(h_{1}-0\right)+\left(h_{2}-h_{1}\right)+\ldots+\left(h_{k}-h_{k-1}\right) \leqslant h
$$

because each call of gbalance $t_{1} x t_{2}$ takes time proportional to the difference between the heights of t_{1} and t_{2}. Thus, both piece and sew take logarithmic time in the size of the sets, so split does too.

5 Comparisons and conclusions

In his pearl, Filliâtre compared his OCaml implementation with a C implementation written by Knuth as he was preparing for the second edition of Knuth (1998). For example, with $n=500$ and random weights in the range $1 \leqslant w \leqslant 5000$, the OCaml code took 1.82 s , while the C code took 1.56 s . Both implementations had the same quadratic-time worst-case complexity. But that was in 2008 and computers have got faster in the past dozen years. One of the referees of this paper translated our Haskell quadratic-time algorithm for gwa into OCaml and compared it with Filliâtre's original benchmark code and inputs, showing that $g w a$ was about three times slower than Filliâtre's version (0.64 ms versus 0.2 ms). This statistic was confirmed by running the code on the author's machine. The linearithmic version gwaL was translated into OCaml and the results compared. With $n=5000$, both Filliâtre's version and gwaL took about the same time (14 ms), but for greater values of n the linearithmic version pulled ahead, being about three times faster for $n=15000$. ${ }^{1}$

In summary, it does seem that the internal use of references and purely local side effects present in the OCaml implementation are not necessary for reasonable efficiency. Wadler's famous question "Shall I be pure or impure?" can still be answered, at least for problems in algorithm design, with "Stay pure as long as possible". Indeed in our new book (Bird \& Gibbons, 2020), from which this pearl was extracted, we adopt a purely functional approach to many other algorithms in computer science.

Acknowledgments

I am indebted to the referees of this paper for a careful reading of the original submission. One referee pointed out that my original code of $g w a L$ was a factor of $\log n$ worse than

[^0]linearithmic and suggested the idea of keeping both the current value and its predecessor in each node to avoid having to search for predecessors at each step. Another referee, as mentioned above, carried out the timing comparisons for Filliâtre's version and ours. For these and many other suggestions for improvement, I am very grateful.

Conflict of Interest

None

References

Bird, R. \& Gibbons, J. (2020) Algorithm Design with Haskell. Cambridge University Press. To appear.
Filliâtre, J.-C. (2008) A functional implementation of the Garsia Wachs algorithm. In ACM SIGPLAN Workshop on ML, Victoria, British Columbia, Canada.
Garsia, A. M. \& Wachs, M. L. (1977) A new algorithm for minimum cost binary trees. SIAM J. Comput. 6(4), 622-642.
Gilbert, E. N. \& Moore, E. F. (1959) Variable length binary encodings. Bell Syst. Tech. J. 38, 933-968.
Hu, T. C. (1982) Combinatorial Algorithms. Reading, MA: Addison-Wesley.
Hu, T. C. \& Tucker, A. C. (1971) Optimal computer-search trees and variable-length alphabetic codes. SIAM J. Appl. Math. 21, 514-532.
Huet, G. (1997) The Zipper. J. Funct. Program. 7(5), 549-554.
Karpinski, M., Larmore, L. L. \& Rytter, W. (1997) Correctness of constructing optimal alphabetic tree revisited. Theor. Comput. Sci. 180(1-2), 309-324.
Kingston, J. H. (1988) A new proof of the Garsia-Wachs Algorithm. J. Algorithms 9, 129-136.
Knuth, D. E. (1971) Optimum binary search trees. Acta Inf. 1(1), 14-25.
Knuth, D. E. (1998) The Art of Computer Programming, Volume 3: Sorting and Searching, 2nd ed. Reading, MA: Addison-Wesley.

[^0]: ${ }^{1}$ The code for $g w a$ and $g w a L$ in both Haskell and Ocaml is available at http://www.cs.ox.ac.uk/people/ richard.bird/GW. Ihs (and similarly for GW.ml).

