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Abstract
Seeds of 15 diverse rice accessions, representing aus, indica, temperate japonica and tropical ja-
ponica subpopulations, were produced under temperate climate conditions in Korea and used for
vitamin E analysis and seed storage experiments at 45°C and 10.9% seed moisture content. High γ-
tocotrienol was significantly positively correlated with seed longevity. In addition, a high β-tocoph-
erol proportion relative to δ-tocopherol was significantly negatively correlated with seed longevity.
Using high-density single-nucleotide polymorphism marker data, DNA haplotype analysis showed
clear allelic variations in the region of two S-adenosylmethionine synthetase genes:
LOC_Os04g42095 and LOC_Os11g15410, which regulate the conversion of δ-tocopherol into β-toc-
opherol. Four indica accessions with rare and subpopulation-specific alleles showed a 2.3-fold
lower β-/δ-tocopherol ratio compared with accessions from other subpopulations.
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Introduction

During seed storage, lipid peroxy radicals causemembrane
breakdown and cell ageing. Vitamin E, a group of eight
homologues (four tocopherols and four tocotrienols), is a
strong antioxidant that scavenges lipid peroxy radicals,
hence they play a role in seed longevity (Sattler et al.,
2004; Chen et al., 2015; Lee et al., 2017). Our previous
study using a diverse rice panel grown in the Philippines

indicated that the ratio of different vitamin E homologues
rather than total vitamin E content is crucial in extending
seed longevity (Lee et al., 2017). In particular, a high pro-
portion of γ-tocotrienol was correlated with high seed lon-
gevity. A better understanding of the molecular basis of
seed longevity may help improve longevity and/or identify
varieties that are short-lived in storage. We were therefore
interested in understanding whether the relationship
between vitamin E homologue ratios and seed longevity
is still apparent when seeds are produced under different
environmental conditions. In this study, we used seeds pro-
duced under temperate conditions to assess the correlation
between seed longevity and vitamin E.*Corresponding author. E-mail: fiona.hay@agro.au.dk
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Experimental

Seeds of 20 Oryza sativa accessions held in the T.T. Chang
Genetic Resources Center at the International Rice
Research Institute (IRRI), representing the five subpopula-
tions of Indica and Japonica Variety Groups (Supplementary
Table S1; IRRI, 2006a–q, 2007a–c)) were grown in the ex-
perimental field of the Rural Development Administration
(RDA), Republic of Korea (N35° latitude and E128° longi-
tude) in 2016. During seed production, mean temperature
and rainfall per day were 23.7°C and 6.3 mm, respectively.
After dormancy-breaking (50°C, 5 d), seeds were germi-
nated in seedling boxes and 30-d-old seedlings trans-
planted on 5 June 2016, with 300 × 150 mm2 spacing.
Fertilizer, insect, disease and weed control were according
to standard procedures. Five accessions did not flower.
Seeds of the other 15 accessions were harvested between
50 and 56 d after heading and dried at 25°C, 30–40% rela-
tive humidity (RH). A sample of 300 g seeds of each acces-
sion were sent to IRRI for seed storage experiments;
remaining seeds were used for vitamin E analysis. Eight
vitamin E homologues (α-, β-, γ-, δ- tocopherol/tocotrienol)
in lipid extracts of brown rice were analysed by ultra-
performance liquid chromatography (H-Class system,
Waters, USA; Ko et al., 2003). Individual homologues
were determined at 298 nm excitation and 325 nm emis-
sion with a Lichrospher Si-60 column (250 × 4.6 mm i.d.;
Merck Co. Germany) and quantified based on retention
time and amounts of standards (Darmstadt, Germany;
Helios, Singapore). Seed longevity parameters were deter-
mined at IRRI through standard storage experiments (Hay
et al., 2015, 2018). After moisture content (MC) equilibra-
tion at 20°C, 60% RH, seeds were heat-sealed inside alu-
minium foil bags and placed at 45°C. Samples were taken
at 3-d intervals and tested for the ability to germinate on
two layers of Whatman No. 1 filter paper in 90
mm-diameter Petri dishes. Additional samples were used
for monitoring MC: ground seeds were weighed before
and after 2 h oven-drying at 130°C (ISTA, 2018). The
mean MC was 10.3% (mean of all accessions and sample
times). Germination data were analysed by probit analysis
in GenStat v. 18 (VSN International Ltd., Hemel

Hempstead, UK). Correlations between seed longevity
parameters and proportion of vitamin E homologues
were determined using STAR v2.0.1 (IRRI). Genomic infor-
mation in the region of vitamin E-related genes were ex-
tracted from the 700k high-density single-nucleotide
polymorphism (SNP) marker data (McCouch et al., 2016).

The estimate for Ki (initial viability in normal equivalent
deviates (NED)) ranged between 1.10 and 10.90 NED
(mean 5.66 NED; Supplementary Table S1). The slope of
the survival curves, −1/σ, ranged between 0.18 and 0.44
NED/d (mean 0.16 NED/d). Time for viability to fall to
50%, p50, ranged between 5.73 and 34.58 d (mean 18.75
d). Total vitamin E content varied between 9.53 and
21.66 mg/kg brown rice (mean 15.80 mg/kg). The propor-
tion of γ-tocotrienol was significantly positively correlated
with p50 (r = 0.516; P < 0.05) (Table 1). In contrast, the pro-
portion of β-tocopherol was significantly negatively corre-
lated with Ki (r =−0.533; P < 0.05) and p50 (r =−0.740;
P < 0.01). There was no significant correlation between
−1/σ and any of the vitamin E homologues. Using the pub-
lic rice genomes database (Mansueto et al., 2017; Rice
SNP-Seek Database: http://snp-seek.irri.org/, latest access
on 26 January 2019), we determined the DNA haplotype
of 12 accessions in the region of six known
S-adenosylmethionine synthetase (SAM) genes which
regulate the conversion of δ-tocopherol into β-tocopherol
(Sattler et al., 2004). The association between haplotype
and β-/δ-tocopherol ratio was assessed. Clear allelic varia-
tions were observed in the region of two SAM genes:
LOC_Os04g42095 and LOC_Os11g15410. Four accessions
belonging to the indica subpopulation with the favourable
haplotype (shaded green in Fig. 1) showed a 2.3-fold lower
β-/δ-tocopherol ratio (mean 0.49) compared with the eight
accessions having the unfavourable haplotype (shaded
grey) (mean 1.11).

Discussion

Consistent with Lee et al. (2017), the proportion of
γ-tocotrienol relative to other vitamin E homologues in the
caryopses was significantly positively correlated with seed

Table 1. Correlation coefficients (r) between seed longevity parameters and proportions of vitamin E homologues for 15 diverse
rice accessions.

Seed longevity
parameter

Tocopherol Tocotrienol β-/δ-tocopherol
ratio

α-T β-T γ-T δ-T α-T3 β-T3 γ-T3 δ-T3

Ki −0.387ns −0.533* 0.358ns 0.220ns −0.110ns 0.097ns 0.214ns −0.036ns −0.557*
Slope −0.131ns −0.046ns 0.209ns 0.425ns 0.163ns 0.384ns −0.162ns 0.201ns −0.279ns

p50 −0.477ns −0.740** 0.384ns −0.020ns −0.406ns −0.152ns 0.516* −0.061ns −0.567*

* and **, significant at P < 0.05 and 0.01, respectively. ns, not significant (P > 0.05).
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longevity (p50). Further, a high proportion of β-tocopherol
relative to δ-tocopherol was significantly negatively corre-
lated with Ki and p50. Vitamin E α-/β- homologues have in-
efficient molecular structures for scavenging free radicals
compared with γ–/δ- homologues (Jiang, 2014; Kim 2014;
Lee et al., 2017). LOC_Os11g15410 is annotated to
S-adenosyl-L-methionine: benzoic acid/salicylic acid carb-
oxyl methyltransferase, but its network function has not
been validated. In four indica accessions with high seed
longevity, there were two non-synonymous mutations (po-
sitions 8,732,644 and 8,733,700). An insertion at position
8,733,744 and a deletion at position 8,733,747 may be
linked to the mutation at position 8,733,700 (Rice
SNP-Seek Database: http://snp-seek.irri.org/, last accessed
26 January 2019). These functional changes might be re-
sponsible for inhibition of δ-/β-tocopherol conversion re-
sulting in less β-tocopherol and greater seed longevity.
This hypothesis needs validating since the favourable
haplotype was specific to the indica subpopulation and all

other groups have the unfavourable haplotype. Further re-
search such as transgenic experiments could be used to val-
idate gene function. A better understanding of the
molecular basis for seed longevity will facilitate screening
of genebank accessions for this trait and ultimately, ration-
alization of retest intervals.

Supplementary material

The supplementary material for this article can be found at
https://doi.org/10.1017/S147926211900008X.
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Fig. 1. Haplotype analysis on two S-adenosylmethionine synthetase genes regulating δ-tocopherol conversion into β-tocopherol
for 12 rice accessions (IRRI, 2006a-c, e-f, h-i, k, m, p-q; 2007, b). Green shading indicates the favourable haplotype, grey shading
the unfavourable haplotype; non-synonymous mutations are shown in red font. Three accessions, IRGC 117270, 117273 and
117277 (IRRI 2006g, j, n), were not included in the high-density SNP data set.
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