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1. Introduction

A semiring (S, +, • ) is a nonempty set S, endowed with associative operations
of addition and multiplication, such that the multiplicative semigroup (S, •)
distributes over the addition. That is:x(y + z) — xy + xz and(x + y)z = xz + yz
for all x, y and z in S. A topological semiring is a semiring, defined on a Haus-
dorff space, such that both of the operations are jointly continuous.

In this note we consider the extension to semirings of the concept of an
inverse semigroup [2, pp. 26-34]. The behaviour of additive subgroups is exa-
mined first. Several sufficient conditions are given for an additively inversive
semiring to be a union of additive groups. A characterization of an additively
inversive, multiplicatively idempotent semiring is given as a union of Boolean
subrings with commuting additive identities. We conclude with the specification
of all doubly inversive topological semirings defined on a continuum irreducible
between two points (i.e. a topological arc).

Ideals, idempotents and subgroups are defined for each semigroup structure
separately. The subset A is a multiplicative (additive) ideal of the semiring S
if for each a in A and s in S, both as and sa (a + s, s + a) are contained in A.
The two idempotent sets are £[ + ] = {x: x = x + x} and £[ • ] = {x:x = x2}.
Kernels, or minimal ideals, if such exist, are necessarily unique and will be
written X[+J and K[ • ] . The maximal additive subgroup if[+](e) associated
with an additive idempotent e is the set (e + S + e) n {x: e e (x + S) O (S + x)} .
The union of all additive groups will be denoted by # [ + ] • Similarly we have
# [ "](&)> for k e £ [ - ] , and the union if[ • ] of all multiplicative subgroups.
A semi-ideal is a multiplicative ideal which is closed under addition. For n a
positive integer and x an element of the semiring, nx is the n-fold sum of x: if
the semiring has a multiplicative identity, interpret nx as the product of two
elements of the semiring under multiplication.

A semiring is additively (multiplicatively) regular if for each element x
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in S there exists an element x'(x*) such that x = x + x' + x(x = x. x* . x). If,
in addition, the element x' (x*) is unique, and satisfies x' = x' + x + x'(x*
(x* = x*.x.x*), then S is an additively (multiplicatively) inversive semiring.
Equivalently for the additive semigroup [2], (S, +) is inversive if and only if
(S, +) is regular and any two additive idempotents commute with one another
under addition. A similar statement applies to the multiplicative semigroup.
Finally, S is a doubly inversive semiring if both (S, +) and (S, •) are inverse
semigroups.

Trivially if [ + ] is nonempty if and only if £ [ + ] is nonvoid. If S is a com-
pact topological semiring, kernels and idempotent sets exist [10]. For a
fixed element seS, the maps x -» sx and x -> xs are additive homomorphisms,
thereby preserving both additive idempotents and additive groups. Consequently
£ [ + ] and # [ + ] are multiplicative ideals. In general neither set need be closed
under addition, but for commutative addition in # [ + ] both sets are semi-ideals.
If ( is a right multiplicative identity for £[ + ], then £ [ + ] is a semi-ideal since

(e+f) + (e+f) = (e+f)(t + t)

= e(t+t)+f(t + t) = e+f

for any two elements e and / i n £ [ + ] . The example below, with all products
defined to be the element a, illustrates that even such conditions as finiteness
of the semiring need not force additive closure on # [ + ] and £[ + ] .
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The first result concerns commutativity of addition in the additive subgroups
of a semiring when certain conditions have been imposed on the multiplication.

THEOREM 1. Let (S ,+ , • ) be a semiring. !

(1) If aeaS for each a in S, then each additive subgroup of S is commu-
tative.

(2) IfS = £ [ • ] , then £[ + ] = {x + x: xe S} and every maximal additive
subgroup is a Boolean ring.

PROOF. Recall [2] that every additive subgroup is contained in a maximal
additive subgroup and distinct maximal subgroups are disjoint. If £ [ + ] is empty

https://doi.org/10.1017/S1446788700022850 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022850


[3] Inversive semirings 279

the conclusion of (1) holds vacuously. Let a and b be elements of .H[+](e) for
some e in £ [ + ] . There exist s and t in S such that a = as and b — bt. Since
a = aseH[ + ](e).s<=H[+]Os) and k W [ + ] ( e ) . r c H [ + ] ( e O , requiring
that e = es = et, the maps x -> xs and x -> xf carry H[+](e) into itself. Both
at and bs are thus in H[+](e) and therefore

(a + b)(t + s) = at + a + b + bs

= at + b + a + bs.

Cancelling in H[+](e) we obtain the result a + b = b + a.

Assume now that S = £ [ • ] . For x in S, x + x = (x + x)2 = 4x2 = 2x + 2x e
£ [ + ] . The reverse inclusion is trivial. Thus £ [ + ] = {x + x : x e S } and is
nonempty. From a result in [4], a maximal additive subgroup / / [ + ](e) is closed
under multiplication if and only if e e £ [ - ] . From part (1) and S = £ [ • ] ,
each additive subgroup is commutative. Each maximal subgroup is thus a sub-
ring, contained in £ [ • ] , and must be a Boolean ring.

Clearly the existence of a one-sided multiplicative identity implies commu-
tativity of addition in any additive subgroup. And, if aeaS \j Sa for each a
in S, every additive subgroup is then the union of commutative subgroups which
need not be those generated by a single element. For example, let / be [0,1]
under max multiplication and min addition, and JR be a Boolean ring of order > 3.
Then the semiring S = R x / , under coordinate-wise operations, is the union
of the additively commutative subgroups JR

THEOREM 2. Let ( S , + , • ) be a semiring which is the union of additive
groups. Then S is the union of all maximal additive groups and the product
of any two additive groups under multiplication is contained wholly within
a third.

PROOF. The first conclusion follows from a result in [2]. Let e , / e£ [ + ] .
We show that # [ + ] ( e ) . # [ + ] ( / ) <= #[+](e / ) . Similarly if G and G' are
additive subgroups contained in H[+](e) and # [ + ] ( / ) respectively, G.G' <=
if[+](e/) . Let —x denote the additive inverse of the element x of /f[+](e).
Then e . t f [ + ] ( / ) c # [+] (> / ) n £ [ + ] = {ef}. For ye # [ + ] ( / ) , we have that
ey = ef and also that

xy + ey = (x + e)y = xy = (e + x)y = ey + xy

xy + (-x)y = (x - x)y = ey = (~x)y + xy

Therefore xy e (ef + S + ef) n {s: efe (s + S) n (5 + s)} = H [ + ] (ef).
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2. Regular and Inversive Semirings

The following results are well known [2; 6]. In essence the additive inverse,
denoted by ( ' ) , behaves in a manner closely resembling the behaviour of the
minus sign in ordinary arithmetic.

THEOREM 3. Let (S, + , • ) be an additively inverse semiring.

(1) £ [ + ] is additively commutative and is a semi-ideal.

(2) F o r x a n d y in S , x = ( x ' ) r , (x + y)' = y ' + x ' , (xy)' = x ' . y = x . y '
a n d x . y = x ' . y ' .

( 3 ) S is a union of additive groups if and only if for each x in S the additive
idempotents x + x' and x' + x are equal.

THEOREM 4. Let (S, +, •) be an additively inversive semiring with a right
identity t for multiplication.

(1) (S, +) is commutative and S = / / [ + ] .
(2) If e = t + t',then e e £ [ + ] n £ [ - ] and tf[+](e) is a subring with

right identity t.
(3) If S has a minimal additive ideal X[ + ], then &[ + ] is a subring.

PROOF. TO obtain S = / / [ + ] we need only show that addition in S is com-
mutative. For x,yeS we obtain the equations

x + y = (x + y)t = (x + y)' . (f)

= yt + xt •= y + x.

Therefore addition is commutative. Since t = t + t' + t, the element e = t + t'
is in £ [ + ] . But t — t2, implying that t' = t . t ' and therefore we obtain the
result

e2 = t2 + ft + tt' + ft' = t + f + f + t = e.

Consequently e e £ [ - ] and if[ + ](e) is a multiplicative subsemigroup [4].
Because addition is commutative, ff[+](e) is thus a subring and the right iden-
tity t is easily shown to be an element of Z/[+](e).

Assume now that S has a minimal additive ideal X [ + ] . Then JC[+] is
an additive group from the commutativity of addition. Since 8 = S2 =
{xy: x,yeS}, X [ + ] n Sz is nonempty, implying [8] that K[ + ] is a multipli-
cative subsemigroup and therefore is a subring of S.

As the next result demonstrates, the commutativity of additon in an additively
inversive semiring is not entirely dependent upon the existence of one-sided
identities for the multiplication.

THEOREM 5 Let a be an element of an additively inversive semiring (S, +, •)•
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Then aS and Sa are additively commutative subsemirings of S contained in

.IfS = S2, then S = H[+].

PROOF. Let aeS. Since ax + ay = a(x + y) and ax.ay 1 = a(xay), aS is

a subsemiring. Similarly Sa is a subsemiring. Moreover, we have that

ax + ay = a(x + y) = a'. (x + y)'

= a'.(/ + x') = ay + ax

implying that (aS, + ) is commutative. Since (ax)' = a.x', aS contains the

additive inverse of each of its elements and is an inverse subsemigroup of (S, + ) .

By (3) of Theorem 3, aS is contained in H [ + ] . Similar arguments hold for Sa

and thus S2 = u {aS: aeS} < = # [ + ] . The last conclusion is now obvious.

The set S2 need not be an additive subsemigroup, as for example, the set

of polynomials in the indeterminate x with positive integer coefficients. Both

4 and x2 are in S2, but (4 + x2) is not.

THEOREM 6. The following statements are equivalent for the semiring

(S, + , ) .

(1) S = E\_ • ] and (S, +) is an inverse semigroup.

(2) £ [ + ] is additively commutative and S is the union of Boolean sub-

rings.

PROOF. 1 -» 2: Let S = £ [ • ] and (S, + ) be an inverse semigroup. For each

element x in S, x = x.x = x'.x' = x'. Therefore any two elements of S com-

mute under addition since a + b = (a + b)' = b' + a' = b + a. Because addi-

tion is commutative and inversive, S = # [ + ] . From Theorem 1 each maximal

additive is a Boolean ring.

2 -» 1: If S is a union of Boolean subrings, then S = £ [ • ] and (S, + )

is regular. Because ( £ [ + ] , + ) is a commutative subsemigroup, addition is in-

versive from a result in [2] .

Although multiplication in a Boolean ring is commutative, a semiring of the

type considered in Theorem 6 need not have this property. The following example

is from [3] . Let S be the set {0, a, b, e, e + a, e + b, a + b, e + a + b} with com-

mutative addition, additive identity 0 , multiplicative identity e , where 2e = e,

a = a2 = ab, b = b2 = ba. Then S is an additively inversive semiring, S = E\_ • ]

and the maximal additive subgroups are singleton sets.

The next result has an obvious application to additively inversive semirings

which are multiplicatively regular.

THEOREM 7. Let S be an additively inversive semiring such that for each

element a of S, aeaS r\Sa. Then S is additively commutative and the union

of additive groups.
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PROOF. We need only demonstrate the commutativity of addition. For ele-
ments x,yeS there exist m and n in S such that x + y = (x + y)n and
y + x = m(y + x). Recall from Theorem 5 that Sn and mS are additively com-
mutative. Thus we obtain

>• + x = m(y + x) = m(x + y) = m[(x + y)n]

= m[(y + x)n] = [m(> + x)]n = (y + x)n = x + y.

COROLLARY 8. A doubly inversive semiring is additively commutative and
is the union of additive groups.

The additive commutativity of Theorem 7 is not obtained if the addition is
only regular. The following example has both (S, +) and (5, • ) regular, with
S = £ [ + ] = £ [ • ] = H[ + ] = H[ • ] = S2, but neither addition nor multi-
plication is commutative.

+ 0 a b • 0 a b

0

a

b

0

0

0

a

a

a

b

b

b

0

a

b

0

0

0

0

a

b

b

b

b

Similarly the unit circle, with complex multiplication, can be the multipli-
cative semigroup of a topological semiring only if the addition is left- or right-
trivial [7]. Indeed, if S is a topological semiring in which S is a multiplicative
group, with identity element 1, the addition is regular but cannot be inversive
except if S = {1}. In doubly inversive semirings we have an extension of Theo-
rem 3. Recall that inverses are denoted by (') and (*) for addition and multi-
plication, respectively.

THEOREM 9. Let (S, + , •) be a doubly inversive semiring. Then for each

x in S,(x')* = (*'•)'•

PROOF. In an additively inversive semiring (a b)' = a.b' and a.b = a' .b'.
Hence (abc)' = a'.b'.c'. Let x be in S. There exist unique elements x* and
(x')* such that equations (1) and (2) hold.

(1) x' = x ' . (x ' )*.x ' (x')* = (x ' )* .x ' . ( x ' )*

(2) x = x. x*. x x* = x*. x. x*

Taking the additive inverse of the equations of (2) we have

(3) x' = x ' . (x*) ' .x ' (x*)' = (x*)' .x' .(x*)' .

Comparing equations (1) and (3), (x*)' = (x')* •
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For doubly inversive topological semirings it is possible to obtain somewhat
stronger conclusions.

THEOREM 10. Let (S, +, •) be a compact, doubly inversive topological
semiring.

(1) (S, +) is commutative and S is the union of totally disconnected addi-
tive groups.

(2) The additive kernel X[ + ] is a topological ring: if S is connected,
then -K[ + ] is a single element in £[ + ] n £ [ • ] .

(3) S has a multiplicative zero element.

PROOF. The commutativity of addition and S = # [ + ] follow directly
from Corollary 8. Since S = £[ • ]S = S£[ • ] and is also compact, each additive
subgroup is totally disconnected [9]. From S = S2, X[+] is a multiplicative
subsemigroup [8]. The map x -* x' is continuous [10] and K[+] exists, both
from the fact that S is compact. Therefore /£[ + ] is a topological subring of S.
If S is connected, then K[+] is both connected [10] and also totally disconnected,
implying the last part of (2).

The multiplicative kernel X[ • ] is a group [2] and for any two elements
x and y in K[ • ] , we have that

x + y = x(x*x) + (xx*)y = x(x*x + x*y) s K[ • ] .

Thus K\_ • ] is a compact, additively commutative semiring which is a multi-
plicative group. From a result in [7], K[ • ] must be a single point.

The next result is of general interest. Theorem 11 can also be obtained
more directly from the main result in [9].

THEOREM 11. There exists no doubly inversive topological semiring on
an indecomposable continuum.

PROOF. Let S be a doubly inversive topological semiring denned on an
indecomposable continuum. The additive semigroup (S, +) is a group [5] and
addition in 5 is commutative. Hence (S, +, •) is a topological ring from the
fact that the inversion map is continuous. However, the only possible multipli-
cation on a compact and connected topological ring is xy = 0[l] and the multi-
plication is therefore not inversive unless S is a single point.

We conclude this section with an example of a doubly inversive semiring
without a multiplicative identity. Since ad = c # b = da, S is not the union
of multiplicative groups.
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3. Doubly Inversive Semirings on Topological Arcs

A topological arc is a continuum irreducibly connected between two points.
In the remainder of this section S shall denote a doubly inversive topological
semiring (S, + , •) denned on the topological arc [d, u], with d minimal and
u maximal in the cutpoint order. Koch and Wallace [5] have characterized all
inversive topological semigroups defined on a topological arc. The material
presented here is an extension of their results. We shall need the next theorem.

THEOREM 12. Let S be a doubly inversive topological semiring defined on
the topological arc [d, u\.

(1) Addition and multiplication are commutative and S = / / [ + ] = H\_ • ] .
If xeS \ £ [ + ] , the maximal additive subgroup containing x is the set {x,2x},
where 2xe£[ + ] . Similarly, i / x e S \ £ [ - ] , #[-](x2) = {x,x2}.

(2) The inversion maps x -* x' and x -*• x* are continuous.
(3) £[ + ] is a connected semi-ideal of S and there exist e and f in S, with

e = e A/, such that £[+] = [e,/].
(4) £[ • ] is a connected multiplicative subsemigroup and there exist s

and t in S such that £[ • ] = [s, i ] .
(5) There exist elements z and m in £[ + ] n £ [ • ] such that K[ + ] = {z}

and X [ - ] = {m}.
(6) Either e = d or f = u. Similarly s = d or t = u.

PROOF. Both (1) and (6) follow from the characterization given in [5]. The
inversion maps are continuous since the set S is compact. Because the maps
x -> (x + x') and x -+ x.x* are retracts onto £ [ + ] and £[ • ] respectively, the
idempotent sets are subcontinua. Both are closed sets in a totally ordered space
and elements e,f, s and t exist with the properties as specified. Because both sets,
under their respective operations, are commutative, they are subsemigroups.
The minimal ideals for addition and multiplication are singleton sets from
Theorem 10.

The following are the three main cases, as stated for the inverse semigroup
(S, • )• Similar explanation applies to the semigroup (S, +). We assume through-
out that t = u, from which £[ • ] = [s, u ] .
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CASE I. m = d, requiring that s - d. Therefore S = £[ • ] and (S, •) is
a min thread.

CASE II. m ^ d, s # d. Then s = m and £[ • ] = [m, M] is a min thread
under multiplication. Let A be the subinterval [d, m] . For xeA,x2 = ê  e £[ • ]
and the injective map x -* x2 takes A onto the interval \m, ed] c £ [ • ] . The
multiplication is given by:

x. y = x A y for x, y E E[ • ]
= x for x e A, y e [ex, u]
= t for xeA, y = e,e[m,ej
= ex Ae, for x, ye A.

CASE III. s = d, m j= d and thus S = £ [ • ] . Multiplication in ^ = [rf,m]
is max, while B = [m, u] is a min thread. The product AB is contained in either
A or B and is the subinterval [rfw, m] (resp. [m, du]).

With the convention £[ • ] = [s,u], recall that in £ [ + ] = [e,f\, at least
one of e and / is an endpoint. We obtain the five subcases below.

A. / = u, z = d: hence e = d, S = £ [ + ] and (S, +) is a min thread.
B. / = u, z # d # e: thus c = z, £ [ + ] = [z, M] and the addition in £ [ + ]

is a min thread.
C. f = u, e = d # z: therefore S = £ [ + ] and [d, z] and \z,u\ are, res-

pectively, additive max and min threads.
D. e = d, z = u: hence / = u, S = £ [ + ] with max addition.
E. e = d,z =£ u T^/ithusz = /and addition in the subinterval [d, z ] = £ [ + ]

is max.
Of the fifteen possible combinations, only seven lead to distinct doubly

inverse topological semirings.

CASE I. All semirings with case I multiplication have xy = x A y • For
subcase A the addition is also min and is the first example of a doubly inversive
semiring. Subcase B cannot occur since the element m (= d) is contained in
£ [ + ] = [z,u\ and z # d by assumption.

In subcase C let A = [d,z] and B = [z,u]. Note that A = {x:xz = x]
and B = {x: xz = z}, while S = £ [ + ] . For as A and beJ5, (a + b)z =
az + fez = a + z = z. It is now easily shown that A + B = [z, d + u] <=B
By considering the function /(x) = x ••+ u, we obtain the following characteri-
zation/ Let F: S -* B be any continuous function which is the identity on B and
reverses order on A (xy = x in A implies F(x)F(y) = F(y) in B). Addition is
given by

x + y = F(x). y for x = x A y

= x. F(y) for y = x A y.
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Subcase D is denned by x + y = x\J y and xy = x A y • In subcase E ,
S = £ [ • ] and £ [ + ] = [d,z] = {x + x: xeS} from Theorem 1. If x e [ z , « ] ,
then z = xz and x + x e £ [ + ] . Then x + x = z(x + x) = 2zx = 2z = z .
Since x = x ' , we have that x = x + x ' + x = x + 2x = x + z = z. Hence
u = z, which is a contradiction, implying that this subcase cannot occur.

CASE II. All case II examples have £ [ • ] = [m,u] , with min multipli-
cation. In subcase A, z = d and is contained in £ [ • ] . But m # d by assumption
and therefore this subcase cannot occur. In subcase B, m ^ d and m e £ [ + ] ,
while z e £ [ • ] . Consequently z = m. However, if x e [d, m ] , then x2 e £ [ • ] =
£ [ + ] and x = x . x 2 e x . £ [ + ] <=£[ + ] . That is, d e £ [ + ] , which is a contra-
diction.

In subcase C note that S = £ [ + ] and £ [ • ] = [m, u ] , with m # d. Since
z e £ [ • ] , denote the resulting subintervals by A = \d, m ] , B = [m, z] and
C = [z,u~\. Both {A, + ) and (B, + ) are max threads, while (C, + ) and (C, •)
and (B, •) are min threads. For as A and b e B , ab = ab + m = m, from
which y4B = {m}. If ae A\{m}, the element a2 is contained in £ [ • ] = £ u C.
If a2 e B , then a = a .a2 e /IB = {m}. Hence a2 e C and thus z = a2z = a(az)
= am = m, implying that z = m. Relabel the subintervals as A = \d,m],
B = [m, ed] c £ [ • ] , where e,, = d2. The injective map x -> x2 takes A onto B.
If y = x + y in A then y2 = x2j>2 in B. Again (y4, + ) is a max thread, while
C = [e,,, u] and B are min threads under both operations. We now show that
A + £ [ • ] = {m}. For aeA let p = a + u. If peA, then from a = au,
p2'••'= a + a2 e £ [ • ] . Moreover, p = p3 = (a + a2)(a + u) = a2 + a3 + au +
a2u = a + a2 = p2. Consequently A + u c £ [ • ] . For any aeA, a = a + d
anda 2 — a2 + ad, from which a = ad2 = a2d anda 2 = ad. Since (a + u)(d + u)
= a + a2 = a + u, then A + u = [m,d + «] c £ [ • ] . The injective map
x -> xd from B into /I maps the element a2 onto a for each a in A. Since
a + u = a + a2 e B, for a e A, we obtain finally that (a + a2)d = ad + a2d a2

+ aeA CiB - {m}. Therefore A + u = {m} and consequently A + £ [ • ] = {m}
also.

Subcase D cannot occur. For a e [d, m] and b e [m, u], ab + m = ab = m.
Since a2 e £ [ • ] = [m, u ] , a = a3 = m. Thus the element d is in £ [ • ] , which
is a contradiction.

To complete the characterization of case II we show that subcase E cannot
occur. Since z e £ [ • ] = [m, M], we obtain the subintervals A = [d, mi], B = \m, z]
C = [z, w], where £ [ + ] = [d, z] is an additive max thread. It is easily shown
that AB = {m}. If aeA\{m} and a2eB, then a = a3 = m, which is a contra-
diction. T h u s a 2 e C a n d z = a2z = m. Let x e £ [ + ] . T h e n x 2 e £ [ + ] O £ [ - ]
= {m}, implying that x = m. Consequently d = m, which contradicts the original
hypotheses.
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CASE III: In this set of examples m ^ d and S = £ [ • ] . The subintervals
[d,m] and [m,u] are, respectively, max and min threads under multiplication.
In subcase A the addition is max, with [d, m] . [m, u] = {m} .

The addition of subcase B will be the additive analogue of the case II inversive
multiplication. We outline the method emloyed. Firstly z = m, from which the
subintervals A = [d, m] , B = [m, 2d] and C = [2d, u] are obtained, where
£[ + ] = [ z ,u ] . The map x -»• 2x from 4̂ into B is both injective and onto:
(4, •) is a max thread while £ [ + ] = B u C i s a min thread under both opera-
tions. Moreover, y4£[+] = [m, du\ = B, since d + d = du and a + a = aw
for each element a in A.

In subcase C S = £ [ + ] = £ [ • ] . Subintervals ^ = [_d,z], B = \z,m\
and C = [m, u] result, where (A, • ) , (A, + ) and (B, •) are max threads, while
(C, •) , (C, + ) and (B, + ) are min threads. From this BC = {m} and (AC) r\B
= {m}, resulting in AC = [m, du] c C. Similarly A + B = [d + m, z] c A and
.4 + C = [rf + M, z] c / I , where rf + u = (d + u) A (d + m) in A. In addition
we specify that C(A + B) = {m} and a + c = a + ac, u(a + c) = ac, for each
aey4 and ceC. Both (S, + ) and (S, •) are examples of case HI operations.

In subcase D addition is max. Let A = [d, m ] , B = [m, u] . Then for a e 4̂
and fteB, we obtain ab + m = m = ab. Hence ,42? = {m}. This example is
essentially that of subcase IH-A.

Subcase E cannot occur unless z = m. With this property we obtain
£ [ + ] = [c/,z]. Let B = [z,u]. Then bu = b + b for each beB and
£ [ + ] / ! = [du,z'\ <=£[ + ] . The addition is given by the case II operations,
modified by the substitution of d for w and vice versa. In essence there is no
difference between subcases E and B of the case III examples.

This material formed part of the author's dissertation, under the direction
of Professor Michael Friedberg. I would like to thank Professor Dennison Brown
for his suggestions and Raymond Houston for pointing out the result of Theorem
11.
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