
4 The Standard Model as an effective field theory

The Standard Model has some remarkable properties. Among these, the renormalizable
terms respect a variety of symmetries, all of which are observed to hold to a high degree in
nature:

• baryon number symmetry;

Q → eiα/3Q, ū → e−iα/3ū, d̄ → e−iα/3d̄; (4.1)

• three separate lepton number symmetries,

Lf → e−iαf Lf, ēf → eiαf ēf. (4.2)

It is not necessary to impose these symmetries. They are simply consequences of gauge
invariance and the fact that there are only so many renormalizable terms that one can write
down. These symmetries are said to be “accidental”, since they do not seem to result from
any deep underlying principle.

This is already a triumph. As we will see when we consider possible extensions of the
Standard Model, this did not have to be the case. But this success raises the question: why
should we impose the requirement of renormalizability?

4.1 Integrating out massive fields

In the early days of quantum field theory, renormalizability was sometimes presented as a
sacred principle. There was a view that field theories were fundamental and should make
sense in and of themselves. Much effort was devoted to understanding whether the theories
still existed in the limit where the cutoff was taken to infinity.

But there was an alternative paradigm for understanding field theories, provided by
Fermi’s original theory of weak interactions. In this theory, weak interactions are described
by a Lagrangian of the form

Lweak = Gf√
2

JμJμ. (4.3)

Here the currents Jμ are bilinear in the fermions; they include terms like QσμT aQ∗.
This theory, like the Standard Model, was very successful. It took some time to actually
determine the form of the currents but, for more than 40 years, all experiments in weak
interactions could be summarized in a Lagrangian of this form. Only as the energies of
bosons in e+e− experiments approached the Z boson mass were deviations observed.
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64 The Standard Model as an effective field theory

The four-fermion theory is non-renormalizable. Taken seriously as a fundamental theory,
it predicts violations of unitarity at TeV energy scales. But, from the beginning, the theory
was viewed as an effective field theory, valid only at low energies. When Fermi first
proposed the theory he assumed that the weak forces were caused by the exchange of
particles – what we now know as the W and Z bosons.

4.1.1 Integrating out the W and Z bosons

Within the Standard Model we can derive the Fermi theory and also understand the
deviations. A traditional approach is to examine the Feynman diagram of Fig. 4.1. This
can be understood as a contribution to a scattering amplitude, but it is best understood
here as a contribution to the effective action of the quarks and leptons. The currents of the
Fermi theory are just the gauge currents which describe the coupling at each vertex. The
propagator, in the limit of very small momentum transfer, is just a constant. In coordinate
space this corresponds to a space–time δ-function; the interaction is local. The effect is
just to give the four-fermion Lagrangian. One can consider the effects of small finite
momentum by expanding the propagator in powers of q2. This will give four-fermion
operators with derivatives. These are suppressed by powers of MW and their effects are
very tiny at low energies. Still, in principle, they are there and in fact the measurement of
such terms at energies that are a significant fraction of MZ provided the first hints of the
existence of the Z boson.

This effective action can also be derived in the path integral approach. Here we literally
integrate out the heavy fields, the W and Z. In other words, for fixed values of the light
fields, which we denote by φ, we perform a path integral over W and Z, expressing the
result as an effective action for the φ fields (see Appendix C):∫

[dφ]eiSeff =
∫

[dφ]
∫

[dWμ][dW∗
μ]�FP

× exp

[
i
∫

d4x(W†
μ(∂

2 + M 2
W)W

μ + JμW†
μ + Jμ†Wμ)

]
. (4.4)

Here, for simplicity, we have omitted the Z particle. We have chosen the Feynman–’t Hooft
gauge. The currents Jμ and Jμ† are the usual weak currents. They are constructed out of

W
-

e-

d

u

ν

Fig. 4.1 Exchange of the massive W boson gives rise to the four-fermion interaction.
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65 4.1 Integrating out massive fields

the various light fields, the quarks and leptons, which we have grouped, generically, into
the set of fields φ. Written in this way, this is the most basic field theory path integral, and
we are familiar with the result:

eiSeff = exp

[∫
d 4xd 4y Jμ(x)�(x, y)Jμ(y)

]
. (4.5)

Here �(x, y) denotes the propagator for a scalar of mass MW. In the limit M → ∞ this
is just a δ-function (one can compute this or see it directly from the path integral; if we
neglect the derivative terms in the action, the propagator is just a constant in momentum
space):

�(x, y) = i
M 2

W
δ(x − y). (4.6)

So

Seff = 1
M 2

W
Jμ†Jμ. (4.7)

The lesson is that, up to the late 1970s, one could view QED + QCD + the Fermi theory
as a perfectly acceptable theory of particle interactions. The theory had to be understood,
however, as an effective theory, valid only up to an energy scale of order 100 GeV or
so. Sufficiently precise experiments would require the inclusion of operators of dimension
higher than four. The natural scale for these operators would be the weak scale. The Fermi
theory is ultraviolet divergent. These divergences would be cut off at scales of order the W
boson mass.

4.1.2 The simplest Higgs boson, obtained from integrating out other physics at
higher energies

It is possible that the Higgs boson is precisely the doublet of the minimal Standard Model,
and that upcoming experiments will simply verify that its couplings to quarks, leptons,
gauge bosons and itself are exactly those expected. But they might show deviations and,
in any case, at least at the LHC these measurements will probably be good only to the
5%−10% level, leaving some room for possible deviations.

If there is new physics at scales of order a few TeV or less, these might affect the
properties of the Higgs. One simple possibility is that there is a second Higgs doublet.
In other words, there might be two Higgs doublets, φ1 and φ2, with a potential V(φ1,φ2)

and Yukawa couplings to the quarks and leptons. There are strong restrictions on these
couplings from low-energy physics (and especially from phenomena like K−K̄ mixing).
These are satisfied, for example, if one Higgs doublet couples only to up quarks and the
other only to down quarks. We will see, for example, in Chapter 11 that in supersymmetric
theories these conditions are automatically satisfied, at least at tree level. But there are now
further restrictions from the success of the Standard Model in accounting for the properties
of the observed Higgs.

To see how these constraints might be satisfied and to see the connection with notions
from effective field theory we will focus on the mass matrix for the Higgs fields. Take the
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66 The Standard Model as an effective field theory

quadratic terms to have the form

Vm = μ2
1|φ1|2 + μ2

2|φ2|2 + m2φ1φ2. (4.8)

Suppose that the mass-squared matrix has one positive and one negative eigenvalue. Take
φ to correspond to the negative eigenvalue and H to correspond to the positive eigenvalue:

V = −μ2|φ|2 + m2|H|2 + quartic. (4.9)

If m2 � μ2 then we can integrate out H to obtain a potential for φ. This limit is referred
to as the decoupling limit of the two-Higgs-doublet model; if there is a second Higgs
doublet, either this, or so-called “alignment”, must hold for consistency with the present
experimental constraints.

At tree level the potential for |φ|2 includes a negative quadratic term and a positive
quartic. There are also sixth- and higher-order terms, suppressed by powers of m2. Loop
corrections involving the heavy field provide further modifications. The Yukawa couplings
are also of Standard Model type. Again, at tree level, if

φ1 = cosαφ − sinα φ2H, φ2 = sinαφ + cosαH (4.10)

then φ1 and φ2 have the Yukawa couplings

Ly = y1φ1Qū + y2φ2Qd̄, (4.11)

where y1 and y2 are matrices in the space of generations. It follows that the Yukawa
couplings to the up quarks are yu cosα and those to the down quarks are yd sinα.

4.1.3 What might the Standard Model come from?

As successful as the Standard Model is, and despite the fact that it is renormalizable, it
is likely that, like the four-fermion theory, it is the low-energy limit of some underlying,
more fundamental, theory. In the second half of this book our model for this theory will be
string theory. Consistent theories of strings, for reasons which are somewhat mysterious,
are theories which describe general relativity and gauge interactions. Unlike field theory,
string theory is finite. It does not require a cutoff for its definition. In principle, all physical
questions have well-defined answers within the theory. If this is the correct picture for the
origin of the laws of nature at extremely short distances, then the Standard Model is just its
low-energy limit. When we study string theory we will understand in some detail how such
a structure can emerge. For now, the main lesson we should take concerns the requirement
of renormalizability: the Standard Model should be viewed as an effective theory, valid up
to some energy scale �. Renormalizability is not a constraint we impose upon the theory;
rather, we should include operators of dimension five or higher, with coefficients scaled
by inverse powers of �. The value of � is an experimental question. From the success of
the Standard Model, as we will see, we know that the cutoff is large. From string theory
we might imagine that � ≈ Mp = 1.2 × 1018 GeV. But, as we will now describe, we
have experimental evidence that there is new physics which we must include at scales well
below Mp. We will also see that there are theoretical reasons to believe that there should
be new physics at TeV energy scales.

https://doi.org/10.1017/9781009290883.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290883.009


67 4.2 Lepton and baryon number violation; neutrino mass

4.2 Lepton and baryon number violation; neutrino mass

We have remarked that, at the level of renormalizable operators, baryon number and lepton
number are conserved in the Standard Model. Viewed as an effective theory, however,
we should include higher-dimension operators with dimensionful couplings. We would
expect such operators to arise, as in the case of the four-fermion theory, as a result of new
phenomena and interactions at very high energy scales. The coefficients of these operators
would be determined by this dynamics.

There would seem, at first, to be a vast array of possibilities for operators which might
be included in the Standard Model Lagrangian. But we can organize the possible terms in
two ways. First, if Mbsm is the scale of some new physics, operators of progressively higher
dimension will be suppressed by progressively larger powers of Mbsm. Second, the most
interesting and readily detectable operators are those which violate the symmetries of the
renormalizable Lagrangian. This is already familiar in the weak interaction theory. In the
Standard Model the symmetries are precisely baryon number and lepton number.

The existence of the neutrino mass is now well established, and several parameters
governing these masses are known. As we will see, if the only degrees of freedom
involved are the three known two-component neutrinos, the structure of the leading lepton-
number-violating operators is known. Several combinations of parameters are determined
by the current data, and measuring the remaining ones is a central component of the
international (and especially the US) high-energy physics program for the next few
decades. Determining whether there are additional degrees of freedom is another major
component.

4.2.1 Dimension five: lepton number violation and neutrino mass

To proceed systematically, we should write down operators of dimension five, six and so
on. At the level of dimension five, we can write several terms which violate lepton number:

L = 1
Mbsm

γf, f ′φφLfL ′
f + c.c. (4.12)

Here φ again denotes the Higgs doublet and the indices are contracted suitably. With non-
zero φ these terms give rise to neutrino masses. This type of mass term is usually called a
Majorana mass. In nature these masses are quite small. For example, if Mbsm = 1016 GeV,
which we will see is a plausible scale, then the neutrino masses would be of order 10−3 eV.
In typical astrophysical and experimental situations, neutrinos are produced with energies
of order MeV or larger, so it is difficult to measure these masses by studying the energy–
momentum dispersion relation (very sensitive measurements of the end-point spectra beta
decay are sensitive to electronvolt-scale neutrino masses). More promising are oscillation
experiments, in which these operators give rise to transitions between one type of neutrino
and another, which are similar to the phenomenon of K meson oscillations. Roughly
speaking, in the β-decay of a d quark, say, one produces the neutrino partner of the
electron. However, the mass (energy) eigenstate is a linear combination of the three types of
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68 The Standard Model as an effective field theory

neutrino (as we will see, typically it is principally a combination of two). So, experiments
or observations downstream from the production point will measure processes in which
neutrinos produce muons or taus. The oscillation periods are of order E/�m2. For MeV
neutrinos and �m ∼ 10−3 eV, this corresponds to distances of order kilometers, which
is of interest for neutrinos in the atmosphere or those observed near nuclear reactors; for
lighter neutrinos, effects at solar system scales become of interest.

Evidence that neutrinos do have non-zero masses and mixings comes from the study
of neutrinos coming from the Sun (the solar neutrinos) and neutrinos produced in the
upper atmosphere by cosmic rays (which produce pions that subsequently decay to muons
and νμs, whose decays in turn produce electrons, νμs, and νes). Accelerator and reactor
experiments have provided dramatic and beautiful evidence in support of this picture. It
developed as a result of heroic experimental and theoretical work over more than four
decades. The pioneering experiments were those of Ray Davis who, along with John
Bahcall, conceived of neutrinos as a tool for the study of the interior of the Sun. His
observation of neutrinos at rates lower than those expected in the standard solar model
prompted the study of the mixing hypothesis and a range of other experiments. Later,
studies of neutrinos from cosmic rays failed to yield the predicted fractions of νμs and
νes. Dedicated studies of neutrinos from nuclear reactors and accelerators have provided
further support for the mixing hypothesis and precise measurements of several parameters.

The masses and mixings of the neutrinos can be characterized by a unitary matrix,
similar to the CKM matrix for the quarks, known as the Pontecorvo–Maki–Nakagawa–
Sakata (PMNS) matrix. It can be parameterized as follows:

V =
⎛⎝ c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12c23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞⎠
×diag(1, eiα21/2, eiα31/2). (4.13)

From the range of experiments described above, we know that

(δm2)21 = 7.54+0.26
−0.22 × 10−5 eV2,

δm2 = (�m2)31 −�m2
12 = 2.43 ± 0.06 × 10−3 eV2,

(4.14)

where the second line holds if m1 < m2. With the same hierarchy, i.e. ordering of the
masses, one has:

sin2 θ12 = 0.308 ± 0.017, sin2 θ23 = 0.437−.033
−0.023, sin2 θ13 = 0.0234+0.0020

−0.0019,
δ

π
= 1.39+0.38

−0.27.
(4.15)

More detail can be found in the references cited at the end of this chapter.
It is conceivable that these masses are not described by the Lagrangian of Eq. (4.12).

Instead, the masses might be Dirac, by which one means that there might be additional
degrees of freedom; by analogy to the ē fields we could label these by ν̄, and they would
have very tiny Yukawa couplings to the normal neutrinos. This would truly represent
a breakdown of the Standard Model: even at low energies, we would be missing basic
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degrees of freedom. But this does not seem likely. If there are singlet neutrinos N, nothing
would prevent them from gaining a Majorana mass mN, so that

LMaj = mNNN. (4.16)

As for the leptons and quarks, there would also be a coupling of ν to the field N. There
would now be a mass matrix for the neutrinos, involving both N and ν. For simplicity,
consider the case of just one generation. Then this matrix would have the form

mν =
(

mN yv
yv 0

)
. (4.17)

Such a matrix has one large eigenvalue, of order mn, and one small eigen value, of order
y2v2/MN. This provides a natural way to understand the smallness of the neutrino mass; it
is referred to as the seesaw mechanism. Alternatively, we could consider of integrating out
the right-handed neutrino and generating the operator of Eq. (4.12).

It seems more plausible that the observed neutrino mass is Majorana than Dirac, but this
is a question that hopefully will be settled in time by experiments searching for neutrino-
less double beta decay, n + n → p + p + e− + e−. If it is Majorana, this suggests that there
is another scale in physics that is well below the Planck scale. For, even if the new Yukawa
couplings are of order one, the neutrino mass is of order

mν = 10−5 eV(Mp/�), (4.18)

where � is another scale that is well below the Planck scale and MP is the Planck mass. If
the Yukawas are small, as are many of the quark Yukawa couplings, the scale can be much
smaller.

4.2.2 Other symmetry-breaking dimension-five operators

There is another class of symmetry-violating dimension-five operators which can appear
in the effective Lagrangian. These are electric and magnetic dipole moment operators. For
example, the operator

Lμe = e
Mbsm

Fμνμ̄σμνe (4.19)

(we are using a four-component notation) would lead to the decay of the muon to an
electron and a photon. Here Mbsm denotes the scale relating to Beyond the standard model
physics. There are stringent experimental limits on such muon-number-violating processes,
for example:

branching ratio(μ → eγ ) < 1.2 × 10−11. (4.20)

Other operators of this type include those which would generate lepton-number-violating
τ decays, on which the limits are far less stringent.

In the Standard Model, CP is an approximate symmetry. We have explained that three
generations of quarks are required to violate CP within the Standard Model. So, amplitudes
which violate CP must involve all three generations and are typically highly suppressed.
From an effective-Lagrangian viewpoint, if we integrate out the W and Z bosons then the
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operators which violate CP are of dimension six and typically have coefficients suppressed
by quark masses and mixing angles, as well as loop factors. As a result, new physics
at relatively modest scales has the potential for dramatic effects. Electric dipole moment
operators for quarks or leptons would arise from operators of the form

Ld = emq

M 2
bsm

F̃μν q̄σμνq + c.c., (4.21)

where

F̃μν = 1
2
εμνρσFρσ . (4.22)

Here εμνρσ is the completely antisymmetric tensor with four indices; ε0123 = 1. The
presence of the ε symbol is the signal of CP violation, as the reader can check. In the
non-relativistic limit, this is �σ · �E. These would lead, for example, to a neutron electric
dipole moment of order

dn = e
Mbsm

. (4.23)

Searches for such dipole moments set a limits dn < 10−25e cm. So, unless there is some
source of suppression, Mbsm in CP-violating processes is larger than about 102 TeV.

4.2.3 Irrelevant operators and high-precision experiments

There are a number of dimension-five operators on which it is possible to set somewhat
less stringent limits, and in one case there is a possible discrepancy. Corrections to the
muon magnetic moment could arise from

Lg−2 = e
Mbsm

Fμνμ̄σμνμ+ c.c., (4.24)

where Fμν is the electromagnetic field (in terms of the fundamental SU(2) and U(1)
fields, one can write similar gauge-invariant combinations which reduce to this at low
energies). The muon magnetic moment has been measured to extremely high precision,
and its Standard Model contribution is calculated with comparable precision; as of the
time of writing there is a 2.6σ discrepancy between the two. Whether this reflects new
physics is uncertain. We will encounter one candidate for this physics when we discuss
supersymmetry.

There are other operators on which we can set TeV-scale limits. The success of QCD in
describing jet physics allows one to constrain four-quark operators which would give rise
to a hard component in the scattering amplitude. Such operators might arise, for example, if
quarks were composite. Constraints on flavor-changing processes provide tight constraints
on a variety of operators. Operators such as

Lfc = 1
M 2

bsm
sσ μd∗sσμd∗ (4.25)

(where we have switched to a two-component notation) would contribute to KK̄ mixing
and other processes. This would constrain Mbsm to be larger than 100 TeV or so. Any new
physics at the TeV scale must explain why such an operator is so severely suppressed.
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4.2.4 Dimension-six operators: proton decay

Proceeding to dimension six we can write down numerous terms which violate baryon
number, as well as additional lepton-number-violating interactions:

Lbv = 1
M 2

bsm
Qσ μū∗Lσμd̄ ∗ + · · · . (4.26)

This can lead to processes such as p → πe. Experiments deep underground set limits
of order 1033 years on this process. Correspondingly, the scale Mbsm must be larger than
1015 GeV.

So, viewing the Standard Model as an effective-field theory, we see that there are many
possible non-renormalizable operators which might appear but most have scales which are
tightly constrained by experiment. One might hope – or despair – that the Standard Model
will provide a complete description of nature up to scales many orders of magnitude larger
than we can hope to probe in experiment.

However, there are a number of reasons to think that the Standard Model is incomplete,
and at least one which suggests that it will be significantly modified at scales not far above
the weak scale.

4.3 Challenges for the Standard Model

On the one hand, the Standard Model is tremendously successful. With the discovery of the
Higgs particle, it can be said to describe the physics of strong, weak and electromagnetic
interactions with great precision to energies of order 100 GeV or distances as small as
10−17 cm. It explains why baryon number and the separate lepton numbers are conserved,
with only one assumption: there is no interesting new physics up to some high-energy
scale. As of the end of the 8 TeV run at the LHC, there are almost no discrepancies between
theory and experiment.

On the other hand, the Standard Model cannot be a complete theory. The existence of
neutrino mass requires at least additional states (if these masses are Dirac), and more likely
some new physics at a high-energy scale which accounts for the Majorana neutrino masses.
This scale is probably not larger than 1016 GeV, well below the Planck scale. The existence
of gravity means that there is certainly something missing from the theory. The plethora of
parameters – there are 19, counting those of the minimal Higgs sector and the θ parameter
(see the next subsection) – suggests that there is a deeper structure. More directly, features
of the big bang cosmology which are now well established cannot be accommodated within
the Standard Model.

4.3.1 The strong CP problem

In the Standard Model there is a puzzle even at the level of dimension-four operators.
Consider

Lθ = θFF̃, (4.27)
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where θ is a dimensionless parameter and

F̃μν = 1
2
εμνρσFρσ . (4.28)

We usually ignore such operators because classically they are inconsequential; they are
total derivatives and do not modify the equations of motion. In a U(1) theory, for example,

FF̃ = 2εμνρσ ∂μAν∂ρAσ = 2∂μ(εμνρσAν∂ρAσ ). (4.29)

In the next chapter we will see that this has a non-Abelian generalization, but that, despite
constituting a total divergence, these terms have real effects at the quantum level. In QCD
they turn out to be highly constrained. From the limits on the neutron electric dipole
moment, we will show in Chapter 5 that θ < 10−9. This is the first real puzzle we
have encountered. Why is it such a small dimensionless number? Answering this question,
as we will see in Chapter 5, may point to new physics, likely at some very high energy
scale.

4.3.2 The hierarchy problem and the question of naturalness

The second very puzzling feature in the Standard Model is the Higgs field. The fact that
the model seems to be described by a single Higgs scalar is itself puzzling. We could have
included several doublets or perhaps tried to explain the breaking of the gauge symmetry
through some more complicated dynamics, as we will discuss in Chapter 8. But there is a
more serious question associated with fundamental scalar fields, raised long ago by Ken
Wilson. This problem is often referred to as the hierarchy problem or the naturalness
problem.

Consider, first, the one-loop corrections to the electron mass in QED. These are
logarithmically divergent. In other words,

δm = am0
α

4π
ln�. (4.30)

We can understand this result in simple terms. In the limit m0 → 0 the theory has an
additional symmetry, a chiral symmetry, under which e and ē transform by independent
phases. This symmetry forbids a mass term, so the result must be linear in the (bare) mass.
So, on dimensional grounds, any divergence is at most logarithmic. This actually resolves a
puzzle of classical electrodynamics. Lorentz modeled the electron as a uniformly charged
sphere of radius a. As a → 0 the electrostatic energy diverges. In modern terms, we would
say that we know a is smaller than 10−17 cm, corresponding to a self-energy far larger than
the electron mass itself. But we see that in the quantum theory the cutoff occurs at a scale
of order the electron mass, and there is no large self-energy correction.

For scalars, however, there is no such symmetry and corrections to masses are
quadratically divergent. One can see this easily for the Higgs self-coupling, which gives
rise to a mass correction of the form

δm2 = λ

∫ d 4k
(2π)4(k2 + m2)

, (4.31)
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with similar corrections from the top quark loop correction, gauge loops, and others. If we
view the Standard Model as an effective-field theory, these integrals should be cut off at a
scale where new physics enters. We have argued that this might occur at, say, 1014 GeV.
But in this case the correction to the Higgs mass would be gigantic compared with the
Higgs mass itself. Given that y2

t > λ, we would expect even larger effects from top quark
loops.

It is hard to see how this puzzle can be resolved without introducing new physics at a
scale not much larger than 1 TeV. Exploring candidates for this new physics will be one of
the major subjects of this book. After discussing another fine tuning problem in our current
understanding of the laws of nature, we will elevate these concerns to a principle that we
might wish to impose on our theories: the principle of naturalness.

4.3.3 The universe: the baryon density, dark matter and dark energy

As we will discuss in Chapter 18, we have good evidence that the energy density of the
universe occurs largely in unfamiliar forms: about 27% in non-baryonic pressureless matter
(dark matter) and about 68% in some form having with negative pressure (dark energy),
with only the remaining 5% comprising ordinary baryons. The dark energy is likely to be
a cosmological constant (of which more later).

As we will discuss, particularly in Chapter 19, we might hope to understand the
dark matter in terms of some type(s) of new particle. A particle with mass of order
1 TeV (give or take factors of 10) and roughly weak-interaction cross sections would
be produced in suitable quantities in the early universe. Beyond the hierarchy problem,
this might be another pointer to new physics in the TeV energy range. Alternatively
the axion, a much lighter and more weakly interacting particle proposed to solve the
strong CP problem, might play this role and would lead to different types of experimental
signals.

The baryon density, as we will also see, cannot arise from the Standard Model itself.
We will consider a number of possible new physics mechanisms by which it might arise.
Without strong assumptions about the history of the universe, it is difficult to pin down the
relevant energy scale.

The dark energy raises puzzles which do not point in any obvious way to a particular
energy scale. If the dark energy is a cosmological constant then this represents, from the
perspective of our effective Lagrangian, a term of dimension zero, whose coefficient has
dimensions of (mass)4. Dimensional analysis would suggest that it should be of order
the largest possible scale to the fourth power. If this is the Planck scale then dimensional
analysis fails by 120 orders of magnitude. In a sense our analysis of the effective action
seems back to front. We began with a discussion of dimension-five and dimension-six
operators, operators which are irrelevant, and then turned our attention to the Higgs mass,
a dimension-two, relevant, operator. We still have not considered the most relevant operator
of all, the unit operator.

In quantum field theory, consistently with dimensional analysis, this energy is quar-
tically divergent; it is the first divergence one encounters in any quantum field theory
textbook. At one loop it is given by an expression of the form
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� =
∑

i
(−1)F

∫ d3k
(2π)3

1
2

√
k2 + m2

i , (4.32)

where the sum is over all particle species (including spins). This is just the sum of the
zero-point energies of the oscillators of each momentum. If one cuts this off, again at
1014 GeV, one gets a result of order

� = 1054 GeV4. (4.33)

The measured value of the dark-energy density is by contrast,

� = 10−47 GeV4. (4.34)

This wide discrepancy is probably one of the most troubling problems facing fundamental
physics today.

4.4 The naturalness principle

Both the Higgs mass and the cosmological constant appear to be finely tuned; they are
much smaller than the values we would have guessed from dimensional analysis, and
we have seen that quantum corrections are likely to be much larger than the observed
parameters themselves. In contrast, we have noted that the electron mass (and the masses
of the leptons and quarks more generally), while surprisingly small, does not receive large
quantum corrections.

While many physicists were uncomfortable with these tunings, it was ’t Hooft who
framed this question in terms of a principle, which he dubbed the naturalness condition. He
argued that a parameter in nature should be small only if the underlying theory becomes
more symmetric as the parameter tends to zero. The electron mass in QED provides an
illustration of this principle: as it tends to zero, the theory, as we have described, develops
a new symmetry, a U(1) chiral symmetry. All the small Yukawa couplings of the Standard
Model are similarly natural. We will see that the small masses (relative to the Planck scale)
of the hadrons are also compatible with the principle.

Our two puzzling quantities do not satisfy this criterion. The Standard Model does not
become more symmetric if one sets the Higgs mass to zero. Similarly, general relativity (as
we will see) does not become more symmetric as the cosmological constant tends to zero.
The small value of the θ parameter, which violates CP conservation in strong interactions,
also poses puzzles. Because the Standard Model violates CP even in the absence of θ , this
would seem another violation of naturalness.

These issues each suggest that there should be some new degrees of freedom, or
symmetries, or both, beyond those of the Standard Model. This has motivated a broad
range of proposals for new physics. These will be the subject of much of this book. But, in
recent years, at least one alternative picture for how the parameters of the Standard Model
might arise has gained traction. We will consider this idea, known as the landscape, in
Chapter 30.
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4.5 Summary: successes and limitations of the Standard Model

Overall, we face a tension between the striking successes of the Standard Model and its
limitations. On the one hand, the model successfully accounts for almost all the phenomena
observed in accelerators. On the other hand, it fails to account for some of the most basic
phenomena of the universe: dark matter, dark energy and the existence of gravity itself. As
a theoretical structure, it also explains successfully what might be viewed as mysterious
conservation laws: baryon number and lepton number. But it has 17 parameters – 16 of
which are pure numbers, with values which range “all over the map”. The rest of this book
explores possible solutions of these puzzles, and their implications for particle physics,
astrophysics and cosmology.

Suggested reading

The texts by by Peskin and Schroeder (1995) and Schwartz (2014) provide a good
introduction both to weak interactions and also to the strong interactions; it includes
deep inelastic scattering, parton distributions and the like. Other excellent texts include
the books by Cheng and Li (1984), Donoghue et al. (1992), Pokorski (2000) and Bailin
and Love (1993) among many others. For summaries of data on neutrino oscillations, the
Particle Data Group website provides up-to-date reviews; the text by Barger et al. (2012)
provides a first-rate pedagogical introduction.
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