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Poisson Brackets and Structure of
Nongraded Hamiltonian Lie Algebras
Related to Locally-Finite Derivations

Yucai Su

Abstract. Xu introduced a class of nongraded Hamiltonian Lie algebras. These Lie algebras have a

Poisson bracket structure. In this paper, the isomorphism classes of these Lie algebras are determined

by employing a “sandwich” method and by studying some features of these Lie algebras. It is obtained

that two Hamiltonian Lie algebras are isomorphic if and only if their corresponding Poisson algebras

are isomorphic. Furthermore, the derivation algebras and the second cohomology groups are deter-

mined.

1 Introduction

A Lie algebra (A, [ · , ·]) is called to have a Poisson bracket structure if there exists a
commutative associative algebra structure (A, · ) such that the compatibility condi-
tion holds:

(1.1) [u, v · w] = [u, v] · w + v · [u,w] for u, v,w ∈ A.

The algebra (A, · , [ · , · ]) with two algebraic structures is also called a Poisson alge-

bra. Poisson bracket structures have many applications in areas of mathematics and
physics; they are fundamental algebraic structures on phase spaces in classical me-
chanics; they are also the main objects in symplectic geometry (cf. [Z]).

Let F be a field of characteristic zero. A Lie algebra A is called graded if A =⊕
α∈Γ

Aα is a Γ-graded F-vector space for some abelian group Γ such that

(1.2) dim Aα <∞, [Aα,Aβ] ⊂ Aα+β for α, β ∈ Γ.

A classical Poisson algebra P(`) is a polynomial algebra A = F[t1, t2, . . . , t2`] in 2`
variables with the Lie bracket

(1.3) [ f , g] =

∑̀

i=1

(
∂ti

( f )∂t`+i
(g) − ∂t`+i

( f )∂ti
(g)

)
for f , g ∈ A,

where ∂ti
stands for partial derivative ∂

∂ti
. Define

(1.4) P(`)n =

{
tn1

1 tn2

2 · · · tn2`

2`

∣∣∣ ni ∈ N,

2∑̀

i=1

ni = n + 2
}

for −2 ≤ n ∈ Z,
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then P(`) is a Z-graded algebra P(`) =
⊕

n∈Z
P(`)n. When we consider only its

Lie algebra structure, this Lie algebra is denoted by H(`). Then H(`) (or the simple

Lie algebra [H(`),H(`)]/F) is a classical Lie algebra of Cartan type H (also called
a Hamiltonian Lie algebra) [K1], [K2]. Generalizations of graded Hamiltonian Lie
algebras have been studied in [O], [OZ].

Nongraded Lie algebras appear naturally in the theory of vertex algebras and their

multi-variable analogues, and they play important roles in mathematical physics. Xu
[X2] constructed a family of in general nongraded Hamiltonian Lie algebras based on
certain derivation-simple algebras and locally finite derivations (we refer to [SXZ] for
the classification of derivation-simple algebras). In [SX], Xu and the author of this

paper determined the isomorphism classes of Poisson algebras constructed in [X2]
(two Poisson algebras are called isomorphic if there exists an isomorphism which
preserves both associative algebra structure and Lie algebra structure). However, the
structure theory of the Hamiltonian Lie algebras in general does not seem to be well-

developed. Since the Poisson algebras have two compatible algebraic structures while
the Hamiltonian Lie algebras only have a Lie algebraic structure, the problem of de-
termination of the isomorphism classes of Hamiltonian Lie algebras is thus more
complicated, and one can see that some special treatments are needed in order to

determine their isomorphism classes.
In [OZ], Osborn and Zhao determined the isomorphism classes of the graded

Hamiltonian Lie algebras under certain finiteness condition on the skew-symmetric
Z-bilinear forms φ0. They used the “derivation method” to determine the isomor-

phism classes of the Hamiltonian Lie algebras, mainly, they first determined the
derivation algebras of the Lie algebras in order to obtain their isomorphism theorem.
In this paper, we shall determine the isomorphism classes of in general nongraded
Hamiltonian Lie algebras H(`,Γ), where ` is a 7-tuple of nonnegative integers and

Γ is some free abelian group, which correspond to the Lie algebras in [SX] with the
skew-symmetric Z-bilinear form φ being zero and `4 = 0. The reason we choose
φ = `4 = 0 is that the Hamiltonian Lie algebras look more natural and more ex-
plicit, and are therefore easier for application, and also they are general enough to

cover already most interesting cases (see Section 2). The Hamiltonian Lie algebras
considered in [OZ] in case φ0 = 0 are the cases of the Hamiltonian Lie algebras
[H(`,Γ),H(`,Γ)]/F with ` = (`, 0, . . . , 0).

Unlike the graded case, where the sets of ad-locally finite elements and ad-locally

nilpotent elements can be determined, in the nongraded case, the determination of
the sets of ad-locally finite elements and ad-locally nilpotent elements seems to be
un-achievable. Here, we use a “sandwich” method to estimate them (see Lemma 3.1).
By studying some important features of the Hamiltonian Lie algebras (Lemma 3.4),

we are able to obtain the isomorphism theorem without the need to know the struc-
ture of their derivation algebras. We obtain:

Main Theorem Two Hamiltonian Lie algebras are isomorphic if and only if their cor-

responding Poisson algebras are isomorphic.

In Section 2, we shall rewrite the presentations of the above-mentioned Hamil-
tonian Lie algebras up to certain obvious isomorphisms, which we call normalized

forms. Then we shall prove the main theorem in Section 3. In Section 4, we shall
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use a different method from those in [F], [OZ] to determine the derivation algebras
of the Hamiltonian Lie algebras. The reason we determine the derivation algebras

after the determination of the isomorphism classes is that we want to emphasize that
the determination of the isomorphism classes does not depend on the determination
of the derivation algebras. Then in the final section, we shall determine the second
cohomology groups of the Hamiltonian Lie algebras (the second cohomology groups

of the Hamiltonian Lie algebras considered in [OZ] was determined by Jia [J]).

Acknowledgements The author would like to thank Dr. Xiaoping Xu for suggest-

ing the investigation of this problem and for instructions, and Professor Kaiming
Zhao for helpful discussions. Part of this research was carried out during the author’s
visit to the Academy of Mathematics and Systems Sciences, Chinese Academy of Sci-
ences; he wishes to thank the Academy for hospitality and support. This research was

supported by a NSF grant no. 10171064 of China and two research grants from the
Ministry of Education of China.

2 Normalized Forms

Before we present the normalized forms of the Hamiltonian Lie algebras, to better
understand general Hamiltonian Lie algebras, we first explain how one can generalize
the classical Hamiltonian Lie algebras H(`) defined in (1.3).

For convenience, we denote

(2.1) i = i + ` for 1 ≤ i ≤ `.

The constructional ingredients of the classical Hamiltonian Lie algebra H(`) are the

pairs (A,D) consisting of the polynomial algebra

(2.2) A = F[t1, t1, . . . , t`, t`],

and a finite dimensional space D = span{∂ti
, ∂ti

| 1 ≤ i ≤ `} of commuting locally

finite derivations. The derivations ∂ti
=

∂
∂ti

are called down-grading operators by its

obvious meaning for 1 ≤ i ≤ 2`. Then the type of derivation pairs {(∂ti
, ∂ti

) | 1 ≤
i ≤ `} for H(`) is

(2.3) (d, d),

where d stands for down-grading operators.
If we replace the polynomial algebra by the Laurant polynomial algebra

(2.4) A = F[x±1
1 , x±1

1
, . . . , x±1

` , x±1

`
],

and rewrite (1.3) as

(2.5) [ f , g] =

∑̀

p=1

(xpx p)−1
(
∂∗p ( f )∂∗p(g) − ∂∗p( f )∂∗p (g)

)
for f , g ∈ A,
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where ∂∗p stands for xp
∂
∂xp

for 1 ≤ p ≤ 2`, then we obtain a Hamiltonian Lie algebra,

denoted by H(`). Now the derivations ∂∗
p are called grading operators by its obvious

meaning, and the type of derivation pairs {(∂∗
p , ∂

∗
p
) | 1 ≤ p ≤ `} for H(`) is then

(2.6) (g, g),

where g stands for grading operators.
Furthermore, we can replace A by a semigroup algebra which is the tensor product

of a Laurant polynomial algebra (2.4) and a polynomial algebra (2.2):

(2.7) A = F[x±1
1 , t1, x

±1

1
, t1, . . . , x

±1
` , t`, x

±1

`
, t`],

and replace ∂∗p by ∂p = ∂∗p + ∂tp
for 1 ≤ p ≤ 2`, then (2.5) defines a Hamiltonian

Lie algebra, denoted by Ĥ(`). The derivations ∂p are called mixed operators, and the

type of derivation pairs {(∂p, ∂ p) | 1 ≤ p ≤ `} for Ĥ(`) is now

(2.8) (m,m),

where m stands for mixed operators.
In the examples above, we can generally denote a monomial as

(2.9) xα,i = xα1

1 x
α1

1
· · · xα`` x

α`
`

t i1

1 t
i1

1
· · · t i`

` t
i`
`
,

for

(2.10) α = (α1, α1, . . . , α`, α`) ∈ Γ, i = (i1, i1, . . . , i`, i`) ∈ J,

where Γ is an additive subgroup of F
2` such that Γ = {0} in the case of H(`) (where

there are no nonzero grading operators), and Γ = Z
2` in the cases of H(`) and Ĥ(`)

(where there are nonzero grading operators), and where J is some semi-subgroup of

N
2` such that J = N

2` in the cases of H(`) and Ĥ(`) (where there are nonzero down-

grading operators), and J = {0} in the case of H(`) (where there are no nonzero
down-grading operators). In all three cases, we can define operators ∂∗

p = xp
∂
∂xp

,

∂tp
=

∂
∂tp

and ∂p = ∂∗p + ∂tp
such that ∂∗p = 0 in the case of H(`) and ∂tp

= 0 in the

case of H(`).

With the above examples in mind, we can now give generalizations of the Hamil-
tonian Lie algebras as follows.

First for convenience, for m, n ∈ Z, we denote

(2.11) m, n =

{
{m,m + 1, . . . , n} if m ≤ n

∅ otherwise.

We shall construct a semigroup algebra F[Γ × J] (cf. (2.7)), where Γ is some free
abelian subgroup of an F-vector space F

n and J is some semi-subgroup of N
n, and
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construct 7 groups of derivation pairs {(∂p, ∂ p) | p ∈ Ii} for i ∈ 1, 7, where Ii are
some indexing sets such that if we denote each type of derivation pairs {(∂p, ∂ p) |

p ∈ Ii} by (Ti ,Ti) for i ∈ 1, 7, then the types of derivation pairs in the order of the

groups {(∂p, ∂ p) | p ∈ Ii} for i ∈ 1, 7 are

(T1,T1) = (g, g), (T2,T2) = (m, g), (T3,T3) = (m, g),(2.12)

(T4,T4) = (m,m), (T5,T5) = (g, d), (T6,T6) = (m, d), (T7,T7) = (d, d).

Then we shall see that (2.3), (2.6) and (2.8) correspond respectively to the three spe-
cial cases:

(i) I7 = 1, ` and Ii = ∅ if i 6= 7,
(ii) I1 = 1, ` and Ii = ∅ if i 6= 1, and

(iii) I4 = 1, ` and Ii = ∅ if i 6= 4.

To construct, we let

(2.13) ` = (`1, . . . , `7) ∈ N
7 \ {0}.

Set

ι0 = 0, ιi = `1 + `2 + · · · + `i , i ∈ 1, 7,(2.14)

Ii, j = ιi−1 + 1, ι j for i, j ∈ 1, 7, i ≤ j.(2.15)

Denote

(2.16) Ii = Ii,i , I = I1,7, J = 1, 2ι7.

Define the map : J → J by

(2.17) p =

{
p + ι7 if p ∈ 1, ι7,

p − ι7 if p ∈ ι7 + 1, 2ι7,

(cf. (2.1)). For any subset K of 1, 2ι7, we denote

(2.18) K = {p | p ∈ K}.

In particular, we have J = I ∪ I. Set

(2.19) Ji = Ii ∪ Ii , Ji, j = Ii, j ∪ Ii, j for i, j ∈ 1, 7, i ≤ j.

Let F be a field of characteristic zero. We write an element α of F
2ι7 in the form

(2.20) α = (α1, α1, . . . , αι7 , αι7 ) with αp ∈ F,
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(cf. (2.10)). Set

(2.21) εp = (δ1,p, δ1,p, . . . , δι7,p, δι7,p) ∈ F
2ι7 for p ∈ J.

For α ∈ F
2ι7 and K ⊂ J, we use α

K
to denote the vector in F

|K| (where |K| is the size

of K), obtained fromα by deleting all the coordinates αp with p ∈ J\K; for instance,

(2.22) α{1,3} = (α1, α3) ∈ F
2, α{1,2̄,3̄} = (α1, α2, α3) ∈ F

3.

Sometimes, when the context is clear, we also use α
K

to denote the vector in F
2ι7 by

putting its p-th coordinate to be zero for p ∈ J \ K.

We fix a set {σp | p ∈ J} of elements in F
2ι7 as follows:

(2.23) σp =





εp + ε p if p ∈ I1 ∪ I3,4,

εp if p ∈ I2,

0 if p ∈ I5,7,

and σ p = σp. Using the notations (2.9) and (2.23), the factor (xpx p)−1 that appears

in (2.5) is simply x−σp if p ∈ I1. If we re-denote x−1
p by xp (and xp by x−1

p ), then the
factor (xpx p)−1 in (2.5) can be written as

(2.24) (xpx p)−1
= xσp .

Now we take an additive subgroup Γ of F
2ι7 such that

(2.25) αI5,6∪ J7
= 0 for α ∈ Γ,

(this condition is necessary since we require that T5 = T6 = T7 = T7 = d by (2.12),
which means that ∂∗p = 0, i.e., we shall have αp = 0 if p ∈ I5,6 ∪ J7 for α ∈ Γ (cf.

(2.2) and (2.3))), and we shall also require that

(2.26) σp ∈ Γ, εq ∈ Γ, Fεr ∩ Γ 6= {0} for p ∈ I1,4, q ∈ I5,6, r ∈ J1,4,

where the first condition is necessary since we require that xσp will appear as a factor
in the Lie bracket (cf. (2.5) and (2.24), also see (2.36)), and where the last two condi-

tions are called the distinguishable conditions among the derivations ∂p defined later
in (2.33), which are necessary in order to guarantee the simplicity of the Hamiltonian
Lie algebras (cf. [X2]).

Note that N
2ι7 is an additive sub-semigroup of F

2ι7 . We take

(2.27) J = {i = (i1, i1, . . . , iι7 , iι7 ) ∈ N
2ι7 | i J1∪I2,3∪I5

= 0},

(cf. (2.10)), where the condition i J1∪I2,3∪I5
= 0 is necessary since T1 = T1 = T2 =

T3 = T5 = g by (2.12), which means that ∂tp
= 0, i.e., we shall have i p = 0 if

p ∈ J1 ∪ I2,3 ∪ I5 for i ∈ J (cf. (2.4) and (2.6)).
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Now we let A = F[Γ × J] be the semigroup algebra with basis

(2.28) {xα,i | (α, i) ∈ Γ × J},

(cf. (2.9)), and the multiplication

(2.29) xα,i · xβ, j = xα+β,i+ j for (α, i), (β, j) ∈ Γ × J.

Then A forms a commutative associative algebra with 1 = x0,0 as the identity ele-
ment. Set

(2.30) Aα = span{xα,i | i ∈ J} for α ∈ Γ.

Then A is Γ-graded: A =
⊕

α∈Γ
Aα (but in general Aα is infinite dimensional). For

convenience, we denote

(2.31) xα = xα,0, t i
= x0,i , tp = tεp , for α ∈ Γ, i ∈ J, p ∈ J.

In particular,

(2.32) t i
=

∏

p∈ J

t
i p

p , xα,i = xαt i , for α ∈ Γ, i ∈ J,

(cf. (2.9)). Define the derivations {∂p, ∂
∗
p , ∂tp

| p ∈ J} of A by

(2.33) ∂p = ∂∗p + ∂tp
and ∂∗p (xα,i ) = αpxα,i , ∂tp

(xα,i) = i pxα,i−εp ,

for p ∈ J, (α, i) ∈ Γ × J, where we treat

(2.34) xα,i = 0 if (α, i) /∈ Γ × J.

In particular,

(2.35) ∂∗p = 0, ∂tq
= 0 for p ∈ I5,6 ∪ J7, q ∈ J1 ∪ I2,3 ∪ I5,

by (2.25) and (2.27) (cf. (2.12)). We call the nonzero derivations ∂∗
p grading operators,

the nonzero derivations ∂tq
down-grading operators, and the derivations ∂∗

r +∂tr
mixed

operators if both ∂∗r and ∂tr
are not zero. Then the types of derivation pairs in the

order of the groups {(∂p, ∂ p) | p ∈ Ii} for i ∈ 1, 7 are as shown in (2.12).
Now we define the following Lie bracket on A:

(2.36) [u, v] =

∑

p∈I

xσp
(
∂p(u)∂ p(v) − ∂ p(u)∂p(v)

)
,

for u ∈ Aα, v ∈ Aβ (cf. (2.30), (2.5) and (2.24)), where xσp appears just as in (2.5)
and (2.24). Then (A, [ · , ·]) forms a Hamiltonian Lie algebra, denoted by H(`,Γ),
and (A, · , [ · , ·]) forms a Poisson algebra. Then H(`,Γ) is the normalized form of
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a class of in general nongraded Hamiltonian Lie algebra constructed in [X2]. From
this definition, one sees that the classical Hamiltonian Lie algebra H(`) is simply the

Lie algebra H(` ′, 0) with ` ′ = (0, . . . , 0, `), and the Hamiltonian Lie algebras H(`)

and Ĥ(`) are respectively H(` ′ ′,Z
`) and H(` ′ ′ ′,Z

`), where ` ′′ = (`, 0, . . . , 0), and
` ′ ′ ′ = (0, 0, 0, `, 0, 0, 0) (cf. (2.12) and the statement after it). The Hamiltonian Lie
algebras considered in [OZ] in case φ0 = 0 are the cases of the Hamiltonian Lie
algebras [H(`,Γ),H(`,Γ)]/F with ` = (`, 0, . . . , 0).

The Hamiltonian Lie algebras H(`,Γ) can also be viewed as generalizations of the
Lie algebras in [DZ], [X1], [Zh] in the sense that they have some common features
stated in Lemma 3.4.

The following theorem was proved in [X2].

Theorem 2.1 The Lie algebra H(`,Γ) is central simple, i.e., [H(`,Γ),H(`,Γ)]/F (the

derived algebra modulo its center) is simple.

3 Isomorphism Classes

In this section, we shall determine the isomorphism classes of the Hamiltonian Lie
algebras of the form H = H(`,Γ). We assume that F is an algebraically closed field.

By (2.25), (2.27) and (2.35), we can rewrite (2.36) in the following more explicit
form:

[xα,i , xβ, j] =

∑

p∈I1,4

(αpβ p − α pβp)xσp +α+β,i+ j

+
∑

p∈I4,6

(αp j p − i pβp)xσp +α+β,i+ j−ε p

+
∑

p∈I2,4

(i pβ p − j pα p)xσp +α+β,i+ j−εp

+
∑

p∈I4∪I6,7

(i p j p − i p j p)xσp +α+β,i+ j−εp−ε p ,

(3.1)

for (α, i), (β, j) ∈ Γ × J, where the first summand over p ∈ I1,4 corresponds to the
fact that Ti 6= d 6= Ti for i = 1, 2, 3, 4 (cf. (2.12)). As for other summands in (3.1),

they are also obvious by (2.12). In particular, we have
(3.2)

[xα, xβ] =

∑

p∈I1,4

(αpβ p − α pβp)xσp +α+β
=

∑

p∈I1,4

∣∣∣∣
α{p, p}

β{p, p}

∣∣∣∣ xσp +α+β for α, β ∈ Γ,

(cf. (2.31) and (2.22)), where
∣∣∣ α{p, p}

β{p, p}

∣∣∣ =

∣∣∣ αp α p

βp β p

∣∣∣ is a 2 × 2 determinant, and

(3.3) [x−σp , xβ, j] =





(βp − β p)xβ, j if p ∈ I1,

−β pxβ, j if p ∈ I2,

(βp − β p)xβ, j + j pxβ, j−εp if p ∈ I3,

(βp − β p)xβ, j + j pxβ, j−εp − j pxβ, j−ε p if p ∈ I4,
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and

(3.4) [tq, x
β, j] =

{
−βqxβ, j if q ∈ I5,

−βqxβ, j − jqxβ, j−εq if q ∈ I6.

For any i ∈ J, we define the level of i to be

(3.5) |i| =

∑

p∈ J

i p.

For any (α, i) ∈ Γ × J, we define the support of (α, i) to be

(3.6) supp(α, i) = {p ∈ J | αp 6= 0 or i p 6= 0}.

For any Lie algebra L, we denote by LF and by LN the sets of ad-locally finite

elements and of ad-locally nilpotent elements, of L respectively. Generally, to obtain
the isomorphism theorem, the ordinary way is first to find the sets HF and HN .
However, in our case here, the determinations of the sets HF and HN seem to be
un-achievable. Thus, we use a “sandwich” method to estimate them. To do this, we

introduce the following three subsets of H. Denote

H1 = {x−σp , tq | p ∈ I1,4, q ∈ I5,6},(3.7)

H2 = {xα,i | α J1,4
= i J1,4∪I5,6

= 0, i pi p = 0 for p ∈ J7},(3.8)

H3 = span{xα,i | α J1,4
= i J1,4∪I5,6

= 0},(3.9)

(cf. (2.22). Then our first result is the following “sandwich” lemma.

Lemma 3.1

H1 ∪ H2 ⊂ HF ⊂ span(H1 ∪ H3),(3.10)

H2 ⊂ HN ⊂ H3.(3.11)

Proof By (3.3) and (3.4), we have H1 ⊂ HF . Suppose xα,i ∈ H2. Then by (3.8),

(3.12) supp(α, i) ⊂ I5,6 ∪ J7, and p /∈ supp(α, i) if p ∈ supp(α, i).

Let xβ, j ∈ H. By (3.1) and (3.12), we see

(3.13) [xα,i , xβ, j] =





0, or
a linear combination of the elements
xγ,k such that there exists at least a

p ∈ (I5,6 ∪ J7) \ supp(α, i) with kp < j p.

Thus if we set

(3.14) m = 1 +
∑

p∈(I5,6∪ J7)\supp(α,i)

j p,
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then adm
xα,i (xβ, j ) = 0. This proves H2 ⊂ HN ⊂ HF .

Suppose u /∈ span(H1 ∪ H3). Write

u =

∑

(α,i)∈S0

cα,ix
α,i , where(3.15)

S0 = {(α, i) ∈ Γ × J | cα,i 6= 0} is a finite set.(3.16)

Then by (3.7) and (3.9), there exist (γ, k) ∈ S0 and p ∈ I1,6 such that at least one of
p and p is in supp(γ, k), mainly,

(3.17) (γp, γ p, kp, k p) 6= 0,

and such that

(γ, k) 6= (−σp, 0) if p ∈ I1,4, and(3.18)

(γ, k) 6= (0, ε p), k p 6= 0 if p ∈ I5,6.(3.19)

We prove that u is not ad-locally finite. To do this, we choose a total order on Γ

compatible with group structure of Γ and define the total order on Γ × J by the
lexicographical order, such that the maximal element (γ, k) of S0 satisfies (3.17)–

(3.19) for some p ∈ I1,6, and that σp > σq for all q 6= p. This is possible because the
set of all nonzero σq is F-linear independent. To see how it works, say, p ∈ I1 and
(γp, γ p) 6= 0 (the proof for other cases is similar). Choose β = bε p ∈ Γ for some
b ∈ F \ {0} (cf. (2.26)) such that

(3.20) γpb + m(γ p − γp) 6= 0 for all m ∈ N.

Then for n ∈ N, the “highest” term of adn
u(xβ) is xβ+nγ+nσp ,nk with the coefficient

(3.21)

n−1∏

m=0

(
γp(β p + mγ p − m) − γ p(mγp − m)

)
=

n−1∏

m=0

(
γpb + m(γ p − γp)

)
6= 0.

Thus by (3.18), the set {adn
u(xβ) | n ∈ N} is linearly independent, which implies

(3.22) dim
(

span{adn
u(xβ) | n ∈ N}

)
= ∞.

Thus u /∈ HF . This proves HF ⊂ span(H1 ∪ H3). Similarly, HN ⊂ H3.

For any subset X ⊂ H, we denote by E(X) the set of the zero vector and the

common eigenvectors in H for adX , mainly

(3.23) E(X) = {u ∈ H | [X, u] ⊂ Fu}.

https://doi.org/10.4153/CJM-2003-036-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-036-7


866 Yucai Su

Next, we shall determine E(HF). To this end, we need to find the eigenvalues for
elements of adH1

. So we define a map π : Γ → F
ι6 by

π(α) = µ = (µ1, . . . , µι6 ), with(3.24)

µp =





αp − α p if p ∈ I1 ∪ I3,4,

−α p if p ∈ I2,

−αp if p ∈ I5,6,

(3.25)

(cf. (3.3) and (3.4)). We define

M = span{xα ∈ H | α ∈ Γ},(3.26)

Mµ = span{xα | π(α) = µ} for µ ∈ π(Γ).(3.27)

Then we have:

Lemma 3.2

(3.28) E(HF) =

⋃

µ∈π(Γ)

Mµ,

thus M = span
(

E(HF)
)

.

Proof By (3.10) and the definition (3.23), we have

(3.29) E(H1 ∪ H2) ⊃ E(HF) ⊃ E
(

span(H1 ∪ H3)
)
.

We want to prove

(3.30) E(H1 ∪ H2) ⊂
⋃

µ∈π(Γ)

Mµ ⊂ E
(

span(H1 ∪ H3)
)
.

Let µ ∈ π(Γ). By (3.3), (3.4), (3.7)–(3.9) and (3.24)–(3.27), elements in Mµ are com-
mon eigenvectors for adH1

, and adH3
acts trivially on Mµ. Since elements in H1 com-

mute with each other, elements in Mµ are common eigenvectors for adspan(H1∪H3).

That is,

(3.31)
⋃

µ∈π(Γ)

Mµ ⊂ E
(

span(H1 ∪ H3)
)
.

Suppose

(3.32) u =

∑

(α,i)∈S0

cα,ix
α,i ∈ H, where S0 = {(α, i) ∈ Γ × J | cα,i 6= 0},
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is a common eigenvector for adH1∪H2
. Since adH2

is locally nilpotent, adH2
must act

trivially on u. If (α, i) ∈ S0 with i p 6= 0 for some p ∈ I5,6 ∪ J7, then we can choose

v ∈ H2:

(3.33) v =

{
xε p if p ∈ I5,6,

t p if p ∈ J7,

such that [v, xα,i] 6= 0 by (3.1) and thus [v, u] 6= 0, contradicting the fact that adH2

acts trivially on u. Thus iI5,6∪ J7
= 0. Similarly, since u is a common eigenvector

for adH1
, we must have iI2,3∪ J4

= 0 (and thus i = 0) and π(α) = µ for some µ if
(α, i) ∈ S0. This shows that u ∈ Mµ. This together with (3.31) proves (3.30). Now
(3.29) and (3.30) show that all these sets are equal, i.e., we have (3.28).

Next we shall determine the sets MF and MN . Recall that the Lie bracket in M has
the simple form (3.2).

Lemma 3.3

MF
= span{x−σp , xα | p ∈ I1,4, α J1,4

= 0},(3.34)

MN
= span{xα | α J1,4

= 0}.(3.35)

Proof We shall prove (3.34) as the proof (3.35) is similar. It is straightforward to
verify that by (3.2) elements in the right-hand side of (3.34) commute with each other
and they are ad-locally finite on M. Thus the right-hand side of (3.34) is contained

in MF . Conversely, suppose u ∈ M is not in the right-hand side of (3.34). Then we
can write u as in (3.15), where now

(3.36) S0 = {(α, i) ∈ Γ × J | i = 0, cα,i 6= 0} is a finite set.

Thus we still have (3.17)–(3.19), and the same arguments after (3.19) show that u is
not ad-locally finite on M.

Now we shall study some important features of the Lie algebra M, which is crucial
in the proof of the isomorphism theorem.

Lemma 3.4

(1) Assume that ι4 6= 0. For µ ∈ π(Γ), regarding Mµ as an M0-module via the adjoint

action, we have

(i) if µI1,4
= 0, then the action of M0 on Mµ is trivial and

(ii) if µI1,4
6= 0, then Mµ is a cyclic M0-module, the nonzero multiplicative scalars

of xα for all α ∈ Γ with π(α) = µ, are the only generators.

(2) Assume that ι4 = 0 and ι6 6= 0. Then (
⋃
α∈Γ

Fxα) \ {0} are the set of the common

eigenvectors of HF in M.
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Proof (1) Assume that ι4 6= 0. From (3.2) and the definition of π in (3.24), we see
that xα commutes with xβ if π(α) = 0 and

(
π(β)

)
I1,4

= 0. Thus if µI1,4
= 0, the

adjoint action of M0 on Mµ is trivial. Assume

u =

∑

β∈S0

cβxβ ∈ Mµ with µI1,4
6= 0, where(3.37)

S0 = {β ∈ Γ | π(β) = µ, cβ 6= 0} is a finite set.(3.38)

By (3.2), one has

(3.39) [xα, u] = −
∑

p∈I1,4

αpµpxσp +α · u if π(α) = 0.

Thus the subspace

(3.40) U = span
{

xσp+α · u =

∑

β∈S0

cβxσp +α+β
∣∣∣ α ∈ kerπ, p ∈ I1,4

}
,

is a M0-submodule of Mµ. Let 〈u〉 denote the cyclic submodule of Mµ generated by
u. Then 〈u〉 ⊂ U . If the size |S0| of S0 is ≥ 2, then U in (3.40) is a proper submodule
of Mµ and so u is not a generator of Mµ.

Now assume that S0 is a singleton {β} with π(β) = µ. Suppose µp 6= 0 for some
p ∈ I1,4. For any k 6= 1, by (3.25), kσp ∈ kerπ , thus

(3.41) xβ+kσp = −
(

(k − 1)µp

)−1
[x(k−1)σp , xβ] ∈ 〈u〉.

For any α ∈ kerπ , by (3.25), α − (k + 1)σp ∈ kerπ . Thus by (3.2), (3.25) and (3.41),
noting that βq = βq − µq for q ∈ I1,4, it is straightforward to compute that

(3.42) kµpxα+β +
∑

q∈I1,4

(δp,q − αq)µqxα+β−σp +σq = [xα−(k+1)σp , xβ+kσp ] ∈ 〈u〉.

This shows that xα+β ∈ 〈u〉 for all α ∈ kerπ1
, but Mµ is spanned by such elements.

Thus u is a generator of Mµ.
(2) is obtained directly from (3.28).

Let H(` ′,Γ ′) be another Hamiltonian Lie algebra defined in last section. We shall

add a prime on all the constructional ingredients related to H(` ′,Γ ′); for instance,
H ′, J ′, σ ′

i , ` ′i , ι ′i , etc.

To state our isomorphism theorem, denote by Mm×n the space of m × n matrices
with entries in F and by GLm the group of m × m invertible matrices with entries

in F.

Definition 3.5 Let Γ,Γ ′ be two additive subgroups of F
2ι7 satisfying (2.25) and

(2.26). A group isomorphism τ : α 7→ α∗ from Γ → Γ
′ is called preserving if τ
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has the following form: there exists a permutation ν : p 7→ p∗ on the index set I1,4,
which maps Ik → Ik for k = 1, 2, 3, 4, such that

(3.43) α∗
{p∗,p∗} = α{p, p}Ap for p ∈ I1,4,

(cf. (2.22)), where Ap ∈ GL2; the multiplication in the right-hand side of (3.43) is
the vector-matrix multiplication;

(3.44) Ap =

(
ap + bp ap

1 − ap − bp 1 − ap

)
or

(
1 0
ap bp

)
or

(
bp 0

1 − bp 1

)
,

if p ∈ I1 ∪ I4 or I2 or I3 respectively, for some ap, bp ∈ F with bp 6= 0;

α∗
I5

= (αI1
− αI1

)B1,5 − αI2
B2,5 + αI5

B5,5, where(3.45)

B1,5 ∈ M`1×`5
, B2,5 ∈ M`2×`5

, B5,5 ∈ GL`5
;(3.46)

and

α∗
I6

= (αI1
− αI1

)B1,6 − αI2
B2,6 + (αI3,4

− αI3,4
)B3,6 + αI5

B5,6 + αI6
B6,6, where

(3.47)

B1,6 ∈ M`1×`6
, B2,6 ∈ M`2×`6

, B3,6 ∈ M(`3+`4)×`6
, B5,6 ∈ M`5×`6

, B6,6 ∈ GL`6
.

(3.48)

Note that the above uniquely determine the isomorphism by (2.25). Let us explain

the above definition. First we introduce the following notations. For any m×n matrix

A = (ap,q), we denote by Ã = (ãp,q) (resp. Â = (âp,q)) the 2m × n matrix such that

the odd rows of Ã (resp. Â) form the matrix A (resp. the m × n zero matrix) and the

even rows of Ã (resp. Â) form the matrix −A, i.e.,

(3.49) ã2p−1,q = −ã2p,q = ap,q, â2p−1,q = 0, â2p,q = −ap,q

for p ∈ 1,m, q ∈ 1, n. A preserving isomorphism τ can be decomposed into the
composition of two isomorphisms τ = τν · τ0 such that τν only involves the per-
mutation ν, i.e., in (3.43)–(3.48), all Ap and Bi,i are identity matrices and all Bi, j are
zero matrices for i 6= j; and τ0 only involves matrices, i.e., ν = 1I1,4

in (3.43). Fur-

thermore, τ0 can be decomposed into τ0 = τ1 · τ2 such that τ1, τ2 have the following
forms:

τ1 : (α∗
J1,4
, α∗

I5,6
) = (α J1,4

, αI5,6
)A, where(3.50)

A = diag(A1, . . . ,Aι4 ,B5,5,B6,6),(3.51)

and

(3.52) τ2 : (α∗
J1,4
, α∗

I5,6
) = (α J1,4

, αI5,6
)C, C = 12ι4+`5+`6

+ D,
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where in general 1m denotes the m × m identity matrix, and where D has the form

(3.53) D = (0,D5,D6), D5 =




B̃1,5

B̂2,5

0


 , D6 =




B̃1,6

B̂2,6

B3,6

B5,6

0



,

where 0 denotes some proper zero matrices whose orders are clear from the context.
Now we can state the main result of this paper.

Theorem 3.6 θ : H(`,Γ) ∼= H(` ′,Γ ′) if and only if ` = ` ′ and there exists a preserving

isomorphism τ : Γ ∼= Γ
′.

Theorem 3.7 (Main Theorem) Two Hamiltonian Lie algebras are isomorphic if and

only if their corresponding Poisson algebras are isomorphic.

Proof By Theorem 3.6 and by [SX], the condition for two Hamiltonian Lie algebras

being isomorphic is the same as the condition for the corresponding two Poisson
algebras being isomorphic.

Proof of Theorem 3.6 “⇐”: Suppose ` = ` ′ and τ : Γ → Γ
′ is a preserving isomor-

phism. By the explanation above, τ can be written as τ = τν · τ1 · τ2, thus it suffices

to consider the following 3 cases.

Case A First assume that τ = τν is determined by permutation ν.
For any i ∈ J, we define i∗ ∈ J which is obtained from i by permutation ν. Then

it is straightforward to verify that the linear map

(3.54) θν : H → H ′ such that θν(xα,i) = xα
∗ ,i∗ ,

is a Lie algebra isomorphism.

Case B Next assume that τ = τ1 as in (3.50).
We shall define an isomorphism θ : H → H ′ as Poisson algebra isomorphism

(then θ is clearly a Lie algebra isomorphism). By (1.1), it suffices to find the images
of the generators xα, tp for α ∈ Γ, p ∈ I2,4 ∪ I6,7 ∪ I4,7 (cf. (3.58) and (3.62)–(3.64)

below) such that the following conditions hold (cf. [SX]):

(3.55)
θ([xα, xβ]) = [θ(xα), θ(xβ)], θ([tp, x

β]) = [θ(tp), θ(xβ)],

θ([tp, tq]) = [θ(tp), θ(tq)],

for α, β ∈ Γ and p, q ∈ I2,4 ∪ I6,7 ∪ I4,7.
Let ∆ =

∑
p∈I1,4

Zσp be the subgroup of Γ generated by {σp | p ∈ I1,4} and define

χ : ∆ → F
×

= F \ {0} to be the character of ∆ (i.e., the group homomorphism

∆ → F
×) determined by

(3.56) χ(σp) = bp for p ∈ I1,4,
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where bp are elements in F appearing as entries of matrices Ap in (3.44). We prove
that χ can be extended to a character χ : Γ → F

× as follows: Assume that ∆1 ⊃ ∆

is a maximal subgroup of Γ such that χ can be extended to a character χ : ∆1 → F
×.

If ∆1 6= Γ, then we choose α ∈ Γ \ ∆1 and extend χ to ∆2 = Zα + ∆1 → F
× by

defining

(3.57) χ(mα + β) =

{
χ(β) if Zα ∩ ∆1 = {0},

amχ(β) if Zα ∩ ∆1 = Znα,

for m ∈ Z, β ∈ ∆1, where a is an n-th root of χ(nα) in the second case (recall that
F is algebraically closed). This leads to a contradiction with the maximality of ∆1.
Thus χ can be extended to a character χ : Γ → F

×.
Now we define the images of xα to be

(3.58) θ(xα) = χ(α)x ′α∗

for α ∈ Γ,

(recall that we add prime on the constructional ingredients related to H ′). Then by
(3.2) we see that the first equation of (3.55) holds because (3.44) and (3.50) guaran-

tees that σ∗
p = σ ′

p and that the determinant of Ap is |Ap| = bp = χ(σp) and

(3.59) χ(α)χ(β)

∣∣∣∣
α∗
{p, p}

β∗
{p, p}

∣∣∣∣ = χ(α + β)

∣∣∣∣
α{p, p}

β{p, p}

∣∣∣∣ · |Ap| = χ(σp + α + β)

∣∣∣∣
α{p, p}

β{p, p}

∣∣∣∣ .

Next we shall find the image of tp . To do this, we introduce a new notation: For any
vector s = (s1, s1, s2, s2, . . . , sι7 , sι7 ) (with entries in F, H or in H ′), we denote

(3.60) s = (−s1, s1,−s2, s2, . . . ,−sι7 , sι7 ).

For a subset K ⊂ J, we denote by sK the vector obtained from s by deleting −s p, sq

for p, q ∈ J \ K; for instance,

(3.61) s{1,2,3,4,4} = (−s1,−s2, s3,−s4, s4),

(cf. (2.22)). We define

θ(tp) = sp for p ∈ I2,4 ∪ I6,7 ∪ I4,7, where(3.62)

sp = t ′p, sq = bqt ′q, (−sr, sr) = br(−t ′r , t
′
r )A−1

r for p ∈ I2, q ∈ I3, r ∈ I4,

(3.63)

sI5,6
= t

′
I5,6

diag(B5,5,B6,6)−1, sI6
= t

′
I6

BT
6,6, s J7

= t ′J7
,(3.64)

where the up-index “T” stands for the transpose of a matrix. Then if p ∈ I2,3, we

have

(3.65) [θ(tp), θ(xα)] = χ(α)bpα px ′α∗+σ ′
p = θ(α pxα+σp ) = θ([tp, x

α]),

https://doi.org/10.4153/CJM-2003-036-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-036-7


872 Yucai Su

because by (3.44) and (3.50), α∗
p

= bpα p if p ∈ I2 and α∗
p

= α p if p ∈ I3. If p ∈ I4,

as 1 × 2 matrices with entries in H, we have

[θ(t{p, p}), θ(xα)] = χ(α)bpα
∗
{p, p}A−1

p x ′α∗+σ ′
p

= χ(α + σp)α{p, p}x ′α∗+σ ′
p = θ([t{p, p}, x

α]).

(3.66)

Furthermore, we have [(t I5,6
, t I6∪ J7

), xα] = (αI5,6
, 0)xα, and

(3.67) α∗
I5,6

= αI5,6
diag(B5,5,B6,6),

by (3.50). From this and (3.64), we obtain

(3.68)
[(
θ(t I5,6

), θ(t I6∪ J7
)
)
, θ(xα)

]
= θ

(
[(t I5,6

, t I6∪ J7
), xα]

)
.

From this and (3.66), we obtain the second equation of (3.55).
To verify the last equation of (3.55), note that

(3.69)
[

t
T
I2,3∪ J4∪I5∪ J6,7

, t I2,3∪ J4∪I5∪ J6,7

]
= diag(0, Sσ`4

, 0, S`6+`7
),

where

(3.70) Sσ`4
= diag

((
0 xσι3 +1

−xσι3 +1 0

)
, . . . ,

(
0 xσι4

−xσι4 0

))
,

is a 2`4 × 2`4 matrix with entries in H, and where, in general

(3.71) Sm = diag

((
0 1
−1 0

)
, . . . ,

(
0 1
−1 0

))
∈ GL2m .

Using (3.69), (3.63) and (3.64), we can obtain

(3.72)
[
θ(t I2,3∪ J4∪I5∪ J6,7

)T , θ(t I2,3∪ J4∪I5∪ J6,7
)
]

= θ
([

t
T
I2,3∪ J4∪I5∪ J6,7

, t I2,3∪ J4∪I5∪ J6,7

])
.

For example, if p ∈ I4, by (3.56), (3.58) and (3.63), we have

[θ(t{p, p})T , θ(t{p, p})] = bp(A−1
p )T[t

′T
{p, p}, t

′
{p, p}]bpA−1

p

= bp

(
0 x ′σ

′
p

−x ′σ
′
p 0

)
= θ([t

T
{p, p}, t{p, p}]).

(3.73)

This proves the last equation of (3.55).

Case C Assume that τ = τ2 as in (3.52).
We define (3.58) with χ(α) = 1 and we define (3.62) with

sI2,3∪ J4
= t

′
I2,3∪ J4

+ t
′
I6

E1,(3.74)

sI5,6
= t

′
I5,6

E2 + t
′
I6

E3 + x ′−σ ′

E4, sI6∪ J7
= t

′
I6∪ J7

,(3.75)
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where E1, . . . , E4 are some matrices to be determined in order that (3.55) holds and
where x ′−σ ′

denotes the vector

(3.76) x ′−σ ′

= (x ′−σ ′
1 , . . . , x ′−σ ′

ι4 ).

We shall not give the explicit forms of E1, . . . , E4 here, but an interested reader can
find the solutions by considering two special cases of (3.53):

(1) D5 = 0,

(2) D6 = 0 (the general case is the composition of the two special cases), or refer to
[SX] (also, cf. the proof of necessity).

“⇒”: Assume that there exists a Hamiltonian Lie algebra isomorphism θ :
H(`,Γ) → H(` ′,Γ ′).

First, we make the following conventions: If a subset of H is defined, then we take
the definition of the corresponding subset of H ′ for granted. If a property about H

is given, the same property also holds for H ′, without description.
Clearly, θ maps HF,HN to H ′F,H ′N respectively, thus also maps M → M ′ by

Lemma 3.2. By Lemma 3.3, we have dim(MF/MN ) = ι4. This shows that

(3.77) ι4 = ι ′4.

For simplicity, we assume that ι4 6= 0 (if ι4 = 0, using Lemma 3.4 (2), one sees that
all statements or arguments below either work or do not apply to the case; if ι6 = 0,
then one can go directly to Claim 8 below). Denote

(3.78) Γ1,4 =
{
α ∈ Γ |

(
π(α)

)
I1,4

= 0
}
,

(cf. (3.24) and (2.22)). By Lemma 3.2, there exists a bijection τ1 : π(Γ) → π(Γ ′) such
that

(3.79) θ(Mµ) = M ′
τ1(µ) for µ ∈ π(Γ) and τ1(0) = 0.

From this and Lemma 3.4, there exists a bijection Γ \Γ1,4 → Γ
′ \Γ

′
1,4 which shall be

denoted by τ : α 7→ α∗ such that

(3.80) θ(xα) = cαx ′α∗

for α ∈ Γ \ Γ1,4 and some cα ∈ F
×.

We shall prove the necessity by establishing several claims.

Claim 1 There exists a bijection I1,4 → I ′1,4 denoted by ν : p 7→ p∗ such that

(3.81) θ(x−σp ) = dpx ′−σ ′
p∗ for p ∈ I1,4 and some dp ∈ F

×.

By (3.7)–(3.9) and Lemma 3.3, we have

{u ∈ MF | [u,H1 ∪ H2] = 0} = span{x−σp | p ∈ I1,4}

= {u ∈ BF | [u,H1 ∪ H3] = 0}.

(3.82)
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Thus by Lemma 3.1,

(3.83) {u ∈ MF | [u,HF] = 0} = span{x−σp | p ∈ I1,4}.

Let p ∈ I1,4. Then by (3.83),

(3.84) θ(x−σp ) ∈
∑

q∈I ′1,4

Fx ′−σ ′
q .

Suppose

(3.85) θ(x−σp ) /∈
⋃

q∈I ′1,4

Fx ′−σ ′
q .

By (2.26), there exists a ∈ F
× such that aε p ∈ Γ. By (3.2), we have

(3.86) [xaε p−σp , x−aε p−σp ] = 2ax−σp .

Note that aε p − σp,−aε p − σp /∈ Γ1,4, by (3.81),
(3.87)
θ(xaε p−σp ) ∈ Fx ′α \ {0}, θ(x−aε p−σp ) ∈ Fx ′β \ {0} for some α, β ∈ Γ

′ \ Γ
′
1,4.

By (3.2), we have

(3.88) [x ′α, x ′β] =

∑

q∈I ′1,4

(αqβq − αqβq)x ′σ ′
q +α+β .

By (3.84)–(3.86) and (3.88), there exist q, r ∈ I ′1,4 with q 6= r such that σ ′
q + α + β =

−σ ′
r . Thus

(3.89) β = −α− σ ′
q − σ ′

r ,

and (3.88) becomes

(3.90) [x ′α, x ′β] = (αqη
′
q + αq)x ′−σ ′

r + (αrη
′
r + αr)x ′−σ ′

q ,

where in general, for q ∈ J1,4, we denote

(3.91) ηq =





1 if q ∈ I1,4,

−1 if q ∈ I1 ∪ I3,4,

0 if q ∈ I2,

and we define η ′
q similarly (then σ ′

q = ε ′q − η ′
qε

′
q, cf. (2.23)). By (3.85), both coeffi-

cients in (3.90) are nonzero. Since 2aε p − σp ∈ Γ \ Γ1,4, we have

(3.92) θ(x2aε p−σp ) ∈ Fx ′γ \ {0} for some γ ∈ Γ
′ \ Γ

′
1,4.
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From [x2aε p−σp , x−aε p−σp ] ∈ Fxaε p−σp , it follows from (3.87) that

(3.93) [x ′γ , x ′β] ∈ Fx ′α.

Thus there exists q ′ ∈ I ′1,4 such that

(3.94) γq ′βq′ − γq ′βq ′ 6= 0 and σ ′
q ′ + γ + β = α.

Hence

(3.95) γ = α− β − σ ′
q ′ = 2α + σ ′

q + σ ′
r − σ ′

q ′ ,

by (3.89). If q 6= q ′ 6= r, we deduce from (3.89) and (3.95) that

[x ′γ , x ′β] = (αqη
′
q + αq)x ′σ ′

q +γ+β + (αrη
′
r + αr)x ′σ ′

r +γ+β

+ (γq ′βq′ − γq ′βq ′)x ′σ
′
q ′

+γ+β /∈ Fx ′α,

(3.96)

a contradiction with (3.93). Similarly, if q ′
= q or q ′

= r, we can still deduce a
contradiction from (3.89), (3.93) and (3.95). This proves the claim.

We extend ν to ν : J1,4 → J ′1,4 such that ν( p) = p
∗

for p ∈ I1,4. For p ∈ I1,4, by
(2.26), we fix ep ∈ F

× such that

(3.97) λp = epε p ∈ Γ \ {0}.

Then λp /∈ Γ1,4. Denote λ∗p = τ (λp) (cf. (3.80)). Write

(3.98) λ∗p = (λ∗p,1, λ
∗
p,1
, . . . , λ∗p,ι ′7 , λ

∗
p,ι ′7

) ∈ Γ
′ ⊂ F

2ι ′7 ,

(cf. (2.20)). For p, q ∈ I1,4, applying θ to [xλp , x−σq ] = δp,qepxλp , by (3.80) and
(3.81), we obtain

(3.99) dq(η ′
q∗λ

∗
p,q∗ + λ∗p,q∗) = δp,qep for p, q ∈ I1,4.

Let p 6= q. Applying θ to 0 = [xλp , xλq ] and using (3.99), we obtain

(3.100) 0 = λ∗p,q∗λ
∗
q,q∗ − λ∗p,q∗λ

∗
q,q∗ = λ∗p,q∗(λ∗q,q∗ + η ′

q∗λ
∗
q,q∗) = λ∗p,q∗d−1

q eq.

The above two equations imply

(3.101) λ∗p,q∗ = 0 for p ∈ I1,4, q ∈ J1,4, q 6= p, p.

Denote

(3.102) Γp = (Fεp + Fε p) ∩ Γ.
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Exactly as in the proof of (3.101), we have

(3.103) α∗
q∗ = 0 for α ∈ Γp \ Γ1,4, p, q ∈ J1,4, q 6= p, p.

Claim 2 τ : α 7→ α∗ can be uniquely extended to a group isomorphism τ : Γ → Γ
′

such that σ∗
p = σ ′

p∗ for p ∈ I1,4.
Noting that by (3.24), (3.25) and (3.78), α /∈ Γ1,4 implies α+kσ1 /∈ Γ1,4 for k ∈ Z.

For any α ∈ Γ, β ∈ Γ1 with α, β, α + β /∈ Γ1,4, we have (recall (3.91))

(
α1(β1 + η1) − α1(β1 − 1)

)
cα+β−σ1

x ′(α+β)∗

= cαcβ−σ1

(
α∗

1∗(β − σ1)∗
1
∗ − α∗

1
∗(β − σ1)∗1∗

)
x ′σ ′

1∗ +α∗+(β−σ1)∗ ,

(3.104)

by applying θ to (3.2) and by (3.103). By comparing the power of x ′, this implies

(3.105) (α + β)∗ = σ ′
1∗ + α∗ + (β − σ1)∗

if α, β satisfy

(3.106) β ∈ Γ1, α, β, α + β ∈ Γ \ Γ1,4, and α1(β1 + η1) − α1(β1 − 1) 6= 0.

Let α ∈ Γ \ Γ1,4. We prove by induction on |k| that
(3.107)

(kα)∗ − kα∗ ∈ Γ̃
′
1, where Γ̃

′
1 = {β ∈ Γ

′ | βq = 0 for q ∈ J1,4, q 6= 1∗, 1
∗
}.

Let γ ∈ Γ such that γ, α + γ /∈ Γ1,4. We have
(3.108)∑

p∈I1,4

(αpγ p − α pγp)cσp +α+γx ′(σp+α+γ)∗
= cαcγ

∑

p∈I ′1,4

(α∗
p∗γ∗p∗ − α∗

p∗γ∗p∗)x ′σ ′
p∗ +α∗+γ∗ .

We inductively assume that (3.107) holds for k (for instance, k = 1). Let γ = kα + β
for some suitable β ∈ Γ1 such that condition (3.106) holds for all the involved pairs
for which we need to make use of (3.105) in the following proof (when α, k are fixed,
by (2.26), such β exists), by (3.107) (note that we assume (3.107) holds for k), (3.105)
and (3.103), we see that all terms in (3.108) vanish except the terms corresponding

to p = 1 in both sides. Thus we obtain

σ ′
1∗ +

(
(k + 1)α

)∗
+ β∗

=
(
σ1 + (k + 1)α + β

)∗

= σ ′
1∗ + α∗ + (kα + β)∗

= 2σ ′
1∗ + α∗ + (kα)∗ + (β − σ1)∗,

(3.109)

where the first and last equalities follow from (3.105) and the second follows from
(3.108). From this we see that (3.107) holds for k + 1. This proves (3.107). Now
replacing α by jα (with j 6= 0) and β by kα + β − σ1 in (3.108) (with suitable
β ∈ Γ1), since (3.107) holds, we have again that all terms in (3.108) vanish except
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the terms corresponding to p = 1 in both sides. Thus we have a similar formula to
(3.109):

(3.110)
(

( j + k)α + β
)∗

= 2σ ′
1∗ + ( jα)∗ + (kα)∗ + (β − 2σ1)∗.

From this we obtain

(3.111) ( jα)∗ + (kα)∗ = ( j ′α)∗ + (k ′α)∗ if j + k = j ′ + k ′, j, k, j ′, k ′ 6= 0.

From this we obtain

(3.112) ( jα)∗ = jα∗ for α ∈ Γ \ Γ1,4, j ∈ Z \ {0}.

For some suitable β ∈ Γ1, by (3.105), (3.110) and (3.112), we have

σ ′
1∗ + ( jα + σ1)∗ + (β − 2σ1)∗ =

(
( jα + σ1) + (β − σ1)

)∗

= ( jα + β)∗ = 2σ ′
1∗ + jα∗ + (β − 2σ1)∗.

(3.113)

From this we obtain

(3.114) ( jα + σ1)∗ = jα∗ + σ ′
1∗ for α ∈ Γ \ Γ1,4, j ∈ Z \ {0}.

Now take any α, γ ∈ Γ such that

(3.115) α, γ, α + γ ∈ Γ \ Γ1,4 and α1γ1 − α1γ1 6= 0.

Using (3.114) in (3.108), by comparing the term x ′(σ1+α+γ)∗ in both sides, we obtain

(3.116)

(α + γ)∗ = α∗ + γ∗ +
∑

p∈I1,4

k(p)
α,γ(σ ′

p∗ − σ ′
1∗), where

k(p)
α,γ = 0, 1 such that

∑

p∈I1,4

k(p)
α,γ ≤ 1.

We claim that (α+γ)∗ = α∗ +γ∗ if the pairs (α, γ), (2α, 2γ) satisfy (3.115). Assume

that k
(q)
α,γ = 1 for some q ∈ I1,4. Then we obtain

(2α)∗ + (2γ)∗ +
∑

p∈I1,4

k
(p)
2α,2γ(σ ′

p∗ − σ ′
1∗) = (2α + 2γ)∗

=
(

2(α + γ)
) ∗

= 2(α + γ)∗

= 2
(
α∗ + γ∗ +

∑

p∈I1,4

k(p)
α,γ(σ ′

p∗ − σ ′
1∗)

)
,

(3.117)

from this we obtain k
(q)
2α,2γ = 2k

(q)
α,γ > 1, which is a contradiction to (3.116).
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For any α, β, α + β ∈ Γ \ Γ1,4, we can always choose γ ∈ Γ \ Γ1,4 such that the
pairs

(3.118)
(α + β, γ), (2α + 2β, 2γ), (α, β + γ),

(2α, 2β + 2γ), (β, γ), (2β, 2γ),

satisfy (3.115). Hence

(3.119) (α + β)∗ + γ∗ = (α + β + γ)∗ = α∗ + (β + γ)∗ = α∗ + β∗ + γ∗,

which shows

(3.120) (α + β)∗ = α∗ + β∗ for α, β, α + β ∈ Γ \ Γ1,4.

This shows that τ can be uniquely extended to a group isomorphism τ : Γ → Γ
′ such

that σ∗
1 = σ ′

1∗ and so similarly σ∗
p = σ ′

p∗ for p ∈ I1,4. This proves the claim.

Claim 3 We have ν(Ii) = I ′i for i = 1, 2, 3, 4. In particular, (`1, `2, `3, `4) =

(` ′1, `
′
2, `

′
3, `

′
4), Ii = I ′i for i = 1, 2, 3, 4, and σp = σ ′

p, ηp = η ′
p for p ∈ I1,4 (cf.

(2.23) and (3.91)).
Note that adx−σp is a semi-simple operator on H if and only if p ∈ I1,2 (cf. (3.3)).

Thus

(3.121) ν(I1,2) = I ′1,2, and so ν(I3,4) = I ′3,4.

Denote

N = {u ∈ H | [u,M] ⊂ M}

= M + span{xα,i | α = αI5,6
, |i| = 1 or i = iI6∪ J7

},

(3.122)

N0 = M + {u ∈ N | [x−σp , u] = 0 for p ∈ I1,4}

= M + span{xα,εq , xα, j | α = αI5,6
, q ∈ I5,6, j = j

I6∪ J7
},

(3.123)

Np = M + span{u ∈ N | [x−σp , u] = 0} for p ∈ I1,4.(3.124)

Then N0 is a Lie algebra and N is an N0-module such that Np is a submodule for

p ∈ I1,4. Note that the quotient module N/Np is zero if p ∈ I1, is a cyclic N0-module
(with generator t p) if p ∈ I2,3, and is not cyclic (with two generators tp, t p) if p ∈ I4.
Applying θ to the above sets and by (3.121), we obtain the claim.

Using Claim 3 and (3.54), by replacing H by θν(H) (cf. (3.54)), we can now sup-

pose ν = 1.

Claim 4 . There exists A = diag(A1, . . . ,Aι4 ) ∈ GL2ι4 , where

(3.125) Ap =

(
ap + bp ap

1 − ap − bp 1 − ap

)
, Aq =

(
1 0

aq bq

)
∈ GL2,
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for p ∈ I1 ∪ I3,4, q ∈ I2, such that α∗
{p, p} = α{p, p}Ap for α ∈ Γ \ Γ1,4, p ∈ I1,4.

Using that τ is a group isomorphism and applying θ to

(3.126) [x−σp , xα] = (α p + η pαp)xα

(cf. (3.3) and (3.91)), by (3.80) and (3.81), we obtain

(3.127) dp(α∗
p + η pα

∗
p) = α p + η pαp if α p + η pαp 6= 0, α ∈ Γ \ Γ1,4, p ∈ I1,4.

Comparing the coefficients in (3.108), we obtain

(3.128)
(αpγ p − α pγp)cσp +α+γ = cαcγ(α∗

pγ
∗
p − α∗

pγ
∗
p ) if

αpγ p − α pγp 6= 0, α, γ, α + γ ∈ Γ \ Γ1,4.

Suppose α± γ /∈ Γ1,4. Replacing γ by −γ in (3.128), and dividing by the result from
(3.128), we obtain

(3.129) c−γc−1
γ = cσp+α−γc−1

σp+α+γ = cα−γc−1
α+γ .

In particular, by taking γ = σp + λp (recall (3.97)) and replacing α by α + σp + λp ,
we obtain that

(3.130) c−σp−λp
cα+2σp+2λp

= cαcσp+λp
,

holds under some conditions on α (these conditions are linear inequalities on αp ,
αp). Setting γ = σp + 2λp in (3.128) and using (3.130), we obtain
(3.131)(
αp(−η p + 2ep)−2α p

)
c−1
−σp−λp

= c−1
σp+λp

cσp+2λp

(
α∗

p(−η p + 2λ∗p, p)−α∗
p(1 + 2λ∗p,p)

)
,

holds under some conditions on α. Recall from (3.91) that η p = 0 if p ∈ I2 and
η p = −1 otherwise. Noting that when p is fixed, all coefficients (such as λ∗

p,p) of
αp , α p, α∗

p , α∗
p

appearing in (3.127) and (3.131) are constant. From (3.127) and

(3.131), using (3.99), we can solve α∗
p, α

∗
p

as linear combinations of αp, α p with the

coefficient matrices as required in the claim (i.e., as shown in (3.125)); furthermore,
we have bp = d−1

p . Since τ is a group isomorphism, the condition on α can be
removed, i.e., the claim holds for all α ∈ Γ.

Claim 5 In (3.125), ap = 0 if p ∈ I3.

Let p ∈ I3. We write θ(tp) = bt ′p +
∑

(0,εp)6=(β, j)∈Γ ′×J ′ bβ, jx
β, j for some b, bβ, j ∈ F.

Then we have

(3.132) α pcα+σp
x ′α∗+σp = θ([tp, x

α]) = bcαα
∗
px ′α∗+σp + · · ·

for α ∈ Γ \Γ1,4, where the missed terms do not contain x ′α∗+σp . Thus by (3.125), we

have

(3.133) α pcα+σp
= bcα

(
apαp + (1 − ap)α p

)
.
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Hence b 6= 0. Take 0 6= α ∈ Fεp ∩ Γ (then α /∈ Γ1,4), we obtain ap = 0. This also
proves (3.43) and (3.44).

Claim 6 Denote σ =
∑

p∈I1,4
σp. For any α ∈ Γ with α J1,4

6= σ, we have θ(xα) =

cαx ′α∗

for some cα ∈ F
×.

Assume that α ∈ Γ1,4 with α J1,4
6= σ. Then by (2.26), we can always choose

β = βpεp + β pε p ∈ Γ \ Γ1,4 for some p ∈ I1,4, such that

(3.134) a = βp(α p − β p + ηp) − β p(αp − βp − 1) 6= 0.

Then β, α−β−σp /∈ Γ1,4 and β∗ ∈ Γ̃
′
p (where Γ̃

′
p is a similar notation as in (3.107)).

We have
(3.135)

θ(xα) = a−1θ([xβ , xα−β−σp ]) = a−1cβcα−β−σp
[x ′β∗

, x ′α∗−β∗−σp ] ∈ Fx ′α∗

.

By (3.7) and Lemma 3.1, we have

(3.136) θ(tp) ∈ H ′F ⊂ span(H ′
1 ∪ H ′

3) =

∑

q∈I ′1,4

Fx ′−σq +
∑

r∈I
′
5,6

Ft ′r + H ′
3,

for p ∈ I5,6. Thus, using notations (2.22) and (3.76), we have (also recall notations
(3.60) and (3.61))

(3.137) θ−1(t
′
I
′
5,6

) ≡ (x−σ)I1,4
F1 + t I5,6

F2 (mod H3),

for some

F1 = (ap,q)p∈I1,4 ,q∈I
′
5,6
∈ Mι4×(` ′5 +` ′6 ),(3.138)

F2 = (bp,q)p∈I5,6,q∈I
′
5,6
∈ GL`5+`6

,(3.139)

(in particular `5 + `6 = ` ′5 + ` ′6).

Claim 7 We have

ap,q = 0 if p ∈ I3,4, q ∈ I
′
5,(3.140)

bp,q = 0 if p /∈ I5, q ∈ I
′
5,(3.141)

which implies (`5, `6) = (` ′5, `
′
6) and Ii = I ′i for i = 5, 6.

Note that the center of M is C = {xα ∈ Γ | α = αI5,6
}. Denote the centralizer

CH(C) = {u ∈ H | [u,C] = 0}. It is straightforward to check that

(3.142) {tp | p ∈ I2,3 ∪ J4 ∪ I6} ⊂ CH(C) ⊂ span{xα,i | iI5,6
= 0}.

For p ∈ I1,4, (3.142) implies that adx−σp |CH(C) is semi-simple if and only if p ∈ I1,2,
and adtq

|CH(C) is semi-simple for q ∈ I5 by (3.142) and is not semi-simple for q ∈ I6.
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Moreover, by (3.1), for p ∈ I5,6, adtp
is semi-simple if and only if p ∈ I5. We obtain

the claim.

By (3.140) and (3.141), we can write F1 and F2 is the forms

(3.143) F1 =




B1,5 B1,6

B2,5 B2,6

0 B3,6


 , F2 =

(
B5,5 B5,6

0 B6,6

)
,

such that all Bi, j have the forms in (3.46) and (3.48).

For any α ∈ Γ, we denote

(3.144) α̂ = (α1 + η1α1, . . . , αι4 + ηι4αι4 ) ∈ F
ι4 ,

(cf. (3.91)). For α ∈ Γ \ Γ1,4, applying θ−1 to

(3.145) α∗
I5,6

c−1
α x ′α∗

= [t
′
I5,6
, c−1
α x ′α∗

],

(cf. (3.4)), using (3.137), and noting that [H3,M] = 0, we obtain

(3.146) α∗
I5,6

xα = [(x−σ)I1,4
F1 + t I5,6

F2, x
α] = (α̂F1 + αI5,6

F2)xα,

that is

(3.147) α∗
I5,6

= α̂F1 + αI5,6
F2,

holds for all α ∈ Γ \ Γ1,4 and so holds for all α ∈ Γ since τ : α 7→ α∗ is an isomor-
phism. From this and (3.143), we obtain formulas (3.43)–(3.48) (cf. (3.49)).

Claim 8 `7 = ` ′7.

Observe from (3.9) that

H3 = CH(M) (the centralizer of M),(3.148)

span{xα,i ∈ H3 | i J7
= 0} = C(H3) (the center of H3).(3.149)

By exchanging H with H ′ if necessary, we can suppose `7 ≤ ` ′7. As in the proof of
sufficiency, we can construct an embedding θ : H → H ′ such that

(3.150) θ(xα) = θ(xα), θ(t I5,6
) ≡ θ(t I5,6

) (mod H ′
3),

(cf. Claim 6 and (3.137). Note that using (3.137), we can now obtain that Claim 6

holds for all α ∈ Γ if `5 + `6 6= 0). Thus by identifying H with θ(H), we can assume
that H is a subalgebra of H ′ such that there exists an isomorphism θ satisfying

(3.151) θ(xα) = xα, θ(t p) ≡ t p (mod H ′
3) for α ∈ Γ, p ∈ I5,6.
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By restricting θ to H3, we want to prove

θ(tp) = tp + cp for p ∈ I6 and some cp ∈ F,(3.152)

θ(xα,it j) = xα
∏

p∈I6

(
θ(tp)

) i p
∏

q∈ J7

(
θ(tq)

) jq
for α = αI5,6

, i = iI6
, j = j

J7
.(3.153)

To prove (3.152), first by (3.149), we have cp = θ(tp)− tp ∈ C(H ′
3). Then by (3.151),

we have

(3.154) [tq, cp] = θ
(

[θ−1(tq), tp]
)
− [tq, tp] = 0,

where the second equality follows from the fact that θ−1(tq) = tq (mod H3) and
[H3, tp] = 0. From (3.154), we obtain that cp ∈ F. Thus we have (3.152). Similarly,

we have

(3.155) θ(xα,εp ) = xα(tp + cα,p) for p ∈ I6 and some cα,p ∈ F.

By considering θ([xα, tpt p]) = [θ(xα), θ(tpt p)], we see that cα,p = cp, and we obtain

(3.156) θ(tpt p) = (tp + cp)t p + up for p ∈ I6 and some up ∈ CH ′

(
C(H ′

3)
)

.

From this and (3.152), we can deduce

(3.157) θ(xα,εp ) = xα(tp + cp) for p ∈ I6.

Similar to (3.156), we have
(3.158)

θ(x−σp ,εp+ε p ) = x−σp ,ε p (tp + cp) + u ′
p for p ∈ I6 and some u ′

p ∈ CH ′

(
C(H ′

3)
)

.

Now from (3.152), (3.155)–(3.158), we can obtain (3.153) by induction on |i| in case
j = 0.

Assume that (3.153) holds for all j with | j| < n, where n ≥ 1. We denote by Aα,i, j

the difference between the left-hand side and the right-hand side of (3.153). Then
the inductive assumption says that Aα,i, j = 0 if | j| < n. Now suppose | j| = n. Say

jr ≥ 1 for some r ∈ I7 (the proof is similar if r ∈ I7). Let k = j − εr + εr . Then we
have

[θ(tr),Aα,i,k] = θ([tr, x
α,itk]) − θ

(
[tr, θ

−1(xα)]
) ∏

p∈I6

(
θ(tp)

) i p
∏

q∈ J7

(
θ(tq)

) kq

− xα
[
θ(tr),

∏

p∈I6

(
θ(tp)

) i p
∏

q∈ J7

(
θ(tq)

) kq
]

= ( jr + 1)
(
θ(xα,it j−εr ) − xα

∏

p∈I6

(
θ(tp)

) i p
∏

q∈ J7

(
θ(tq)

) jq−δq,r
)

= ( jr + 1)Aα,i, j−εr
= 0,

(3.159)
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where the first equality follows from (1.1), the second equality follows from (1.1) and
(3.151). By (1.1) and (3.159), we obtain

(3.160) [θ(t2
r ),Aα,i,k] = θ

(
[t2

r , θ
−1(Aα,i,k)]

)
= 2θ

(
tr[tr, θ

−1(Aα,i,k)]
)

= 0.

On the other hand, exactly similar to (3.159), we have

(3.161) [θ(t2
r ),Aα,i,k] = 2( jr + 1)Aα,i, j .

Now (3.160) and (3.161) show that Aα,i, j = 0. This proves (3.153). By (3.152),

(3.153) and by identifying C(H3) with C(H ′
3) using the isomorphism, we see that θ

is an associative algebra isomorphism H3 → H ′
3 over the domain ring C(H3). From

this we obtain `7 = ` ′7 since 2`7 is the transcendental degree of H3 over the domain
ring C(H3). This completes the proof of Theorem 3.6.

4 Derivations

In this section, we shall determine the structure of the derivation algebra of the
Hamiltonian Lie algebra H = H(`,Γ). As pointed out in [F], the significance of
derivations for Lie theory primarily resides in their affinity to low dimensional coho-

mology groups; their determination therefore frequently affords insight into struc-
tural features of Lie algebras which do not figure prominently in the defining proper-
ties. Some general results concerning derivations of graded Lie algebras were estab-
lished in [F]. However in our case the algebras are in general nongraded, the results

in [F] can not be applied to our case here. Thus we try a different method to deter-
mine derivations of the Hamiltonian Lie algebras H. Our method is also different
from that used in [OZ].

Recall that a derivation d of the Lie algebra H is a linear transformation on H such

that

(4.1) d([u1, u2]) = [d(u1), u2] + [u1, d(u2)] for u1, u2 ∈ H.

Denote by Der H the space of the derivations of H, which is a Lie algebra. Moreover,
adH is an ideal. Elements in adH are called inner derivations, while elements in
Der H \ adH are called outer derivations.

We can embed H into a larger Lie algebra H̃ such that H̃ has a basis {xα,i | (α, i) ∈

Γ × N
2ι7} (i.e., in H̃, we replace J by N

2ι7 , cf. (2.27), and we have (3.1) with the last
three summands running over p ∈ I1,6, p ∈ I1,4 and p ∈ I respectively). Then for
p ∈ J1 ∪ I2,3 ∪ I5, clearly, tp /∈ H, but [tp,H] ⊂ H. Thus

(4.2) dp = adtp
|H for p ∈ J1 ∪ I2,3 ∪ I5,

defines an outer derivation of H. For p ∈ I2,3 ∪ J4 ∪ I5 ∪ J6,7, obviously, ∂tp
is a

derivation of H (cf. (2.27), (2.35) and (3.1)). For p ∈ J, we define sgn(p) = 1 if
p ∈ I and sgn(p) = −1 if p ∈ I. Then

(4.3) ∂tp
= sgn(p) adt p

for p ∈ I5 ∪ J6,7.
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Define d0(xα,i) = (
∑

p∈I1,4
αp + 1)xα,i for (α, i) ∈ Γ × J. It is straightforward to

verify that d0 is an outer derivation of H. Denote σ =
∑

p∈I1,4
σp. If ι7 = `1, then

H = [H,H] + Fxσ , and we can define an outer derivation d ′
0 by setting

(4.4) d ′
0([H,H]) = 0, d ′

0(xσ) = 1H.

If ι7 6= `1, we set d ′
0 = 0.

We denote by Hom+
Z

(Γ, F) the set of group homomorphisms µ : Γ → F such that
µ(σp) = 0 for p ∈ I1,4. For µ ∈ Hom+

Z
(Γ, F), we define a linear transformation dµ

on H by

(4.5) dµ(xα,i) = µ(α)xα,i for (α, i) ∈ Γ × J.

Clearly, by (3.1), dµ is a derivation of H. We identify Hom+
Z

(Γ, F) with a subspace of
Der H by µ 7→ dµ. For p ∈ I1,6, we define µp ∈ Hom+

Z
(Γ, F) by

(4.6) µp(α) =

{
α p + η pαp if p ∈ I1,4,

αp if p ∈ I5,6,

for α ∈ Γ (cf. (3.91)). By (3.3) and (3.4), we have

adx−σp =





dµp
if p ∈ I1,2,

dµp
+ ∂tp

if p ∈ I3,

dµp
+ ∂tp

− ∂t p
if p ∈ I4,

(4.7)

adtq
=

{
−dµq

if q ∈ I5,

−dµq
− ∂tq

if q ∈ I6.
(4.8)

We fix a subspace Hom∗
Z
(Γ, F) of Hom+

Z
(Γ, F) such that

(4.9) Hom+
Z

(Γ, F) = Hom∗
Z
(Γ, F) ⊕ span{µp | p ∈ I1,6},

is a direct sum as vector spaces. Since adF = 0, we set H∗
= span{xα,i | (0, 0) 6=

(α, i) ∈ Γ × J}.

Theorem 4.1 . The derivation algebra Der H is spanned by

(4.10)
d ′

0, dp, ∂tq
, dµ, adH∗ for p ∈ {0} ∪ J1 ∪ I2,3 ∪ I5, q ∈ I2,3 ∪ J4, µ ∈ Hom∗

Z
(Γ, F).

Furthermore, we have the following vector space decomposition as a direct sum of sub-

spaces:

(4.11)

Der H =

((
Fd ′

0 +
∑

p∈{0}∪ J1∪I2,3∪I5

Fdp

)
⊕

∑

q∈I2,3∪ J4

F∂tq
⊕ Hom∗

Z
(Γ, F)

)
⊕ adH∗ .

In particular, all derivations of the classical Hamiltonian Lie algebras H(`) (cf. (1.3))

are inner.
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Proof First note that in [OZ], d0 was written as a derivation of the form dµ with µ
satisfying µ(σp) = µ(σ1) for p ∈ I1,4. Let d ∈ Der H and let D be the subspace of

Der H spanned by the elements in (4.10). Note that D ⊃ Hom+
Z

(Γ, F) by (4.7) and
(4.8). We shall prove that after a number of steps in each of which d is replaced by
d − d ′ for some d ′ ∈ D the 0 derivation is obtained and thus proving that d ∈ D.
This will be done by a number of claims.

Claim 1 We can suppose

(i) d(1) = 0,

(ii) d(x−σp ) = 0 for p ∈ I3,4,
(iii) d(xεq ) = d(tr) = 0 for q ∈ I5,6, r ∈ I6 ∪ J7.

By replacing d by d − d(1)d0, we can suppose d(1) = 0. For any (α, i) ∈ Γ × J,
we write

d(xα,i) =

∑

(β, j)∈Mα,i

c
(β, j)

α,i xα+β, j for some c
(β, j)

α,i ∈ F, where(4.12)

Mα,i = {(β, j) ∈ Γ × J | c
(β, j)

α,i 6= 0},(4.13)

is a finite set. We set c
(β, j)

α,i = 0 if (β, j) /∈ Mα,i . We shall denote Mα,0 simply by

Mα. Using the inductive assumption, suppose we have proved that d(x−σr ) = 0 for

r ∈ I3,4 and r < p. Let (β, j) ∈ M−σp
. Using (3.3), one can deduce by induction on

| j| that

(4.14) x−σp+β, j
= [uβ, j , x

−σp ] for some uβ, j ∈ H,

such that uβ, j has the following form

(4.15) uβ, j =

∑

k,`∈Z

bk,`x
−σp+β, j+kεp+`ε p for some bk,` ∈ F,

(recall convention (2.34)). Thus we can take

(4.16) u =

∑

(β, j)∈M−σp

c
(β, j)

−σp ,0
uβ, j ∈ H such that (d − adu)(x−σp ) = 0,

Applying d to [x−σr , x−σp ] = 0, we obtain

(4.17)
∑

(β, j)∈M−σp

c
(β, j)

−σp ,0
[x−σr , x−σp+β, j] = 0 for r ∈ I3,4, r < p,

i.e.,

(4.18) c
(β, j)

−σp ,0
(βr − βr) − c

(β, j+εr)

−σp ,0
( jr + 1) + c

(β, j+εr)

−σp ,0
( jr + 1) = 0,
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for r ∈ I3,4, r < p, from this and by induction on jr + jr ranging from max{kr + kr |
(β, k) ∈ M−σp

} down to zero, we obtain

(4.19) βr = βr, jr = jr = 0 for (β, j) ∈ M−σp
, r ∈ I3,4, r < p.

Then (4.15), (4.16) and (4.19) show that adu(x−σr ) = 0 for r ∈ I3,4, r < p. Thus if
we replace d by d− adu, we have d(x−σr ) = 0 for r ∈ I3,4, r ≤ p. This proves Claim 1
(ii). Note that for v = xεq , q ∈ I5,6, or v = tr , r ∈ I6 ∪ J7, we have adv(H) = H. Thus
similar to the above proof, we have Claim 1 (iii).

Note that for (β, j) ∈ Γ × J, by (3.3) and (3.4), we have

(β p + η pβp)x−σp +β, j
= [x−σp +β, j , x−σp ] for p ∈ I1,2,(4.20)

(−1 + βp)epxλp+β, j
= [x−σp +β, j , xλp ] + j pxλp+β, j−εp for p ∈ I1,4,(4.21)

(recall notations λp, p ∈ I1,4 in (3.97)), and

(4.22) βpxβ, j = [xβ, j , t p] for p ∈ I5.

Claim 2 By replacing d by d − d ′ for some d ′ ∈ D, we can suppose

β p + η pβp = 0 for (β, j) ∈ M−σp
, p ∈ I1,2,(4.23)

βp = 1 for (β, j) ∈ Mλp
, p ∈ I1,4,(4.24)

βp = 0 for (β, j) ∈ M0,ε p
, p ∈ I5.(4.25)

The proof of (4.23) is similar to that of Claim 1. To prove (4.24), suppose we have

proved

(4.26) βr = 1 for (β, j) ∈ Mλr
, i ∈ I1,4, r < p.

To see how the proof works, for simplicity, we assume that p ∈ I1 (the proof for
p ∈ I2,4 is exactly similar). Then the second term on the right-hand side of (4.21)
vanishes. Let

(4.27) u =

∑

(β, j)∈Mλp , βp 6=1

c
(β, j)

λp ,0

(
(−1 + βp)ep

)−1
x−σp+β .

Then by replacing d by d − adu, from (4.21), we see that (4.24) holds for p. We want
to prove that after this replacement, Claim 1, (4.23) and (4.26) still hold. It suffices
to prove

(4.28) [u, x−σq ] = [u, xεq ′ ] = [u, tq ′′] = [u, xλr ] = 0,

for q ∈ I1,4, q ′ ∈ I5,6, q ′ ′ ∈ I6 ∪ J7, r ∈ I1,4, r < p.
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We have

−ep

∑

(β, j)∈Mλp

c
(β, j)

λp ,0
xλp+β, j

= −epd(xλp ) = d([x−σp , xλp ]

=

∑

(β, j)∈M−σp

c
(β, j)

−σp ,0
(−1 + βp)xλp+β, j

+
∑

(β, j)∈Mλp

c
(β, j)

λp ,0
(βp − β p − ep)xλp +β, j .

(4.29)

This gives

(4.30) βp − β p = (c
(β, j)

λp ,0
)−1(βp − 1)c

(β, j)

−σp ,0
for (β, j) ∈ Mλp

.

If (β, j) /∈ M−σp
, then the right-hand side of (4.30) is zero; on the other hand, if

(β, j) ∈ M−σp
, then (4.23) gives βp − β p = 0. In any case, we have βp − β p = 0 for

(β, j) ∈ Mλp
. Thus by (4.27),

(4.31) [u, x−σp ] =

∑

(β, j)∈Mλp ,βp 6=1

c
(β, j)

λp ,0

(
(−1 + βp)ep

)−1
(βp − β p)x−σp +β

= 0.

Similarly, we can prove other equations in (4.28). This proves (4.24). Similarly, we
have (4.25).

Claim 3 By replacing d by d −
∑

p∈ J1∪I2,3∪I5
apdp − dµ for some ap ∈ F and some

µ ∈ Hom+
Z

(Γ, F), we can suppose d(x−σp ) = d(xλq ) = d(tr) = 0 for p ∈ I1,2,
q ∈ I1,4, r ∈ I5.

Again for simplicity, we prove that after some replacement, d(x−σp ) = d(xλp ) = 0

for p ∈ I1. Defining µ ∈ Hom+
Z

(Γ, F) by µ(α) = c
(0,0)
λp ,0

e−1
p (α p−αp), and by replacing

d by d−dµ, we obtain c
(0,0)
λp ,0

= 0 (recall (4.12) that c
(β, j)

α,i is the coefficient of xα+β, j , not

that of xβ, j). Obviously, this replacement does not affect the result we have obtained
so far. Recalling the definition of dp in (4.2), we have
(4.32)

dp(x−σp ) = [tp, x
−σp ] = −1, d p(x−σp ) = 1, dp(xλp ) = epxσp +λp , d p(xλp ) = 0.

Thus by replacing d by d − apdp − a pd p for some ap, a p ∈ F, we can suppose

(4.33) c
(σp ,0)
−σp ,0

= c
(σp ,λp)

λp ,0
= c(0,0)

λp ,0
= 0.

Note again that the replacement does not affect the results we have obtained so far.
Let q ∈ I1, q 6= p. We have

0 = d([x−σp , x−σq ]) =

∑(
c

(β, j)

−σp ,0
(βq − βq) + c

(β+σq−σp , j)

−σq,0
(βp − β p)

)
x−σp +β, j ,

(4.34)

0 = d([x−σp , xλq ]) =

∑(
c

(β, j)

−σp ,0
βqeq + c

(β+σq−σp , j)

λq,0
(βp − β p)

)
x−σp +σq+β+λq, j .

(4.35)
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Now (4.23), (4.34) and (4.35) show that βq = βq = 0 if (β, j) ∈ M−σp
. Similarly, we

can prove βr = jr = 0 for all r ∈ J, r 6= p, p if (β, j) ∈ M−σp
. This and (4.30) show

that (β, j) = (σp, 0) if (β, j) ∈ M−σp
. But (σp, 0) /∈ M−σp

by (4.33), i.e., M−σp
= ∅.

Thus d(x−σp ) = 0. Similarly d(xλp ) = 0. Analogously, we can obtain other results of
Claim 3.

Claim 4 We can suppose d = 0.

Note that xα is a common eigenvector for the elements of the set

(4.36) A = {x−σp , xεq , tr | p ∈ I1,4, q ∈ I5,6, r ∈ I5,6 ∪ J7}.

Since d(A) = 0, d(xα) is also a common eigenvector for the elements of A. From this
and Lemma 3.2, we obtain

(4.37) η pβp + β p = βq = 0, j = 0 for p ∈ I1,4, q ∈ I5,6 and (β, j) ∈ Mα.

For simplicity, we denote c(β)
α = c(β,0)

α,0 . We want to prove

(4.38) d(xα) = mαxα for α ∈ Γ and some mα ∈ F,

i.e., Mα is either empty or a singleton {(0, 0)}. Thus assume that

(4.39) βp 6= 0 for some (β, j) ∈ Mα, p ∈ I1,4, α ∈ Γ.

For convenience, we again suppose p ∈ I1. Denote Γp = (Fεp + Fε p) ∩ Γ as in

(3.102), and set Hp = span{xα | α ∈ Γp}. We have

(4.40) d(xα) ∈ Hp for α ∈ Γp,

by using the fact that xα commutes with elements of A except possibly x−σp , xλp . By
(4.37) and by

(4.41) 0 = d([x−σp−λp , xλp ]) = [d(x−σp−λp ), xλp ] =

∑
c

(β)
−σp−λp

epxβ ,

and by (4.40), we obtain

(4.42) d(x−σp−λp ) = apx−λp , d(xλp−σp ) = −apxλp for some ap ∈ F,

where the second equation is obtained from d([x−σp−λp , xλp−σp ]) = 0. Applying d

to

[x−2σp , xλp ] = −2epx−σp +λp , [x−2σp , x−σp−λp ] = 2epx−2σp−λp ,(4.43)

[x−2σp−λp , xλp−σp ] = −3epx−2σp ,(4.44)

we obtain respectively

(4.45) d(x−2σp ) = −2apx−σp , d(x−2σp−λp ) = 0, ap = 0.
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Thus all equations in (4.42) and (4.45) are zero. Applying d to [xλp−σp , xkλp ] =

−kx(k+1)λp , using induction on k, we obtain

(4.46) d(xkλp ) = 0 for k ≥ 1.

Applying d to

[xα, x−2σp ] = 2(α p − αp)xα−σp , [xα, x−σp−kλp ] = (α p − αp − kα pep)xα−kλp ,

(4.47)

[xα−kλp , xkλp ] = kαpepxα+σp ,(4.48)

for k ≥ 1, using (4.37), we obtain

2(α p − αp)c(β)
α = 2(α p − αp)c

(β)
α+σp

,(4.49)

(
α p − αp − k(αp + βp)ep

)
c(β)
α = (α p − αp − kαpep)c(β)

α−kλp
,(4.50)

k(αp + βp)epc
(β)
α−kλp

= kαpepc
(β)
α+σp

.(4.51)

If αp 6= α p, then the above three equations gives βp = 0, a contradiction with (4.39).

Thus we obtain

(4.52) βp 6= 0, (β, 0) ∈ Mα ⇒ αp = α p.

Replacing α by α− σp in (4.51), it gives

(4.53) (αp − 1)c(β)
α = (αp − 1 + βp)c

(β)
α−σp−λp

.

Noting that for α ′
= α − σp − λp, we have α ′

p 6= α ′
p. Assume (β, 0) ∈ Mα. If

(β, 0) ∈ Mα ′ , then (4.52) shows that βp = 0, again a contradiction with (4.39).
Thus (β, 0) /∈ Mα ′ and the right-hand side of (4.53) is zero. This and (4.52) show

that α p = αp = 1. Note that for α ′ ′
= α − kλp , k ≥ 1, the relation α ′ ′

p = α ′ ′
p = 1

does not hold, thus the right-hand side of (4.50) is zero. We obtain αp + βp = 0.
Hence

(4.54) α p = αp = −βp = −β p = 1 if βp 6= 0, (β, 0) ∈ Mα.

If α J1,4
6= σ (cf. (2.22)), say (αq, αq) 6= (1, 1) for some q ∈ I1, q 6= p. Suppose αq 6= 1

(the proof is similar if αq 6= 1), then we can write

(4.55) xα =
(

(αq − 1)eq

)−1
[xα−σq−λq+σp , xλq−σp ].

Since for α ′
= α − σq − λq + σp or λq − σp, the relation α ′

p = α ′
p = 1 does not

hold, we have βp = 0 if (β, 0) ∈ Mα ′ . Then applying d to (4.55) gives that βp = 0 if
(β, 0) ∈ Mα, which contradicts (4.39) again. Hence

(4.56) α J1,4
= σ, and β = −σ,
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by (4.37) and (4.54). If `5 + `6 + `7 6= 0, we can write

(4.57) xα =

{
(αq + k)−1[xα+σp +kεq , x−σp−kεq,εq ] for q ∈ I5,6, k ∈ Z, αq + k 6= 0,

[xα+σp ,εr , x−σp ,εr ] for r ∈ I7.

Note that for

(4.58) (α ′, i ′) = (α+σp+kεq, 0), (−σp−kεq, εq), (α+σp, εr) or (−σp, εr),

the relation α ′
p = α ′

p
= 1 does not hold; one can prove as above that βp = 0

if (β, 0) ∈ Mα ′,i ′ . Then applying d to (4.57) gives that βp = 0 if (β, 0) ∈ Mα,
which again contradicts (4.39). Hence `5 + `6 + `7 = 0. Similarly, one can prove

`2 + `3 + `4 = 0. But then ι7 = `1, and we can replace d by d − c(β)
α d ′

0 (cf. (4.4) and
(4.56)), so that c(β)

α becomes zero. This proves that the assumption (4.39) does not
hold. Thus we have (4.38).

Now we prove

(4.59) d(t i) = 0 if i = i J7
.

By Claim 1, we can suppose |i| = n ≥ 2. Assume that we have proved (4.59) for
|i| < n. Then d([v, t i]) = 0 for v ∈ A. From this, we obtain d(t i) ∈ F1H. Suppose
i p > 0 for some p ∈ I7. Then t i

= (i p + 1)−1[t2
p, t

i−εp+ε p ], and |i − εp + ε p| = n,

thus d(t i) ∈ [F, t i−εp+ε p ] + [t2
p, F] = 0. Similarly, by replacing d by d − d ′ for some

d ′ ∈
∑

q∈I2,3∪ J4
F∂tq

(which does not affect the results we have obtained so far), we
can suppose

(4.60) d(xα,i) = mαxα,i for α ∈ Γ, i = i J7
,

and

(4.61) d(tp) = d(t2
q ) = 0 for p ∈ I2,3 ∪ J4, q ∈ I5 ∪ J6.

Note that H is generated by elements in (4.60) and (4.61), thus we obtain that (4.60)
holds for all (α, i) ∈ Γ × J. From this and (3.1), one can easily deduce that
(4.62)
µ : α 7→ mα is a group homomorphism such that µ ∈ Hom+

Z
(Γ, F) if ι7 6= `1.

Assume that ι7 = `1. Then by (3.2) and (4.38), we have

(4.63) mα + mβ = mα+β+σp
if αpβ p 6= α pβp and α, β ∈ Γ, p ∈ I1,4.

By (4.42), (4.45), (4.46), and by induction on |i| + | j|, one can prove

(4.64) miσp + jλp
= 0 for i, j ∈ Z, p ∈ I1,4.

From this we want to prove

(4.65) mα = mα+iσp + jλp
for α ∈ Γ, i, j ∈ Z.
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By replacing α by some α + σp if necessary, we can suppose (αp, α p) 6= (0, 0), (1, 1).

By (4.64) and by [xα, x−σp+ jλp ] = (αp(i + jλp)− iα p)xα+(i+1)σp + jλp , we obtain mα =

mα+iσp + jλp
if αp(i − 1 + jep) 6= (i − 1)α p, from this, one can deduce (4.65). Now

from (4.63) and (4.65), we obtain (4.62) again. Thus by replacing d by d − dµ, we

have d = 0. This proves Claim 4 and also (4.10).
To prove that (4.11) is a direct sum, suppose

(4.66) d = a ′
0d ′

0 +
∑

p∈{0}∪ J1∪I2,3∪I5

apdp +
∑

q∈I2,3∪ J4

bq∂tq
+ dµ +

∑

(0,0)6=(α,i)∈Γ×J

cα,i adxα,i ,

is the 0 derivation. Applying d to A∪{1, t p | p ∈ I2,3 ∪ J4 ∪ I6} (cf. (4.36)), we obtain
that all coefficients are zero except a ′

0. Thus d = a ′
0d ′

0 = 0. By (4.4), we obtain either
a ′

0 = 0 or d ′
0 = 0. Thus (4.11) is a direct sum.

5 Second Cohomology Groups

In this section, we shall determine the second cohomology groups of the Hamilto-

nian Lie algebra H = H(`,Γ). It is well known that all one-dimensional central
extensions of a Lie algebra are determined by the second cohomology group. Central
extensions are often used in the structure theory and the representation theory of
Kac-Moody algebras [K3]. Using central extension, we can construct many infinite

dimensional Lie algebras, such as affine Lie algebras, infinite dimensional Heisen-
berg algebras, and generalized Virasoro and super-Virasoro algebras, which have a
profound mathematical and physical background (cf. [K3], [S1], [SZ]). Since the co-
homology groups are closely related to the structures of Lie algebras, the computation

of cohomology groups seems to be important and interesting as well (cf. [J], [LW],
[S1], [S2], [S3], [SZ]).

Recall that a 2-cocycle on H is an F-bilinear function ψ : H × H → F satisfying
the following conditions:

ψ(v1, v2) = −ψ(v2, v1) (skew-symmetry),(5.1)

ψ([v1, v2], v3) + ψ([v2, v3], v1) + ψ([v3, v1], v2) = 0 (Jacobian identity),(5.2)

for v1, v2, v3 ∈ H. Denote by C2(H, F) the vector space of 2-cocycles on H. For any
F-linear function f : H → F, one can define a 2-cocycle ψ f as follows

(5.3) ψ f (v1, v2) = f ([v1, v2]) for v1, v2 ∈ H.

Such a 2-cocycle is called a 2-coboundary or a trivial 2-cocycle on H. Denote by
B2(H, F) the vector space of 2-coboundaries on H. A 2-cocycle φ is said to be equiv-

alent to a 2-cocycle ψ if φ − ψ is trivial. For a 2-cocycle ψ, we denote by [ψ] the
equivalent class of ψ. The quotient space

(5.4) H2(H, F) = C2(H, F)/B2(H, F) = {the equivalent classes of 2-cocycles},

is called the second cohomology group of H.

Lemma 5.1 If ι7 6= `1, then H2(H, F) = 0.
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Proof Let ψ be a 2-cocycle. Say `4 6= 0 (the proof is exactly similar if `i 6= 0 for
i 6= 1, 4). We fix p ∈ I4. Define a linear function f by induction on i p as follows:

(5.5) f (xα,i) =

{
α−1

p

(
ψ(tp, x

α,i) − i p f (xα,i−ε p )
)

if α p 6= 0,

(i p + 1)−1ψ(tp, x
α,i+ε p ) if α p = 0,

for (α, i) ∈ Γ × J. Set φ = ψ − ψ f . Then (5.5) shows that

(5.6) φ(tp, x
α,i) = 0 for (α, i) ∈ Γ × J.

Using Jacobian identity (5.2), we obtain
(5.7)

0 = φ(tp, [xα,i , xβ, j]) = (α p +β p)φ(xα,i , xβ, j)+i pφ(xα,i−ε p , xβ, j)+ j pφ(xα,i , xβ, j−ε p ),

for (α, i), (β, j) ∈ Γ × J. If α p + β p 6= 0, by induction on i p + j p, we obtain

φ(xα,i , xβ, j) = 0. On the other hand, if α p + β p = 0, then (5.7) gives

(5.8) φ(xα,i , xβ, j) = − j p(i p + 1)−1φ(xα,i+ε p , xβ, j−ε p ),

and by induction on j p, we again have φ(xα,i , xβ, j) = 0. Thus φ = 0.

Assume that ι7 = `1. Denote σ =
∑

p∈I1
σp, and we use notation Hom∗

Z
(Γ, F) as

in (4.9) (cf. (4.6)). We construct 2-cocycles φp , φ ′
p, φµ for p ∈ I1, µ ∈ Hom∗

Z
(Γ, F)

as follows:

φp(xα, xβ) = αpδα+β,σ−σp
,(5.9)

φ ′
p(xα, xβ) = α pδα+β,σ−σp

,(5.10)

φµ(xα, xβ) = µ(α)δα+β,σ ,(5.11)

for α, β ∈ Γ. It is straightforward to verify that they are 2-cocycles (cf. [J]). From the
proof of Theorem 5.2 below, one can see why we construct such 2-cocycles.

Theorem 5.2

(1) H2(H, F) = 0 if ι7 6= `1;

(2) if ι7 = `1, then H2(H, F) is the vector space spanned by B = {[φp], [φ ′
p], [φµ] |

p ∈ I1, µ ∈ Hom∗
Z
(Γ, F)}.

Furthermore, for ap, bp ∈ F, µ ∈ Hom∗
Z

(Γ, F), we have

(5.12)
∑

p∈I1

(ap[φp] + bp[φ ′
p]) + [φµ] = 0 ⇔ ap = bp = µ = 0.

Proof (1) follows from Lemma 5.1, while (2) follows from [J]. We give a simple proof
of (2) as follows.
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First we prove (5.12). Thus suppose

(5.13) ψ =

∑

p∈I1

(apφp + bpφ
′
p) + φµ + ψ f ,

is the zero 2-cocycle for some ap, bp ∈ F and some linear function f . Then for p ∈ I1,
α ∈ Γ, by applying ψ to (x−σp , xσ), (xλp , xσ−λp−σp ), (xα, xσ−α), we have

0 = ψ(x−σp , xσ) = −ap − bp,(5.14)

0 = ψ(xλp , xσ−λp−σp ) = epbp,(5.15)

0 = ψ(xα, xσ−α) = µ(α) +
∑

p∈I1

(αp − α p) f (xσp +σ),(5.16)

(cf. the definition of λp in (3.97)). We obtain that ap = bp = 0 for p ∈ I1 and by
(4.9),

(5.17) µ =

∑

p∈I1

cpµp ∈ Hom∗
Z
(Γ, F) ∩ span{µp | p ∈ I1} = {0},

where cp = − f (xσp +σ) ∈ F. This proves (5.12).
Now supposeψ is a 2-cocycle. We define a linear function f as follows: set f (xσ) =

0, and for α ∈ Γ \ {σ}, we define

(5.18) pα = min{p ∈ I1 | (αp, α p) 6= (1, 1)},

and set

(5.19) f (xα) =

{
(αp − α p)−1ψ(x−σp , xα) if α p 6= αp,

e−1
p (1 − αp)−1ψ(xλp , xα−σp−λp ) if α p = αp 6= 1,

for p = pα. Set

(5.20) φ = ψ −
∑

p∈I1

(apφp + bpφ
′
p) − ψ f ,

where

(5.21) ap = −ψ(x−σp , xσ) − bp, bp = e−1
p ψ(xλp , xσ−λp−σp ),

(cf. (5.14) and (5.15)). Then one can prove

(5.22) φ(x−σp , xα) = 0 for p ∈ I1, α ∈ Γ.

In fact, if α = σ, it follows from (5.9), (5.10), (5.20) and (5.21). Assume α 6= σ. Let

p = pα and write

(5.23) xα =

{
(αp − α p)−1[x−σp , xα] if α p 6= αp,

e−1
p (1 − αp)−1[xλp , xα−σp−λp ] if α p = αp 6= 1,
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(cf. (5.19)), we can obtain (5.22) by the Jacobian identity (5.2). From (5.22), by
considering φ(x−σp , [xα, xβ]) and by (5.2), we obtain

(5.24) φ(xα, xβ) = 0 if αp + βp 6= α p + β p for some p ∈ I1.

Now we want to prove

(5.25) φ(xλq , xα) = 0 for α ∈ Γ, q ∈ I1.

By (5.24), we can suppose αp = α p if p 6= q, and αq = αq + eq. If α = σ − λq − σq,

(5.25) follows from (5.9), (5.10), (5.20) and (5.21). So suppose α 6= σ−λq −σq. Let
α ′

= α + λq + σq 6= σ. If p = pα ′ 6= q, then α ′
p = α ′

p
= αp = α p 6= 1, and by

writing xα = e−1
p (1 − αp)−1[xλp , xα−σp−λp ], we obtain

(5.26) φ(xλq , xα) = −e−1
p (1 − αp)−1eqαqφ(xλp , xα

′−σp−λp ) = 0,

by (5.19). On the other hand, if p = q, we again have φ(xλq , xα) = φ(xλq , xα
′−σp−λp )

= 0 by (5.19).

Now by (5.25) and by writing (αp − 1)xα = −e−1
p [xλp , xα−λp−σp ], we obtain

(αp − 1)φ(xα, xβ) = −βpφ(xα−λp−σp , xβ+λp+σp ),(5.27)

(αp − 2)φ(xα−λp−σp , xβ+λp+σp ) = −(βp + 1)φ(xα−2λp−2σp , xβ+2λp+2σp ),(5.28)

for p ∈ I1, where (5.28) is obtained from (5.27). Using (5.28) in (5.27) and by writing

(5.29)
(

3(α p − αp) − 2αpep

)
xα−2λp−2σp = [xα, x−2λp−3σp ],

we obtain

(
3(α p − αp) − 2αpep

)
(αp − 1)(αp − 2)φ(xα, xβ)

= βp(βp + 1)
(
φ([xα, xβ+2λp+2σp ], x−2λp−3σp ) + φ(xα, [x−2λp−3σp , xβ+2λp+2σp ])

)
.

(5.30)

We prove that

(5.31) φ(xα, x−2λp−3σp ) = 0 for α ∈ Γ, p ∈ I1.

By (5.24), we can suppose α p = αp +2ep. If αp 6= 1, 2, by setting β = −2λp −3σp in
(5.27) and (5,28), then the right-hand side of (5.28) is zero by (5.22), and thus (5.31)

holds. Suppose αp = 1, 2. Then α p = 1 + 2ep or 2 + 2ep, thus we can write α in the
following form
(5.32)
α = α ′ + σp + 2λp or α ′ + 2σp + 2λp for some α ′ ∈ Γ such that (α ′

p, α
′
p) = (0, 0).
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We denote

ci = φ(xα
′+i(σp+λp)−σp , x−i(σp+λp)−σp ), c ′i = φ(xα

′+i(σp+λp), x−i(σp+λp)−σp ),

(5.33)

di = φ(xα
′+i(σp+λp)−2σp , x−i(σp+λp)), d ′

i = φ(xα
′+i(σp +λp)−σp , x−i(σp +λp)),(5.34)

for i ∈ Z. By writing

(5.35) (i − 2 j)epx−i(σp +λp)−σp = [x− j(σp +λp)−σp , x−(i− j)(σp+λp)−σp ] for j ∈ Z,

we obtain

(5.36) (i−2 j)ci = (i + j)ci− j −(2i− j)c j , (i−2 j)c ′i = i(c ′i− j − c ′j) for i, j ∈ Z.

By writing

2( j − i)epxα
′+i(σp+λp)−σp = [xα

′+ j(σp+λp)−2σp , x(i− j)(σp +λp)],(5.37)

( j − i)epxα
′+i(σp+λp)

= [xα
′+ j(σp+λp)−σp , x(i− j)(σp +λp)],(5.38)

we obtain
(5.39)
2( j− i)ci = (2i + j)d j−i −(i− j)d j , ( j− i)c ′i = (i + j)d ′

j−i +(i− j)d ′
j for i, j ∈ Z.

Note that the system (5.36) has up to multiplicative scalars unique solutions for ci , c
′
i ,

and we find that

(5.40) ci = (i3 − i)c, c ′i = i2c ′ for i ∈ Z and some c, c ′ ∈ F,

are the only solutions. If we substitute j by 1 and by i + 1 in (5.39), we then obtain

ci = c ′i = di = d ′
i = 0 for all i ∈ Z. This in particular proves (5.31) by (5.32)–(5.34).

Now using (5.31) in (5.30), noting that βp − β p = α p − αp by (5.24), we deduce
that (

βp(βp + 1)
(

3(α p − αp) + 2ep(βp − 1)
)

− (αp − 1)(αp − 2)(3(α p − αp) − 2αpep)
)
φ(xα, xβ) = 0.

(5.41)

As in the proof of (5.31), we can prove φ(xα, x2λp ) = 0. Thus we can replace λp by
2λp in the above discussion, i.e., if we replace ep by 2ep, (5.41) still holds. This forces

(5.42) φ(xα, xβ) = 0 or βp − 1 = −αp for all p ∈ I1,

i.e., if α + β 6= σ, then φ(xα, xβ) = 0. Thus we can suppose

(5.43) φ(xα, xβ) = mαδα+β,σ for α, β ∈ Γ and some mα ∈ F.

As in the proof of (5.31), we can prove miσp+ jλp
= 0 for i, j ∈ Z, p ∈ I1. Then for

any α, β ∈ Γ, p ∈ I1, let v1 = xα, v2 = xβ , v3 = xσ−α−β−σp in (5.2), one can easily
deduce that µ : α 7→ mα is a group homomorphism µ : Γ → F such that µ(σp) = 0.

Thus µ ∈ Hom+
Z

(Γ, F) and φ = ψµ. Furthermore, we can write µ = ν + λ for
ν ∈ Hom∗

Z
(Γ, F), λ ∈ span{µp | p ∈ I1} by (4.9). Then φ = ψν + ψλ. But from

(5.16) and (5.17), one can see that ψλ corresponds to a trivial 2-cocycle, thus we can
suppose φ = φν . This proves Theorem 5.1.
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