
J. Fluid Mech. (2022), vol. 948, A20, doi:10.1017/jfm.2022.681

Effect of waveform on turbulence transition in
pulsatile pipe flow

Daniel Morón1,†, Daniel Feldmann1 and Marc Avila1,2

1Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm 2,
28359 Bremen, Germany
2MAPEX Center for Materials and Processes, University of Bremen, Am Biologischen Garten 2, 28359
Bremen, Germany

(Received 4 February 2022; revised 17 June 2022; accepted 31 July 2022)

Pulsatile flow in a straight pipe is a model system for unsteady internal flows in industrial
engineering and physiology. In some parameter regimes, the laminar flow is susceptible
to helical perturbations, whose transient energy growth scales exponentially with the
Reynolds number (Re). In this paper, we link the transient growth of these perturbations
to the instantaneous linear instability of the laminar flow. We exploit this link to study the
effect of the waveform on turbulence transition by performing linear stability and transient
growth analyses of flows driven with different waveforms. We find a higher-energy growth
in flows driven with longer low-velocity phases as well as with steeper deceleration
and acceleration phases. Finally, we perform direct numerical simulations and show
that cases with larger transient growth transition faster to turbulence and exhibit larger
turbulence intensities. However, these same cases are also more prone to relaminarisation
once turbulence has been established. This highlights that, in pulsatile flows, the linear
mechanisms responsible for turbulence transition are distinctly different from the nonlinear
mechanisms sustaining turbulence.
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1. Introduction

Pulsatile pipe flow is ubiquitous in nature and technology, ranging from industrial
applications to biological systems (Cunningham & Gotlieb 2005; Gebreegziabher et al.
2011). The presence of turbulence in pulsatile pipe flow is usually undesired. In particular,
turbulent pulsatile pipe flow is linked with higher energy losses in industrial applications
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(Golledge & Norman 2010), and with cardiovascular diseases in physiological flows
(Malek, Alper & Izumo 1999). The transition to turbulence in pulsatile pipe flow is
governed by three factors. First, by the Reynolds number Re = us(D/ν); where us is the
time-averaged bulk velocity, D is the diameter of the pipe and ν the kinematic viscosity of
the fluid. Second, by the pulsation frequency f (being the period T = 1/f ). In our case we
consider its non-dimensional form, the Womersley number Wo = (D/2)

√
2πf /ν. Lastly,

by the waveform of the driving pulsatile bulk velocity, described by the Fourier series

ub (t) = us

[
1 +

∞∑
n=1

an cos (n2πft) +
∞∑

n=1

bn sin (n2πft)

]
, (1.1)

where an and bn are the Fourier coefficients of the pulsation. The temporal evolution
of the radial velocity profile in laminar pulsatile pipe flow can be expressed analytically
(Sexl 1930; Womersley 1955) and is hereinafter referred to as the Sexl–Womersley (SW)
velocity profile.

Transition to turbulence in pipe flow driven at a steady flow rate (an = bn = 0 for all
n), or statistically steady pipe flow (SSPF), has been extensively studied since Reynolds
(1883). Even though the corresponding laminar (Hagen–Poiseuille) flow is linearly
stable at least up to Re ≈ ×107 (Meseguer & Trefethen 2003), starting at Re ≈ 1600,
finite-amplitude perturbations can trigger localised turbulent puffs that can survive and
proliferate for asymptotically long times (Avila et al. 2011). As Re increases, turbulence
appears in the form of expanding slugs, that eventually fill the whole pipe with turbulence
(Barkley et al. 2015). A recent review of transition in steady pipe flow is given by Barkley
(2016).

Up to now, studies on turbulence transition in pulsatile pipe flow have mainly considered
pulsations with only one harmonic component, i.e. an = bn = 0 for all n in (1.1) except for
b1 = A. There are experiments of Sarpkaya (1966), Stettler & Hussain (1986) Trip et al.
(2012), Xu et al. (2017), direct numerical simulations (DNS) of Xu & Avila (2018) and
Feldmann, Morón & Avila (2021) and linear stability analysis (LSA) of Thomas et al.
(2011), to name just a few. In those cases, the shape of the waveform is given by the
amplitude A = max(ub)/us − 1 and the transition depends on three control parameters
(Re, Wo and A). In the following, we summarise the effect of these control parameters on
the transition scenario.

At low amplitudes (A ≤ 0.4), the transition is reasonably well understood (Xu et al.
2017; Xu & Avila 2018). Here, transition occurs due to finite-amplitude perturbations,
which trigger puffs. The critical Re at which puffs can survive for asymptotically long
times depends on Wo. At high Wo � 17, the critical Re is the same as for the steady case
(Re = 2040). At low Wo � 4, on the other hand, the critical Reynolds number is Re �
2040/(1 − A). Specifically, for a small Womersley number the time scale of the pulsation
period is much larger than the advective time scale of the flow. During the low-velocity
phase (ub < us) the flow experiences a lower Re which tends to dampen puffs as long as
ubRe < 2040. For intermediate values of Wo, there is a smooth transition between the two
limits.

At higher amplitudes (A ≥ 0.5), transition in pulsatile pipe flow follows a different route.
Xu et al. (2020) observed experimentally localised transition in form of sudden bursts
at intermediate Wo ≈ 6 and small Re = 800. These bursts appear periodically in every
deceleration phase (dub/dt < 0) and are caused by small geometric imperfections in the
experimental set-up. Initially, the bursts exhibit a helical shape that collapses and evolves
into a localised turbulent spot. The turbulent spot first expands in axial direction and is
later advected by the mean flow before it is finally dampened during the acceleration phase
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(dub/dt > 0). Xu, Song & Avila (2021) linked these bursts to a family of non-modal helical
perturbations. They performed transient growth analysis (TGA) for different combinations
of Re, Wo and A and showed that for Re ≥ 800 and A ≥ 0.5 at least two different types
of perturbations are able to grow on top of the laminar flow. Depending on Wo, one type
grows faster than the other. For Wo < 5 and Wo > 20, the flow is most susceptible to
streamwise vortices, i.e. the optimal perturbation of Hagen–Poiseuille flow (Schmid &
Henningson 1994). For 5 < Wo < 20, on the other hand, helical perturbations exhibit
the highest energy growth (G). Although streamwise vortex perturbations exhibit only
algebraic scaling with Re (G ∝ Re2, Schmid, Henningson & Jankowski 2002), helical
perturbations exhibit an exponential scaling (G ∝ eaRe, Xu et al. 2021). This exponential
scaling suggests that a linear mechanism lies at the root of the transient growth reported
by Xu et al. (2021). However, the reason for their outstanding growth rate has not yet been
identified.

It is well known that for certain combinations of Wo and A the SW profile exhibits
inflection points, which may lead to instabilities (Truckenmüller 2006; Miau et al. 2017;
Nebauer 2019). At high Wo � 17, the SW profile changes quickly and perturbations do
not have enough time to grow. Much earlier, Kerczek & Davis (1974) reached the same
conclusion for a similar study of the (laminar) Stokes boundary layer flow. They showed
that the Stokes flow presents inflection points for Wo � 17, that lead to instantaneous linear
instabilities. However, at such high frequencies, the oscillating velocity profile evolves too
quickly for perturbations to grow. For lower 4 � Wo � 17, the profile evolves slower and
perturbations have enough time to take advantage of the inflection points and achieve
substantial transient energy growth. This was first suggested by Cowley (1987) for the
Stokes boundary layer flow, and recently demonstrated by Nebauer (2019) for (pulsatile)
SW flow. Following these ideas, Kern et al. (2021) recently connected the growth of
optimal time dependent modes to the presence and characteristics of inflection points in
(plane) pulsatile Poiseuille flow. However, a relationship between the inflection points and
the growth of the helical perturbations in pipe flow has not yet been studied.

In most applications, pipe flows exhibit a bulk flow evolution with multiple harmonics,
resulting in multiple non-zero coefficients (an, bn) in (1.1). This introduces additional
control parameters to the problem, as the transition scenario no longer depends on Re,
Wo and A alone. Instead it depends also on all the non-zero an and bn that define the
waveform of the pulsation. To the best of the authors’ knowledge this new parametric
space has only recently started to be explored. Experiments on turbulence transition for
non-single harmonic pulsations show that waveforms with longer deceleration phases
have an earlier onset of transition, whereas steeper accelerations delay it (Brindise &
Vlachos 2018). Despite these promising results, there is still a huge range of waveform
characteristics unexplored.

Here we systematically explore the effect of different pulsation waveforms on transient
growth. Further, we show that the large growth of helical perturbations is due to the
presence of inflection points in the SW profile. Specifically, waveforms that result
in laminar profiles with long-lasting inflection points yield higher transient growth
than waveforms that exhibit ephemeral inflection points. By combining LSA and
DNS we demonstrate that waveforms with longer low-velocity phases and steeper
deceleration/acceleration phases, are more prone to transition.

The rest of the paper is organised as follows. In § 2 we define a generic waveform and
present the different methods we use to study the effect of the waveform on turbulence
transition. In §§ 3 and 4 we discuss the results of our stability analyses and in § 5 we
discuss the results of our DNS. We summarise our findings in § 6.
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2. Methodology

2.1. Model and equations
We consider a viscous Newtonian fluid with constant properties in a straight smooth
rigid pipe of circular cross-section with a time-dependant bulk velocity (1.1). The flow is
assumed to be incompressible and governed by the dimensionless Navier–Stokes equations
(NSE)

∂uuu
∂t

+ (uuu · ∇)uuu = −∇p + 1
Re

∇2uuu + Fd (t)eeez and ∇ · uuu = 0. (2.1)

Here, uuu is the fluid velocity, p the pressure and Fd(t) the axial pressure gradient which
drives the flow at the desired bulk velocity defined in (1.1). All variables in this study
are rendered dimensionless using the pipe diameter (D), the time-averaged bulk velocity
(us) and the fluid density (ρf ). The equations are formulated in a cylindrical coordinate
system (r, θ, z), where the velocity field has three components uuu = (ur, uθ , uz) in the
radial, azimuthal and axial direction, respectively.

The laminar SW profile is unidirectional and only depends on the radial position and
time U ≡ uz(r, t). In this work we refer to the laminar profile U as the linear superposition
of the SW profiles coming from the multiple harmonic components of (1.1).

The linearised Navier–Stokes equations (LNSE)

∂uuu′

∂t
+ (U · ∇)uuu′ + (

uuu′ · ∇)
U = −∇p′ + 1

Re
∇2uuu′ and ∇ · uuu′ = 0 (2.2)

are obtained by decomposing the full velocity (uuu = Ueeez + uuu′) and pressure (p = P + p′)
fields into a laminar base flow (capital letters) and infinitesimal perturbations (prime
superscript).

2.2. Bulk velocity waveforms
We design a generic waveform for the bulk velocity (ub) to explore the effect its shape
has on the stability of the corresponding laminar velocity profile. Brindise & Vlachos
(2018) recently showed experimentally that the slope and duration of the acceleration and
deceleration phases are important for turbulence transition. Here we define waveforms
whose characteristics we can control systematically. Specifically, we propose a certain
way of defining the waveform by fixing only three parameters.

We first define six control points (black stars in figure 1), which represent the skeleton
of our generic waveform. Their position is controlled by three parameters (tac, tdc and tm).
These parameters set the value of the coefficients an and bn in (1.1) and do not affect the
mean velocity (us) that defines Re. Then we define a spline, using a monotone piecewise
cubic Hermite interpolating polynomia (Fritsch & Carlson 1980), that captures the position
of the control points. We finally fit the spline using NF = 30 Fourier modes to obtain
a smooth and periodic pulsation. In figure 1 we show the temporal evolution of ub and
the corresponding laminar velocity profiles for a sine wave pulsation compared with four
other cases. Namely, waveform 1 (WF1) and waveform 2 (WF2), the two base cases we
use throughout our analysis, and waveform 3 (WF3) and waveform 4 (WF4), the two cases
with the longest/shortest tm we consider in this work. We enforce an additional constraint
to all waveforms investigated here, so that the bulk velocity never falls below ub = 0. This
is inspired by cardiovascular flows, where the minimum bulk velocity in the larger vessels
is close to zero (Bürk et al. 2012). Although the bulk velocity is always positive, locally the
velocity profile can have negative axial velocities (i.e. flow reversal) during some fraction
of the pulsation, as exemplarily shown in figures 1(c) and 1(d).
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WF1
WF2

WF3

WF4
Points
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(b)

(a)

(c) (d )

Figure 1. Definition of the generic waveform (WF) including five examples for Wo = 11. (a) Temporal
evolution of the bulk velocity (ub) over one pulsation period (T). The black stars denote the six control points,
which define the waveform and the solid lines represent the 30 Fourier mode approximation of the spline that
passes through those points. The five examples are WF1 (tac = tdc = 0.05, tm = 0.45), WF2 (tac = tdc = 0.2,
tm = 0.55), WF3 (tac = tdc = 0.1, tm = 0.4), WF4 (tac = tdc = 0.05, tm = 0.6) and a single harmonic sine
wave pulsation with A = 1 as a reference. (b–d) The corresponding (laminar) velocity profiles (U) of the five
waveforms defined in (a) at three different instants in time. Filled circles denote the existence and radial location
of inflection points in the velocity profile.

All the waveforms we consider have an acceleration phase with a slope that is set by the
parameter tac. Note that the total duration of the acceleration is 2tac long. The bulk velocity
remains in a high-velocity phase for the time span tm − tac − tdc. Then the pulsation enters
a deceleration phase, whose slope is set by the parameter tdc, so that the total duration of
decelerates phase is 2tdc long. Finally the bulk velocity remains in a low-velocity phase
for the rest of the period (T − tm − tac − tdc). The parameter tm ∈ [0, T] sets the maximum
Remax of the flow as

Remax = Re
T
tm

. (2.3)

For tm = T/2 the waveform is symmetric and the high- and low-velocity phases have the
same duration. For this specific choice, Remax = 2Re and the minimum velocity is ub = 0.
As tm → 0 the time the flow stays in a high-velocity phase decreases and Remax increases.
In the following tac, tdc and tm are normalised in terms of T and they must satisfy

tm + tac + tdc < 1, tac < 0.5 and tdc < 0.5. (2.4a–c)

2.3. Stability analysis
We study the linear stability of the laminar velocity profile (U) with two different
approaches. First, we freeze U at 200 equispaced instants in time and perform
instantaneous LSA using the numerical method of Meseguer & Trefethen (2003).
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The method returns the complex eigenvalues λλλ for each instantaneous velocity profile. If
one of them has a positive real part, the profile is considered to be instantaneously linearly
unstable. To measure the instantaneous level of instability we compute the maximum real
part of the eigenvalues

λmax (t) = max (R {λλλ (t)}) (2.5)

for the instantaneous U(r, t) at each discrete time step. Strictly, this approach is only valid
in the quasi-steady limit, where U(r, t) evolves much slower than the velocity perturbations
(uuu′). It is, however, not a priori clear, how far these two time scales have to be apart for the
quasi-steady assumption to remain approximately valid.

Second, we carry out a non-modal stability TGA. With this method we solve an
optimisation problem to determine the perturbation with highest energy growth (G) out of
all possible perturbations, in terms of perturbation shape (uuu′

0 = uuu′(t0)) and initial time of
perturbation (t0/T). In contrast to the LSA approach, this method allows both the laminar
profile and the perturbations to evolve in time. The TGA yields the optimal transient energy
growth

GTGA = max
(

E (t)
E (t0)

)
= max

(
uuu′ (t) · uuu′ (t)

uuu′ (t0) · uuu′ (t0)

)
, (2.6)

where E = uuu′ · uuu′ is the perturbation energy. We refer the reader to Xu et al. (2021) for
further details.

For both approaches, we discretise (2.2) using a Fourier–Galerkin ansatz in θ and z, and
a Chebyshev collocation method in r. For both we use Nr = 96 radial points and consider
only some azimuthal (m) and axial (k) wavenumbers. Our goal is to study the behaviour of
helical perturbations. Thus, we only consider m = 1 and 2 ≤ k ≤ 4 in steps of �k = 0.5,
which correspond to the most amplified helical perturbations reported by Xu et al. (2021).
We set �t = 0.0025(D/us) for both the integration of the laminar SW profile in the LSA
and TGA, and the integration of perturbations in our TGA using (2.2). The used grid size
and time step size are the same as in Xu et al. (2021), who found them to be sufficient for
a Remax one order of magnitude higher than those we consider here.

2.4. DNS
We perform DNS of (2.1) using our open-source pseudo-spectral simulation code
nsPipe (available at https://github.com/dfeldmann/nsCouette, López et al. 2020). In
nsPipe, the governing equations (2.1) are discretised in cylindrical coordinates (r, θ, z)
using a Fourier–Galerkin ansatz in θ (Nθ modes) and z (Nz modes) and high-order
finite differences in r. Periodic boundary conditions are imposed in θ and z, and no-slip
boundary conditions in the solid pipe wall. The discretised NSE are integrated forward in
time using a second-order predictor–corrector method with variable time-step size (�t).
Further details about the numerical methods and functionalities of nsPipe are given in
López et al. (2020) and references therein.

Here, we perform DNS with different waveforms at Re = 2000 and Wo = 11 in a
computational domain of size (D/2 × 2π × 50D) using a resolution of (Nr × Nθ × Nz) =
(96 × 192 × 3000). For all waveforms we consider here, the largest instantaneous friction
Reynolds number we have measured is Reτ = 188. In that case, the used resolution
corresponds to a grid spacing in viscous units of 0.04 ≤ �r+ ≤ 2.82, R+�θ = 6.2 and
�z+ = 6.3, respectively. The time step size is automatically adapted to ensure numerical
stability and accuracy and is always between �t = 0.0009(D/us) and 0.0025(D/us). The
code adjusts the value of Fd(t) in (2.1) to enforce the desired bulk velocity ub(t), (1.1), at
each time step.
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(b)(a)

Figure 2. Colour map and isosurfaces of positive (blue) and negative (vermillion) axial vorticity ωz of the
optimal helical perturbation of a pulsatile flow driven with a sine wave pulsation at Re = 2000, A = 1 and
Wo = 11. In (a) at t0/T = 0.5 and in (b) at t/T = 1. In both panels we show a cross-section of the pipe at z = 0
to the left; and a section z = 1.5D long of the pipe in the right with an isosurface of the ±0.9 max(ωz) at that
instant of time.

WF1
WF2
Sine

2us

0.5T 1.5T 2T

100

GTGA

105

T0
0

us

Figure 3. Energy growth (solid lines) of the optimal helical perturbation according to our TGA for three
different waveforms (dashed lines) for Re = 2000 and Wo = 11. Colours and symbols correspond to three of
the five waveforms defined in figure 1.

Method Re NRe Wo NWo tm Ntm tac,dc Ntac,dc N

LSA 1000–4000 7 1–25 25 0.40–0.60 5 0.05–0.2 4 14 000
TGA 1500–2500 3 7–15 5 0.45–0.55 3 0.05–0.2 2 180

Table 1. Parametric space considered for our linear stability analysis (LSA) and transient growth analysis
(TGA): range of Reynolds (Re) and Womersley (Wo) numbers and the three parameters (tm, tac, tdc) defining
our generic waveform, the total number of each parameter values (N···) and the total number of cases (N).

3. Linear analysis

We performed a large set of LSA and TGA of the laminar velocity profile for many
different combinations of Re, Wo and waveforms as compiled in table 1. For 5 ≤ Wo ≤ 19,
all the waveforms show susceptibility to the growth of helical perturbations in a similar
fashion as for a single harmonic pulsation (Xu et al. 2021). In figure 2, we show the initial
shape of the optimal helical perturbation for a sine wave pulsation (Re = 2000, A = 1 and
Wo = 11) and its shape at the maximum energy amplification. At this Re, A and Wo we find
that for a sine wave and WF1 pulsations the optimal axial wavenumber is around k ≈ 3.77,
and for WF2 around k ≈ 3.3. The optimal axial wavenumber depends on Re, the waveform
and specially on Wo, as reported by Xu et al. (2021). According to our TGA the helical
perturbation is optimally triggered during flow deceleration t0/T ≈ 0.5 and grows during
the low-velocity phase (figure 3). It then reaches its maximum during, or right after, the
acceleration phase for all the waveforms considered here.
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3.1. Mechanism of the perturbation growth
We first performed an LSA for a single harmonic sine wave pulsation at Re = 2000,
Wo = 11 and A = 1 and observed that the velocity profile is instantaneously unstable
for more than 50 % of the period. This can be seen in figure 4, where we show the
maximum real part out of all the instantaneous eigenvalues (λmax, see (2.5)) for this case.
For most of the acceleration phase, λmax is constant and negative. This corresponds to
the maximum eigenvalue of Hagen–Poiseuille flow at Re = 2000 (Meseguer & Trefethen
2003). However, for the second half of the deceleration phase and the first half of the
acceleration phase, λmax is positive. The crossover occurs at t/T ≈ 0.45, which is very
close to the optimal time to trigger the helical perturbation (t0/T ≈ 0.5) found by Xu et al.
(2021) based on a TGA for the same values of Re, Wo and A. These results suggest that the
helical perturbation actually takes advantage of the instantaneous linear instability of the
laminar velocity profile.

According to Miau et al. (2017) and Nebauer (2019), the instantaneous linear instability
of the SW velocity profile is related to the existence and characteristics (number or position
(ri)) of inflection points (∂2U/∂r2 = 0). An inflection point is regarded as inviscidly
unstable, when the Fjørtoft criterion

∂2U
∂r2 (U − U(ri)) < 0 (3.1)

is satisfied locally (Schmid et al. 2002). Nebauer (2019) already discussed that
perturbations can sit on top of these inflection points and feed energy from them. In the
following, we show how the helical perturbations take advantage of this mechanism to
grow. To this end, we integrated the linearised equations (2.2) forward in time using the
optimal helical perturbation according to our TGA as the initial condition. We computed
the production (P′) and dissipation (D′) of the kinetic energy (E) contained in the
perturbations as

P′ = −u′
ru′

z
∂U
∂r

and D′ = − 1
Re

∇u′ : ∇u′ where
dE
dt

= P′ + D′. (3.2)

Note that u′
r and u′

z of the helical perturbation have an axial wavenumber of k, and the
product between the two results in structures with axial wavenumber 2k.

In figure 5 (and the Supplementary Movie available at https://doi.org/10.1017/jfm.2022.
681) we show colour maps of P′ and D′ (only in Movie 1) structures in a r–z-plane,
and on top, the instantaneous laminar velocity profile. Strong events of production and
dissipation clearly follow the radial position of inflection points in the SW profile as time
marches. At each time step, the strongest production events are always bigger than the
strongest dissipation events (see the Supplementary Movie). This difference between the
magnitude of production and dissipation structures explains the large growth of helical
perturbations. Moreover, the fact that strong production events follow the inflection points,
further suggests that the helical perturbations extract their growth from them.

3.2. Simple model for perturbation growth
Pulsatile pipe flow has at least two important time scales when it comes to the evolution of
perturbations. One is the advective time scale (D/us) and the other one is the pulsation
period (T = πRe/2Wo2 in advective time units). As Cowley (1987) mentioned, for
sufficiently long periods (in terms of D/us), the perturbations would see a quasi-steady
velocity profile. In that case, the perturbations would have enough time to grow on top of
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Figure 4. Laminar profile and instantaneous maximum eigenvalue λmax according to our LSA for a sine wave
pulsation. In yellow the instantaneous laminar profiles U(r, t) at Re = 2000, Wo = 11 and A = 1. To not
interfere with one another the profiles are scaled using a scalar with arbitrary units so the all time maximum is
smaller than t/T = 0.15, because only the development of U(r, t) in time is of interest. Circles denote the radial
position (ri) of inflection points in the velocity profile. Filled points correspond to inflection points that also
satisfy the Fjørtoft criterion locally (∂2U/∂r2)(U(r, t) − U(ri)) < 0. In red, the maximum real component out
of all the instantaneous eigenvalues of the laminar profile is shown.
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Figure 5. Link between inflection points in the SW profile (U) and production (P′, see (3.2)) of kinetic energy
contained in the helical perturbations in the r–z-plane at θ = 0. Results correspond to an integration of (2.2)
using the optimal helical perturbation as initial condition for a sine wave pulsation at Re = 2000, Wo = 11
and A = 1. Yellow lines represent U(r, t) scaled in arbitrary units and circles represent existence and location
(ri) of inflection points. Yellow circles additionally satisfy the Fjørtoft criterion locally. We show two different
instants of time: (a) mid deceleration phase at t0/T = 0.5; (b) mid acceleration phase at t/T = 1. In both the
production P′ is normalised by the maximum value at t0/T = 0.5, where the simulation was started.

the instantaneous linear instability before the velocity profile changes a lot and becomes
stable again.

In view of these findings, we propose that the energy growth (GTGA) observed by Xu
et al. (2021), depends on how much and how long the SW velocity profile is linearly
unstable. The instability of the velocity profile in turn depends on the existence of
inflection points that satisfy the Fjørtoft criterion (Schmid et al. 2002; Nebauer 2019;
Kern et al. 2021), as already discussed previously. With these ideas in mind we propose
that from an LSA perspective the energy growth rate should scale like

Emax

E0
∝ GLSA = e2 λi T , (3.3)

where λi is the time integral

λi = 1
T

∫ t0+�tu

t0
λmax (t) dt, (3.4)
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Figure 6. (a) Relationship between eigenvalue proxy λi (see (3.4)) and tm. Cases correspond to Re = 2000,
Wo = 11 and different lines indicate different tac and tdc. The lines correspond to the legend in panel (b). (b)
Plot of �tu or fraction of the period during which the laminar profile is instantaneously unstable for different
tm, tac and tdc. (c) Plot of �tu for different waveforms with respect to Wo. The thin grey line corresponds to the
lifetime of inflection points that satisfy the Fjørtoft criterion �ti of WF2. (d) In colour �ti, and inflection point
position span �ri as an area, with respect to Wo for WF2.

for the time window �tu where λmax > 0. The new parameter λi is taken as a combined
proxy for how much and how long the laminar profile U is linearly unstable during one
pulsation period.

In the following section, we compare the energy growth from our TGA with the
hypothesis we propose in (3.3). We show that both calculations yield similar results, which
indicates that the energy growth reported by Xu et al. (2021) is not due to non-modal
mechanisms, but to the instantaneous linear instability in the laminar profile.

4. Parametric study of perturbation growth (linear analysis)

In general, the proposed eigenvalue proxy in (3.4) depends on all the control parameters.
First we explore its dependency with respect to the parameters that define the waveform
(tm, tac and tdc), while fixing Re = 2000 and Wo = 11. Afterwards we vary the flow
parameters Re and Wo. Motivated by these findings we extensively explore the parametric
space and develop a simplified formulation from the generated database to approximate
the energy growth of a waveform by only knowing its control parameters. We finally test
this formulation with a realistic physiological waveform.

4.1. Dependency with respect to the waveform
We first focus on tm, which controls the asymmetry of the waveform. The smaller tm is,
the shorter the high-velocity phase (in terms of T) and the larger Remax become. From
figure 6(a) it is clear that λi increases monotonically as tm decreases; i.e. the waveform
goes from a long high-velocity phase to a long low-velocity phase. This is because a longer
low-velocity phase (smaller tm) results in a longer fraction of the period �tu where the
profile is instantaneously unstable (figure 6b). Thus, the shorter tm is, the more unstable
the laminar profile becomes. This conclusion is in good agreement with experimental
findings of Brindise & Vlachos (2018), who showed that flows with longer deceleration
and longer low-velocity phases are more prone to transition by looking at turbulent kinetic
energy and its production.

948 A20-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

68
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.681


Effect of waveform on turbulence in pulsatile pipe flow

31000

30

0.2

0.1 WF1

WF2
0

20

10lo
g 

G

0

30

0.2

0.1

0

20

10

0
2000 3000 4000 7 11 15

WoRe
19

31000

λ
i i

n 
u s/

D

2000 3000 4000 7 11 15 19

(b)(a)

(c) (d )

Figure 7. (a) Eigenvalue proxy λi with respect to Re at Wo = 11 and two different waveforms (blue/green
lines). (b) Eigenvalue proxy λi, (3.4), with respect to Wo at Re = 2000. (c) Energy growth GLSA, see (3.3), with
respect to Re at Wo = 11. (c) Energy growth GLSA with respect to Wo at Re = 2000. Orange lines correspond
to the optimal transient growth GTGA. Blue and vermillion lines correspond to waveform 1 with tm = 0.45 and
tac = tdc = 0.05, whereas green lines correspond to waveform 2 with tm = 0.55 and tac = tdc = 0.2.

In figure 6(a), we also show how λi depends on the other two waveform parameters.
Recall that tac and tdc control the slope of the acceleration and the deceleration, but do
not affect Remax. It is evident from figure 6(a), that λi is inversely proportional to both
parameters, implying that steeper acceleration and steeper deceleration both lead to more
unstable flows. However, the sensitivity of λi with respect to tdc is larger than the sensitivity
with respect to tac. While increasing tac by a factor of four decreases λi by only 9 %, doing
the same for tdc decreases λi by 16 %.

4.2. Dependency with respect to Reynolds and Womersley numbers
Our hypothesis is that GLSA is proportional to the product of the period (T) and the
proposed eigenvalue proxy (λi, (3.4)). Here we explore the dependency of λi on Re and
Wo and we compare GLSA with GTGA obtained by our TGA.

For both waveforms we have considered here, λi grows with the Reynolds number
(figure 7a). In the inviscid regime (Re → ∞), λi approaches a given asymptotic value,
which depends on the waveform.

The dependence of λi on the Womersley number is more complex. From Wo � 2
onwards, λi > 0 (figure 7b), but the exact value at which the flow becomes unstable,
depends on both the Reynolds number and the waveform. Thereafter λi increases with
Wo, until it reaches a maximum around Wo ≈ 11. The exact Wo and magnitude of this
maximum depend on the waveform. If Wo is now further increased, λi decreases again but
remains positive for all parameters considered here.

The dependence of λi on Wo is determined by the relationship between �tu and Wo,
as observed when comparing the curves in figures 7(b) and 6(c). It is the fraction of
the period where the flow is unstable, �tu, what dictates the value of λi with respect
to Wo. In turn, as shown in figure 6(c), �tu follows the trend of �ti. Here, �ti is the
fraction of the period, where the profile has only one inflection point, that additionally
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satisfies the Fjørtoft criterion. Thus, the presence of inflection points sets the fraction
of the period where the laminar profile is unstable, which ultimately sets the level of
instability λi.

For Wo � 3 the velocity profiles exhibit inflection points for more than one-quarter
(�ti � T/4) of the pulsation period (figure 6c,d). With increasing Womersley number
(3 � Wo � 17), the lifespan of the inflection points (�ti) increases. The inflection points
appear close to the pipe wall at the early stages of deceleration (figure 4). During the
rest of the deceleration and the subsequent low-velocity phase, the inflection points move
towards the pipe centreline. However, before they are able to reach the centreline, they
disappear during the acceleration phase. Their movement is restricted to a radial span
�ri = max(ri) − min(ri) that decreases with increasing Womersley number (figure 6d).
For large Wo, the evolution of the velocity profile prevents the inflection points from
approaching the centreline before they die. Already from Wo ≈ 11 onwards, they remain
in the vicinity of the pipe wall (min(ri) < D/4) and so do the perturbations that may grow
on top of them. This in turn does not allow perturbations to access the more energetic flow
in the central region of the pipe, resulting in a decreasing, but still bigger than zero, λi for
Wo > 11 (figure 7a). Note that at Wo > 11 perturbations can still extract energy from the
inflection points but less efficiently than at Wo ≈ 11.

In order to characterise the dependency of GLSA, (3.3), with respect to Re and Wo we
combine our knowledge of λi with the effect of the pulsation period T = πRe/2Wo2. We
observe that for intermediate Womersley numbers, GLSA grows monotonically with Re
(figure 7c). At sufficiently high Reynolds numbers, λi is more or less constant (figure 7a)
and GLSA ends up following the exponential relationship between T and Re.

The combined effects of λi and pulsation period set the point of maximum growth at
Wo ≈ 7.5 (figure 7d). Depending on the waveform or the Reynolds number, the exact
position of this maximum with respect to Wo can vary slightly. Interestingly the region
close to Wo ≈ 7.5 matches the point of maximum transient growth for a flow driven with
a sine wave pulsation (Xu et al. 2021), and it is close to the point of maximum growth
of perturbations in pulsatile channel flow (Pier & Schmid 2017). It is at this particular
Wo, where the competing effects of shorter pulsation periods (in terms of advective time
units) and higher level of average instability of the laminar profile make the flow more
susceptible for perturbations to grow.

In figures 7(c) and 7(d) we show that GLSA, (3.3), approximates the optimal transient
growth GTGA, (2.6), reasonably well at several Re and Wo. Note that we do not use any
constant to match the two lines, but directly show GLSA as computed according to (3.3).
This shows that the energy growth of the helical perturbation is related to the instantaneous
instability of the laminar profile and confirms our hypothesis. It is the instantaneous
instability of the laminar profile what yields the outstanding perturbation growth observed
in the TGA of Xu et al. (2021), as long as T is sufficiently long (in terms of advective time
units). In our results, GTGA > GLSA, as expected. This means that, on top of the modal
growth that comes from the instantaneous instability, the perturbation can further grow
due to additional non-modal mechanisms.

4.3. Gradient descent
In this section, we exploit the knowledge gained on perturbation growth so far, to develop
a simple parametric model. Specifically we model the dependency of the perturbation
growth on the governing parameters by approximating (fitting) our two sets of LSA and
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Case Rec bi1 w1 w2 w3 bi2 wm wac wdc bi3 N

LSA 2500 0.989 1.55 0.0059 0.1821 18.746 −17.634 −2.064 −16.38 −2.9638 14 000
TGA 2500 −0.13 1.67 0.0083 0.1925 −8.111 −16.223 −3.404 −5.491 −0.6191 180

Table 2. Weights (w) and biases (bi) used to fit LSA and TGA results to (4.1)–(4.3).

TGA computations listed in table 1 with the expression

log Gg = sσRe + bi3, (4.1)

s = bi2 + wmtm + wactac + wdctdc, (4.2)

σ = [w1 (Wo − b1) + w2 (Wo − bi1)2] exp (−w3Wo). (4.3)

The parameter Gg is our approximation to GLSA or GTGA. We use an exponential
dependence on Re, an assumption motivated by (3.3), where we suggest that the
perturbation growth scales exponentially with the product of the pulsation period T and
λi. As we show in figure 7(a), at a sufficiently high Re, λi reaches a constant value and
GLSA (and, therefore, Gg) follows the exponential relationship with Re that comes from
T = πRe/2Wo2 (figure 7b). Further, we assume that the slope of this relationship is given
by the product of (4.2) and (4.3). The function σ approximates the shape of GLSA with
respect to Wo that is shown in figure 7(d). We now know that at Wo ≈ 11, λi peaks,
whereas T always decreases as Wo increases. From these two ideas, we select a function σ

that goes to zero as Wo → 0 and Wo → ∞. The function s accounts for the dependency of
Gg on the shape of the pulsation waveform (i.e. tm, tac and tdc). From figures 6(a) and 6(b),
λi appears to depend linearly on each of the three parameters (at least for the values we
consider here) and, henceforth, GLSA depends exponentially on each of them. Although
the results in previous sections suggest cross-dependencies between the parameters, we
ignore these in our model equation for the sake of simplicity.

We approximate Gg by looking for the set of weights (wi) and biases (bii) in (4.1)–(4.3)
that minimise the error

ε = 1
N

N∑
n=1

(
log G − log Gg

)2
n , (4.4)

where N is the total number of data items to fit (table 2). We produce two fits, one to
the LSA results where G = GLSA and another to the TGA results where G = GTGA. We
initialise each fit with the vector xxx0 that is filled with random guesses of weights and
biases with values between zero and one. Then we use a gradient descent method to find
the vector xxxi that minimises (4.4). Iterations are performed until a minimum is reached. At
iteration i the weights and biases are updated as

xxxi+1 = xxxi − η

N∑
n=1

dεn

dxxxi , (4.5)

where η is a learning parameter that is dynamically adjusted so that the error ε(xxxi+1) <

ε(xxxi). We consider the case as converged when the error decreases to less than 10−10 for
consecutive iterations.

The quality of the fit is visualised in figure 8. The horizontal axis represents the number
of the case, where the list of cases is ordered in the sense of increasing first Re, then
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Figure 8. Results of our fit using the gradient descent method. (a) Fit of GLSA (see (3.3))–(4.1). Hollow circles
are individual results of the LSA for all the parameters considered (first row in table 1). Black dots are the fit of
the method. In each horizontal location we plot just one case with a given combination of Re, Wo, tm, tac and
tdc. The cases are ordered in increasing sense of first Re then Wo and finally tm, tac and tdc. (b) Same fit but for
GTGA (second row in table 1).

Wo and finally tm, tac and tdc as in table 1. This explains why the data appear in packets of
functions that look similar to the shape of the function shown in figure 7(c).

Note that the fit performs poorer as Re increases. We know that Re also has an effect on
λi, as shown in figure 7(b). However, the formulation we have proposed ignores this, and
other cross-dependencies, as it only considers the dependency of G on Re coming from T .
Despite these differences, the error is of the order of 10−4 for both fits.

The final weights of the two fits (table 2) show that tm has a greater effect on the energy
growth compared with tac and tdc, because |wm| > |wdc| > |wac|. The smaller tm, tac and
tdc are, the bigger the energy growth is, because wm < wac < wac < 0. Note that the two
fits do not reach the same values for all weights and biases. This is due to the differences
between the two sets of data, and the choices we use for the fitting formula. The weights
are the key parameters, as they quantify the importance of some parameters with respect
to others, and are found to be very similar for the fits to GLSA and GTGA.

The fits allow us to generalise the dependency of GLSA and GTGA on all the control
parameters for all the waveforms we have considered here. With this tool one can infer
how much a helical perturbation can grow in a given pulsatile pipe flow by only knowing
the waveform of the pulsation and the control parameters Re and Wo.

4.4. Physiological waveform
As a test to our observations, we study the behaviour of a laminar profile driven by a
physiological waveform. To that end a particular signal presented in the physiological
study of Bürk et al. (2012) was selected (figure 9a). In their study, they measured the mean
velocity of blood flow at different sections of the aorta in several patients. In our study
the signal for the descending aorta section of a young volunteer was fitted using NF = 8
Fourier modes. The resultant Fourier mode coefficients for the physiological waveform
(1.1) are presented in table 3. We compute the waveform parameters by measuring the
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Figure 9. Results and fit of the energy growth of helical perturbations on a laminar profile driven with a
physiological waveform. (a) Physiological waveform defined by coefficients of table 3 in blue, compared with
a sine wave pulsation in yellow. (b) Evolution of energy growth G with Re at Wo = 12 for the physiological
waveform. The blue solid line corresponds to GLSA and the blue dotted line is a guess using the expression (4.1)
with the weights in the first row of table 2. Filled vermillion points correspond to TGA results and the dotted
vermillion line corresponds to a guess using the expression (4.1) with the weights in the second row of table 2.
(c) Evolution of energy growth G with respect to Wo at Re = 2000 for the physiological waveform. Lines and
symbols correspond to the same cases as in (b).

a1 = −0.053 a5 = 0.0368 b1 = 1.4637 b5 = −0.0664
a2 = −0.7278 a6 = 0.0142 b2 = −0.1712 b6 = −0.0259
a3 = −0.0957 a7 = −0.0013 b3 = −0.1905 b7 = 0.00869
a4 = −0.0514 a8 = −0.0152 b4 = −0.1433 b8 = −0.00434

Table 3. Fourier coefficients (ai, bi) used to approximate the physiological waveform of Bürk et al. (2012).

time span between the half point of the acceleration and deceleration (tm ≈ 0.279). In
addition, we measure half the length of the acceleration (tac ≈ 0.108) and the deceleration
(tdc ≈ 0.141). By introducing these parameters to expression (4.1) and using the weights
listed in table 2, we generated a guess of the energy growth on top of the laminar velocity
profile in the physiological waveform (figure 9b,c). In addition, we performed LSA (solid
blue line) and TGA (red dots) to probe the accuracy of the fits.

The fitting of expression (4.1) gives a good estimate of the growth of perturbations for
the physiological waveform, even though all data used to obtain the fit coefficients are for
tm ≥ 0.3 (table 1). Larger errors are found for Wo ≤ 10 and correspond to our definition
of σ in (4.3). Future analyses may improve this equation to better capture the behaviour at
low Womersley numbers.

Figures 9(b) and 9(c) confirm some of the ideas proposed in this paper. First, the energy
growth of the helical perturbations is related with the instantaneous instability of the
laminar profile due to the presence of inflection points. This is confirmed by the similarity
of GTGA with GLSA. Second, the shape of the pulsation waveform has an important effect
on the energy growth. This is shown in figure 6(a) and evident from the non-negligible
values of wm, wac and wdc in our fits.
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Parameter WF1 Other Waveforms WF2

tm 0.45 0.45 0.45 0.45 0.55 0.55 0.55 0.55
tac 0.05 0.05 0.20 0.20 0.05 0.05 0.20 0.20
tdc 0.05 0.20 0.05 0.20 0.05 0.20 0.05 0.20
Nsurv 3 2 4 7 1 3 4 5

Table 4. Parametric space considered in our nonlinear study at fixed Re = 2000 and Wo = 11. The different
waveforms (WF) are defined by the parameters tm, tac and tdc. For each waveform, 10 simulations were
performed using different initial conditions. The number of DNS runs that remained turbulent after 20 pulsation
periods is given by Nsurv .

5. DNS

In order to assess the relevance of our findings from the linear analyses to turbulence
transition, we performed 80 DNS of pulsatile pipe flow. As detailed in table 4, we
considered 8 different waveforms and 10 different initial conditions, while keeping Re =
2000 and Wo = 11 fixed.

The decision for these specific parameters is two-fold. First, Wo ≈ 11 is a value
typically found in our main target application, the flow in the bigger vessels of the human
cardiovascular system (Les et al. 2010). Second, Wo = 11 offers a good compromise
between turbulence transition and turbulence survival. At lower Wo � 8, perturbations
exhibit higher transient growth, but once triggered, turbulence quickly decays during the
first acceleration (Xu et al. 2017; Xu & Avila 2018; Feldmann et al. 2021). At higher
Wo � 15, the dynamics of turbulence are similar to those observed in steady pipe flow and
the waveform is not expected to have much influence on them.

The computational domain is Lz = 50D long and, following Feldmann et al. (2021), the
simulations are initialised at t0 with the corresponding SW velocity profile disturbed with
the optimal helical perturbation obtained from our TGA. In numerical simulations with
global initial perturbations (not shown here), the perturbations grow and trigger turbulence
in the whole domain. This turbulence then localises into patches that tend to interact and
decay. Here we localise the initial perturbation in our DNS to 5D in z direction, because
we aim at studying the turbulence survival of isolated puffs. The shape of the perturbation
is given by the TGA and is different for each pulsation waveform. For each waveform, we
perform different DNS by changing the magnitude of the initial perturbation in 10 steps
from 5 × 10−3–5 × 10−2 in terms of us. We observed that at lower magnitudes (e.g. �
5 × 10−4), some cases do not transition to turbulence (not shown here). For turbulence
to appear, the product GLSA times the initial amplitude of the perturbation must be of the
order of O(1) or higher.

In order to detect, track and quantify the presence of localised turbulence in the pipe,
we define the turbulence intensity as

Ω (z, t) = 〈ω2
z 〉r,θ = 1

πR2

∫ R

0

∫ 2π

0
ω2

z r dr dθ (5.1)

based on the axial vorticity component (ωz). For Ω > 0.05(u2
s /D), we consider the flow

as locally turbulent and otherwise as laminar. This allows us to define a turbulent fraction
for the entire pipe domain

Fturb (t) = Lturb (t)
Lz

, (5.2)

948 A20-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

68
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.681


Effect of waveform on turbulence in pulsatile pipe flow

2018161412
t/T
108642

0

0.5

0

5

4

3

1

7

4

2

3

0.5

0.5

0

Fturb

Fturb

Fturb

Fturb

0.5

0

2018161412108642

2018161412108642

20181614

tm = 0.45
tm = 0.55

12108642

(b)

(a)

(c)

(d )

Figure 10. Turbulent fraction Fturb, (5.2) in all our DNS with respect to time: (a) tac = 0.05, tdc = 0.05; (b)
tac = 0.05, tdc = 0.20; (c) tac = 0.20, tdc = 0.05; (d) tac = 0.20, tdc = 0.20. It corresponds to the fraction of
the pipe with Ω > 0.05, see (5.1). Here Fturb = 1 means a fully turbulent pipe, whereas Fturb = 0 denotes a
fully laminar pipe. Results correspond to 80 DNS: for 8 different waveforms, or different tac, tdc and tm; and
10 different initial conditions. In panels find the cases with the same pair of tac, tdc. The colours and symbols
of the lines denote different tm. In each panel, and for each tm we show in a thick line the instantaneous mean
turbulent fraction of the cases (out of the initial 10) that have not yet relaminarised. The thickness of the mean
turbulent fraction decreases whenever 1 of the 10 cases relaminarises. In thin lines see the evolution for the
cases that relaminarise at t < 20T . With numbers we denote the number of cases where turbulence is sustained
for t ≤ 20T .

where Lturb represents the integral length of the pipe for which the condition Ω > 0.05 is
satisfied.

Figure 10 shows the temporal evolution of Fturb for all 80 DNS we have performed. It
is clear that all the different initial conditions were able to trigger a turbulent state that
survives for at least one pulsation period. During the first deceleration phase, the turbulent
fraction grows quickly to almost 50 % in all cases.

Cases with smaller tm exhibit faster growing Fturb in the initial transient when compared
with cases with larger tm. Once the perturbation has triggered turbulence (t � 1.5T), the
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turbulent fraction remains at roughly 30 %, but is clearly modulated by the pulsation in all
cases (figure 10). However, cases with smaller tm reach a slightly higher turbulent fraction,
whereas cases with larger tm are slightly less turbulent. Both observations are in good
agreement with our linear analyses, which predicts larger energy growth for smaller tm.

From experiments and DNS at Re = 2000, we know that turbulence is expected to
decay at some point in time (Xu et al. 2017; Xu & Avila 2018). Thus, we stopped our
simulations as soon as the flow relaminarised in the entire pipe (Fturb = 0) and remained
laminar for another full period. Otherwise, we continued all DNS for 20 pulsation periods
(520(D/us)). The number of runs for which turbulence survived the full simulation time
(20T) is detailed in table 4 and figure 10. Out of the 10 different initial conditions, 1–7
runs remain turbulent depending on the waveform.

The waveform parameters also have an effect on relaminarisation, as presented in table 4
and figure 10. For large tm only 13 out of 40 cases remain turbulent for the full 20 periods,
whereas 16 out of 40 cases remain turbulent when tm is small. Regarding the other two
parameters, for large tdc 17 out of 40 cases remain turbulent for the full 20 periods, whereas
12 out of 40 cases remain turbulent when tdc is small. For large tac 20 out of 40 cases
remain turbulent for the full 20 periods, whereas 9 out of 40 cases remain turbulent when
tac is small. According to our linear analysis, pulsations with small tm, tac and tdc show
higher perturbation growth. However, according to our DNS, they are more likely to cause
relaminarisation once the flow is turbulent. In contrast, pulsations with larger tm, tac and
tdc are less likely to transition to turbulence, but more prone to remain turbulent once
turbulence is triggered.

As a typical example for the dynamics of the localised turbulent regions in our DNS,
we show a space–time representation of Ω for two selected cases in figure 11. The red
structures indicate high values of Ω and represent localised turbulent puffs. The puffs
are clearly modulated by the pulsation. During the deceleration phase the puffs usually
increase in length and magnitude. The puffs further elongate and even split during the rest
of the deceleration and low-velocity phases. The acceleration phase, on the other hand, has
a stabilising effect. The turbulent puff decreases in strength and elongates downstream,
resulting in the white tendrils shown figure 11. Right after the acceleration phase, Ω

has decreased by roughly one order of magnitude and the remaining structures are much
shorter. This is the critical moment in terms of relaminarisation. If the remaining Ω is
too small, the additional energy production during the following deceleration phase is not
sufficient to trigger a new turbulent puff. The definite decay can happen here (i.e. in the
deceleration) or later in the next period. In the second case, the remaining structures can
still grow during the following deceleration (figures 11a and 10), but they do not attain a
sufficient magnitude to further survive and, thus, ultimately decay.

6. Conclusions

In this paper we have shown how the helical perturbations reported by Xu et al. (2021)
are linked to the instantaneous linear instability of the laminar velocity profile in pulsatile
pipe flow. This instability emerges from the presence of inflection points in the laminar
profile and their characteristics, as suggested by Nebauer (2019). We have shown that
two requirements must be fulfilled for the helical perturbations to grow. The first is the
existence of inflection points that satisfy the Fjørtoft criterion and render the laminar
profile instantaneously unstable for a sufficiently long fraction of the period. This is the
case for Wo � 3 and A � 0.5. The second is that the laminar profile evolves much slower
than the perturbations, which is the case for Wo � 17. In the range of Re investigated, if
these two requirements are met, the laminar profile is highly susceptible to the growth
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Figure 11. Space–time diagram of the cross-section integral of axial vorticity square (5.1): (a) a flow driven
with tac = tdc = 0.05 and tm = 0.45 (WF1); (b) a flow driven with tac = tdc = 0.2 and tm = 0.55 (WF2). The
results correspond to a DNS in a 50D pipe at Re = 2000 and Wo = 11. The simulations are initialised with
the optimum perturbation scaled to |u′

0| ≈ 3 × 10−2 of magnitude and localised in a span of 5D. The figure is
presented with respect to a moving frame, moving with the pulsation velocity ub.

of perturbations during that fraction of the period when it presents inflection points.
This usually happens during the deceleration and low-velocity phases, where the helical
perturbations lock their radial position with the inflection points, resulting in outstanding
energy growth as they move towards the centreline of the pipe.

Our results show that the large transient growth of perturbations observed by Xu et al.
(2021) and Kern et al. (2021) is due to the instantaneous linear instability of the laminar
profile. The link between LSA and TGA, suggests that, for similar unsteady shear flows,
at these Re and Wo, no transient growth or optimal time-dependent modes analyses are
needed in order to infer the growth of perturbations.

The waveform of the pulsation can change the lifetime, the radial span and the
characteristics of these inflection points. For waveforms with longer low-velocity phases
(smaller tm), the inflection points remain a longer fraction of the period in the flow and
give more time for the perturbations to grow. In addition, the more abrupt the deceleration
and acceleration phases are (smaller tdc and smaller tac), the higher the chances are
for perturbations to grow. This means that, by just knowing the waveform and the flow
parameters (Re and Wo), one can easily estimate the growth of perturbations for a given
pulsatile pipe flow without even computing the laminar velocity profile. We demonstrated
this by fitting the results of our stability analyses for 14 000 different set-ups to a simple
formula. This formula is motivated by physical interpretations and observations from our
numerical results, where cross-dependencies between the parameters and other features are
ignored. We used this formula to predict the expected energy growth for a physiological
waveform with good agreement.

By performing several DNS of pulsatile pipe flow, we showed that helical perturbations
can quickly trigger turbulence, for all the waveforms considered here. In accordance
with the energy growth predicted by the LSA and TGA, this transition happens faster
or slower depending on tac, tdc and tm. Cases with longer low-velocity phases and steeper
acceleration/deceleration show higher peaks of turbulent fraction than cases with longer
high-velocity phases.

We also reveal the effect the waveform has on turbulence survival once turbulence is
triggered. Different to what its effect on perturbation growth suggests, flows driven with
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waveforms with small values of tdc, tac and tm actually promote turbulence decay. This
suggests that, in the nonlinear regime, the waveform has additional effects. For example,
waveforms which are more susceptible to perturbation growth are also more prone to cause
relaminarisation. It is our goal to further study these effects by performing additional
DNS of pulsatile pipe flows with different Re, Wo and waveforms. Flows in cardiovascular
vessels are affected by wall compliance and the complex geometry of the cardiovascular
system, to name a few. It is also our goal to extend this analysis and investigate if geometry
and compliance affect the behaviour of inflection points or introduce further instabilities
in the flow.

Supplementary movies. Supplementary material and movies are available at https://doi.org/10.1017/jfm.
2022.681.
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