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by the dotted line, and misses the exact result by a factor of two, for
Tc < T < 1.75Tc, the effective range of observables emerging from SPS
and RHIC experiments. The experimental error in determination of αs is
today considerably smaller. This large difference between exact and ap-
proximate result arises, in part, because the value of Λ(5) used to obtain
the thermal behavior was adjusted to be Λ(4) = 0.95Tc � 0.15 GeV. This
value would be correct if Tc were indeed around 210 MeV, as has been
thought for some time.
The high sensitivity of physical observables to αs, makes it imperative

that we do not rely on this approximation. Yet a fixed value αs = 0.25
(instead of αs = 0.5) derived from this approximation is still often used in
studies of the phase properties of QGP, loss of energy by jets of partons,
thermalization of charmed quarks, thermal production of strange quarks,
etc. Such a treatment of thermal QCD interaction underestimates by
as much as a factor of four the interaction with the QGP phase, and
thus the speed of these processes. In most cases, this mundane factor
matters, and we see that an accurate evaluation of αs at the appropriate
physical scale is required in order to establish the correct magnitude of
these results.

15 Lattice quantum chromodynamics

15.1 The numerical approach

The perturbative approach to QCD lacks the capability to describe the
long-distance behavior, which is essential for understanding the QGP–HG
transformation. We need a more rigorous approach in order to charac-
terize the physical mechanisms at the origin of color confinement, and
the transition to the deconfined state of hadronic matter. A suitable
nonperturbative approach is the numerical study of QCD on a lattice
(L-QCD).
L-QCD is a vast field that is evolving very actively. We will limit

our presentation to a pedestrian guide to the language used in this field,
along with a report on a few key results of greatest importance to us. We
will not be embarking on a thorough introduction to the theoretical and
numerical methods. For a survey of the historical developments until the
early eighties we refer to the monograph by Creutz [97], and for a summary
of recent theoretical advances, and many numerical results addressing hot
QCD, we refer the reader to the recent survey by Karsch [159].
The particular usefulness of the lattice-gauge-theory formulation is that

it allows one to numerically carry out Feynman path integrals which rep-
resent expectation values of quantum-field-theory operators. Specifically,
the expectation value of an operator O, including both glue and quark
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fields, is

〈O〉 =
∫ [
dAµ dψ̄ dψ

]
Oe−i

∫L(A,ψ̄,ψ) d4x∫ [
dAµ dψ̄ dψ

]
e−i
∫L(A,ψ̄,ψ) d4x . (15.1)

These integrals are over all values of the gluon and quark fields at all points
in space and time. However, most parts of the domain of the integral
are unimportant – in ‘weak coupling’ (i.e., when perturbative expansion
makes good sense), only paths close to the classical paths (classical-field
solutions) are important. In order to do a path integral efficiently, it is es-
sential to sample more densely the domains that give large contributions,
see Eq. (15.2) below, and this obviously then poses a practical challenge.
The integration measure of the path integral is indicated by

[
dAµ dψ̄ dψ

]
.

The goal of computations, in lattice QCD, is to evaluate Eq. (15.1) numer-
ically by evaluating the integrand at selected lattice points representing
its domain.
The functional integral in Eq. (15.1), expressed on the lattice, means

that we are integrating the fields at each lattice site and lattice link, and
the domain of the integral has accordingly a very high dimensionality.
The method of choice for doing such integrals numerically is the Monte-
Carlo (random-choice) method. However, a considerable complication in
applying this method arises since e−i

∫L d4x is not in general a positive
real number: aside from the i factor in the exponent, it is a functional
of quark fields, which have to be represented by anticommuting numbers:
ψxψy = −ψyψx. This problem can be solved since the dependence on
ψ and ψ̄ of Eq. (15.1) has the form of a polynomial times a Gaussian.
Therefore, the quark portion of the path integral can be done analytically.
This integral yields a ‘Fermi determinant’ FD, which changes for each
configuration of the gauge (gluon) fields considered. We will address the
form of FD in section 15.4.
In order to allow a Monte-Carlo integration procedure for the gauge

fields, the explicit i in the exponent in Eq. (15.1) is combined with dt,
and the integral is considered in ‘imaginary’ time, or, as it is usually said,
Euclidian space. It is generally believed that some, if not all, physical
results can be analytically continued from the real- to the imaginary-time
axis. Even so, the Fermi determinant remains real only for zero chemical
potential, and we can use as a probability for sampling the Monte-Carlo
integral

ρ(A) = FDIe
− ∫La d4xI . (15.2)

La is the gluon part of the Lagrangian in imaginary time and subscript
I indicates that the quantities have been suitably modified by the trans-
formation t → it.
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The physical system is restricted to a finitely sized box, which intro-
duces an infrared (long-distance) cutoff at the size of the box, L. The
continuous space and time is represented by a lattice, which introduces
an ultraviolet cutoff (i.e., distance) at the lattice spacing† O. In going
from the continuum to the lattice, derivatives are replaced by finite dif-
ferences. This replacement must be done in a gauge-invariant way, and
hence one often refers to lattice gauge theory (LGT) or, in our context,
lattice quantum chromodynamics (L-QCD).
In what follows, we will describe how to deal with dynamic gluons and

quarks. Since the presence of quarks requires that the Fermi determinant
FD be evaluated, this imposes a need for much more computational ef-
fort than in the case of the ‘pure-gauge’ lattice which comprises gluons
only. In an intermediate step we can study quark operators in a non-
fluctuating gauge-field background; this is the ‘quenched’-quark approx-
imation, which excludes the contributions of particle–antiparticle pairs.
The full calculation then has ‘dynamic’ quarks.

15.2 Gluon fields on the lattice

Replacement of continuous space–time xµ by a lattice xµ = Onµ must
be accomplished in a gauge-invariant manner, and, as with any other
regulator, in order to be able to interpret the results, the regulator, i.e.,
lattice spacing, must be removed (O → 0) after a finite result has been
obtained. In other words, contact with the real physical world exists only,
in the continuum limit, when the lattice spacing is taken to zero; this limit
must be reached in natural fashion in any formulation. Moreover, we must
always be aware that, on the lattice, we sacrifice Lorentz invariance, and
have to be vigilant about the fates of all internal symmetries, which we
desire to preserve. A suitable approach was devised by Wilson [273].
The action, an integral over the Lagrangian, is replaced by a sum over

sites:

βS =
∫

dxL → O4
∑
n

Ln. (15.3)

β reminds us that all calculations are carried out in a four-dimensional
Euclidian world, and β corresponds to the time dimension, or, as we shall
see for equilibrium thermodynamics, the usual relation β = 1/T applies.
The generating functional used to obtain many of the results implied by

† It is common to call the lattice spacing a. To avoid conflicts of notation with the
color indices of QCD, we chose the symbol �, which is not used as often, though it
should not be confounded with the angular-momentum eigenvalue employed earlier.
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Eq. (15.1) is now an ordinary integral over all lattice fields and sites φin:

Z =
∫ (∏

i

∏
n

dφin

)
e−βS . (15.4)

In the specific case of interest to us, quantum chromodynamics, this
integral does not comprise the gauge fields Aaµ; these are represented by
fundamental variables Uµ(n), which live on the links connecting point xn
and xn + Oµ of a d = 4 dimensional space [273],

Uµ(n) ≡ eig<t
aAa

µ(n), (15.5)

which form arises from Eqs. (13.64) and (13.69). We have Uµ(xn+ Oµ)† ≡
Uµ(n + µ)† = Uµ(xn) ≡ Uµ(n). ta are generators of the SUc(3) gauge
group, Uµ(n) are elements of this group. The quark fields Ψ(n) remain
‘attached’ to the lattice sites xn; see below. Under the gauge trans-
formation, the site variables (quark fields) transform as in Eq. (13.65)
and link variables, which, as we will see, represent a generalization of
field strengths, transform under gauge transformations in generalization
of Eq. (13.77),

Uµ(x)→ V (x)Uµ(x)V †(x+ µ̂). (15.6)

An action for gauge fields involves a gauge-invariant product of Uµ’s
around some closed contour, a ‘plaquette’. Since, for almost any closed
contour, the leading term in the expansion is proportional to F 2µν in the
continuum limit, there is considerable arbitrariness in the definition of
gluon lattice action. The simplest contour has a perimeter of four links.
In SU(N)

βSW ≡ 2N
g2

∑
n

∑
µ>ν

Re tr {1− Uµ(n)Uν(n+ µ̂)U †
µ(n+ ν̂)U †

ν (n)}. (15.7)

βSW is called the ‘Wilson action’. The volume element in Eq. (15.4) is
simply an integral over the group elements:[∏

i

∏
n

dφin

]
→
[∏
n

dUn

]
. (15.8)

Summation over all group elements amounts to a projection of the argu-
ment in the integral onto its color-singlet component.

15.3 Quarks on the lattice

The Euclidian fermion action in the continuum (in four dimensions) is

S =
∫

d4x [ψ̄(x)γµ∂µψ(x) +mψ̄(x)ψ(x)] . (15.9)
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A ‘naive’ lattice formulation is obtained by replacing the derivatives by
symmetric differences:

SnaiveL =
1
2O

∑
n,µ

ψ̄nγ
µ(ψn+µ − ψn−µ) +m

∑
n

ψ̄nψn . (15.10)

The elementary solution of the associated dynamic equations, i.e., the
propagator, is

G(p) =
O

iγµ sin(pµO) +mO

=
−iγµO sin(pµO) +mO2∑

µ sin
2(pµO) +m2O2

→ 1
iγµpµ +m

. (15.11)

We identify the physical spectrum through the poles in the propagator at
p0 = iE:

sinh2(EO) =
∑
j

sin2(pjO) +m2O2. (15.12)

The lowest-energy solutions, as expected yielded for p = (0, 0, 0) the usual
E � ±m, but there are many other degenerate solutions yielding this
value of E, at Op = (π, 0, 0), (0, π, 0, ), . . ., (π, π, π). This is a model for 16
light fermions, not one. More generally, when fermions are discretized in
this way on a d-dimensional lattice, they double and produce 2d species.
Initially, two ways to deal with this problem were developed. The

‘Wilson fermions’ [273], and the ‘Kogut–Suskind (staggered) fermions’
[168]; more recently, also a five-dimensional formulation with ‘domain-wall
fermions’ [155] has been considered. Wilson fermions are implemented by
adding a second-derivative-like term,

SW = − r

2O

∑
n,µ

ψ̄n(ψn+µ − 2ψn + ψn−µ), (15.13)

to Snaive, Eq. (15.10). The parameter r must lie between 0 and 1; r = 1
is almost always used and ‘r = 1’ is implied when one speaks of using
‘Wilson fermions’. The propagator is

G(p) =
−iγµ sin(pµO) +mO− r

∑
µ[cos(pµO)− 1]∑

µ sin
2(pµO) +

{
mO− r

∑
µ[cos(pµO)− 1]

}2 . (15.14)

It has one pair of ‘low-energy’ poles at pµ � (±im, 0, 0, 0). The other poles
are at p � r/O. In the continuum limit, these states become infinitely
massive.
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This makes all but one of the fermion species heavy (with heavy masses
close to the cutoff 1/O), and we have, in principle, the required discretiza-
tion method. However, for the nf flavor QCD addition of SW, Eq. (15.13)
breaks the SU(nf)L × SU(nf)R chiral symmetry; see section 3.3. The
size of the symmetry breaking is proportional to the lattice spacing and
only close to the continuum limit O → 0 does the explicit chiral-symmetry
breaking become small. At any finite lattice spacing a proper represen-
tation of the chiral symmetry of the massless theory becomes a subtle
fine-tuning process.
Despite the computational problems related to implementation of chi-

ral symmetry, there is also some advantage with this formulation. Wil-
son fermions are closest to the continuum formulation – there is a four-
component spinor on every lattice site for every color and/or flavor of
quark. Therefore, the usual rules apply to the formulation of currents,
and states. Explicitly, the Wilson-fermion action for an interacting theory
is

OSW=
∑
n

Ψ̄nΨn−κ
∑
nµ

(
Ψ̄n(r−γµ)Uµ(n)Ψn+µ+Ψ̄n(r+γµ)U †

µΨn−µ
)
.

(15.15)

We have rescaled the fields ψ =
√
2κΨ, and have introduced the ‘hopping

parameter’ κ−1 = 2(mO+ 4r).
In studies of properties of QGP, another description of quarks on a

lattice has been used more extensively. In the staggered-fermion method,
a one-component staggered-fermion field rather than the four-component
Dirac spinors is used. The name staggered is used since Dirac spinors and
quark flavors are constructed by combining appropriate single-component
fields from different lattice sites. Staggered fermions also break the chiral
symmetry, but there remains a U(1) × U(1) symmetry, which comprises
much of the physics of chiral symmetry. Moreover, explicit chiral sym-
metry is present for mq → 0, even for finite lattice spacing, as long as all
flavor masses are degenerate. On the other hand, flavor symmetry and
translational symmetry are mixed together, which poses problems, since
in the real world, the flavor symmetry is broken.
Since exact chiral symmetry and broken flavor symmetry are important

physical phenomena influencing the physics of high-temperature QCD, see
Fig. 3.4 on page 54, a third approach to place quarks on a lattice is cur-
rently being developed. The domain-wall formulation of lattice fermions
is expected to support accurate chiral symmetry, even at finite lattice
spacing. In this new fermion formulation, it seems that it will be possi-
ble to more easily simulate two-flavor, finite-temperature QCD near the
chiral phase transition. For further theoretical details, we refer to [265],
and the first exploratory hot-QCD calculations are reported in [90].
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Another area of rapid development is the search for a most appropriate
‘improved’ action for each of the important applications of L-QCD. The
original Wilson action for the gauge fields is not unique, since the prin-
ciple of gauge invariance leads to the building block, the plaquette, but
not to the actual form of the action made from plaquettes. Consequently,
the form of Wilson-fermion action can also be ‘improved’. Improvements
can perform better in one area than in another, since they address the
problems encountered in extracting physics from extensive numerical cal-
culations.

15.4 From action to results

Once we have quark fields on the lattice, as noted at the end of sec-
tion 15.1, we must deal with their anticommuting nature. We carry out
the integral over the Fermi fields in the path integral Eq. (15.4). For nf
degenerate flavors of staggered fermions

Z=
∫
[dU ][dψ][dψ̄] exp

(
− βS(U)−

nf∑
i=1

ψ̄M(U)ψ

)
(15.16)

=
∫
[dU ]
(
detM(U)

)nf/2
exp(−βS(U)). (15.17)

In order to make explicit the positive-definite nature of the Fermi deter-
minant FD appearing as the preexponential factor in Eq. (15.17), we will
be writing it as

FD = det(M †M)nf/4.

Recalling that a determinant is a product of eigenvalues, we can express
its logarithm as a sum of logarithms of eigenvalues, i.e., a trace, and we
write

Z =
∫
[dU ] exp

(
−βS(U)− nf

4
tr ln(M †M)

)
. (15.18)

The major computational problem dynamic fermion simulations face
is inverting the fermion matrix M for any change in any of the gluon-
link fields U . M has eigenvalues with a very large range – from 2π to
mq O – and, in the physically interesting limit of small mq, the matrix
becomes ill-conditioned. Just a few years ago, it had been possible only
to study quenched fermions, i.e., to proceed ignoring the second term in
the exponent in Eq. (15.18). Today, it is possible to compute at relatively
heavy values of the quark mass and to extrapolate to mq = 0.
We will not enter further into practical discussion of how to do the

high-dimensional Monte-Carlo integrals; neither shall we discuss the many
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ingenious algorithms that are in use. This is clearly a field of its own
merit, and would fill more than this volume. However, even if somebody
did provide all numerical answers, we still would need to take a few further
steps. Perhaps the most important physical consideration is the approach
to the continuum limit, O → 0. Any calculation by necessity will be done
with a finite lattice spacing O. The lattice spacing O is an ultraviolet cutoff,
and it is the variable which now provides the scale to the QCD coupling
constant g and quark masses mi.
The continuum limit, in which we are interested, requires the limit

O → 0, holding physical quantities fixed, not the input (‘bare’) action pa-
rameters. In section 14.3, we have shown that the input parameter g, the
bare coupling of quantum chromodynamics, is replaced by the running
coupling constant αs measured at some given scale (typicallyMZ). When
only one dimensioned parameter is present, in the absence of quarks or
when all quark masses are set to zero, the situation is simple. For exam-
ple, in order to evaluate hadron masses on the lattice, one computes the
dimensionless combination Om(O). One can determine the physical mean-
ing of the lattice spacing by fixing one hadron mass from experiment.
Then other dimensional quantities can be predicted.
Consider, as an example, the ratio of two hadron masses:

Om1(O)
Om2(O)

=
m1(0)
m2(0)

+O(O) + · · · . (15.19)

The leading term does not depend on the value of the ultraviolet-cutoff.
One of the goals of a lattice calculation aiming to obtain the physical
properties is to separate an ultraviolet-cutoff-distance scale-dependent
remainder from the physical observable. One says that the calculation
‘scales’ if the O-dependent terms in Eq. (15.19) are zero or small enough
that one can extrapolate to O = 0. All the O-dependent terms are ‘scale
violations’. To be able to make extrapolations, the results for several
values of lattice spacing O are required.
The precision with which we can extract the physics will obviously de-

pend on how small the lattice cutoff is. However, the lattice must cover
a sufficiently large region of space–time for the physical question we are
addressing. We cannot study the proton of size R = 1 fm without having
a few lattice distances within its radius, and a lattice of a few fermis.
Repeating this basic cell domain infinitely using periodic boundary con-
ditions helps, but cannot much reduce these requirements.
A summary of the lattice-gauge-theory conditions and procedures which

we have introduced is presented in table 15.1.
For the study of hadron masses, as long as fundamental symmetries are

respected, the physical size of the lattice should be O � 0.1–0.2 fm, and the
repeating cell ought to have the size �5 fm. The computer power of today
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Table 15.1. A summary of the procedure for L-QCD simulations

Do the path integral:
quark integrals analytically
gluon + Fermi-determinant integrals numerically

Restrictions:
Imaginary time
Chemical potential = 0
quark–antiquark symmetry makes the determinant real

Approximations:
Restrict volume L 	 ∞ (infrared cutoff)
Introduce lattice O ≥ 0 (ultraviolet cutoff)
Need: O 	 ltypical 	 L
limit: scale O → 0

Need low quark masses,
Difficulty: tcomputer ∼ (mq)−2
limit: scale mq → 0

allows 323 × 16, or 243 × 48, lattices. In view of the physical difference
between time and space, the time, i.e., inverse-temperature, dimension
of the lattice can be chosen to be smaller than the spatial extent of the
lattice. On such lattices, the hadron spectra that emerge nowadays are
quite realistic; see section 15.5 below.
However, such lattices may not be large enough to describe precisely

many of the interesting properties of the QGP. We need to describe two
different quark mass scales (u and d, and s) while maintaining chiral
symmetry in the light-quark sector, and treating an odd number of qu-
ark flavors (both staggered and Wilson quarks favor the presence of an
even number of flavors). This task has not been resolved completely, and
the properties of QGP we will discuss retain a systematic uncertainty.
Moreover, a many-body system such as QGP should have many collec-
tive modes of excitation. Given the size of the physical lattices studied,
collective oscillations with wave lengths greater than a few fermis are
not incorporated. Although this does not influence in a critical way the
properties of the equations of state, such long-range oscillations are often
carriers of flows, e.g., of heat. Therefore, the study of transport properties
of the QGP phase on the lattice is not yet possible.
The euclidian lattice is indeed ideal for simulating high-temperature

QCD since, in this case, there is a direct correspondence between the
imaginary time and temperature – the path-integral weight is, in fact,
the partition function with ONt = 1/T = β. The statistical-physics prop-
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erties are the operators which are fairly simple, e.g., the energy density
involves only one point in space–time. One has to remember that other
lattice studies of the hadron mass spectrum involve two point functions,
whereas weak-interaction matrix-element computations typically involve
three point functions since we have to create a hadron from the vacuum
at t = 0, act on the state with an operator at t = t1, and then annihilate
the hadron at t = t2.
Among the quantities which are studied in high-temperature QCD are

the Polyakov loop [273], the chiral condensate ψ̄ψ, Eq. (3.22), the energy
and pressure, screening lengths of color-singlet sources, the potential be-
tween static test quarks, and the response of the quark density to an
infinitesimal chemical potential. Of these, the Polyakov loop and ψ̄ψ are
the most intensively studied. ψ̄ψ is the order parameter for chiral sym-
metry breaking. It is nonzero under ordinary conditions T → 0, and we
expect it to vanish when chiral symmetry is restored for T > Tc. Loosely
speaking, the Polyakov loop has the value e−F/T , where F is the free en-
ergy of a static test quark. In pure SUc(3) gauge QCD, the Polyakov loop
is zero at low temperatures, indicating confinement of the test quark, and
nonzero at high temperature.
It is understood today that dynamic quarks make a big difference

in high-temperature QCD, and the ‘quenched’ approximation has been
found to be in general unsuitable. Looking at the energy of free quarks
and gluons (the Stefan–Boltzmann law, see section 4.6) even with nf = 2
flavors of light quarks, we find that the 16 = 8c × 2s gluon degrees of
freedom are dominated by 21 = 2f × 3c × 2s × 7

4 equivalent quark degrees
of freedom. The thermal properties of quarks dominate those of glu-
ons. Quenched quarks are known to exclude the particle–antiparticle-pair
fluctuations in the vacuum. Thus, if quenched quarks are used, some im-
portant physical processes are forbidden. For example, consider a quark–
antiquark pair connected by a string of color flux. With quenched quarks,
when the distance grows, we encounter an ever-growing linear potential –
if pair fluctuations are excluded, this string never breaks. In the presence
of dynamic quarks, when the string is long enough, there is enough energy
to create a quark–antiquark pair, which breaks the string, forming two
mesons.
It is easy to find, in the numerical Monte-Carlo integration, the tran-

sition (crossover) to some novel high-temperature behavior in a lattice
simulation, though it is very difficult to ascertain the nature of the tran-
sition. To vary the temperature with a fixed number of lattice spac-
ings in the time direction, the lattice spacing O is changed by varying
the coupling g. This works because g is the coupling constant defined
on the scale of the lattice spacing. In an asymptotically free theory,
the coupling decreases for shorter length scales. Therefore, decreasing
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Fig. 15.1. Deconfinement and restoration of chiral symmetry in two-flavor L-
QCD. Open circles: on the left-hand side the Polyakov loop L, which is the
order parameter for deconfinement in the pure gauge limit (mq → ∞); and on
the right-hand side quark chiral condensate ψ̄ψ, which is the order parameter
for chiral-symmetry breaking in the chiral limit (mq → 0), shown as a function
of the coupling β = 6/g2. Also shown are the corresponding susceptibilities
χL ∝

(
〈L2〉 − 〈L〉2

)
(left) and χm = ∂〈ψ̄ψ〉/∂m (right) which peak at the same

value of the coupling [159].

g, or increasing 6/g2 (6 = 2nc), makes O smaller and the temperature,
T = (NtO(g))

−1, higher. As the temperature is increased through the
crossover, ψ̄ψ drops and the Polyakov loop increases, see Fig. 15.1. The
Polyakov loop and ψ̄ψ change at the same temperature, indicating that
‘deconfinement’, and restoration of chiral symmetry are happening at the
same temperature.
Little is known with certainty about the nature of the crossover between

the confined (frozen) phase and the new phase suggested by Fig. 15.1. In
particular, we cannot yet be sure what kind of phase transition or trans-
formation is encountered, see Fig. 3.4 on page 54 and the related discus-
sion. It is fairly well established, from lattice simulations, that there is a
first-order phase transition in the pure gauge limit, and for three-massless
quarks. As a quark mass is lowered from infinity this transition disap-
pears, and there may be a continuous crossover from the low-temperature
regime to the high-temperature regime. But even if there is no phase
transition, the crossover is fairly sharp. This can be seen by considering
the inverse screening lengths for qq̄ sources with the quantum numbers
of the pion π and its opposite-parity partner σ. At high temperatures,
they become very close, with the remaining small difference being due to
the explicit breaking of symmetry originating from the quark mass. This
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and other quantities show that the high-temperature regime does indeed
have the expected characteristics of the QGP.
Only recently have calculations progressed far enough to lead to firm

results about properties of the QGP. To find the temperature of the
crossover in physical units, the lattice spacing must be determined by
computing some physical quantity, such as the ρ-meson or the nucleon
masses. The π mass is not a good choice of scale, since it can be made
arbitrarily small by making the quark mass small, as we have seen in sec-
tion 3.3. Though the value of the crossover temperature one finds is still
in doubt for real-life quarks, at present the opinion of experts we shall
discuss in the next section is biased toward a value of 160MeV [160], near
the Hagedorn temperature; see chapter 12.

15.5 A survey of selected lattice results

There are many lattice results related to QCD properties we study, ad-
dressing diverse questions such as hadronic masses, matrix elements, and
physical properties of hot QCD. Given the rapid development of the field
which promises to render any presentation quite rapidly obsolete, we fo-
cus our attention on ‘stable’ results that are most relevant in the context
of this book and, in particular, the study of equations of state of QGP.
We will not further discuss in this section the intricate extrapolations
(continuum limit, massless-quark limit) which form part of the process of
evaluation of the bare numerical results, and which we described above
in section 15.4.
The running of the gauge coupling constant has now been tested for

the case of two massless Wilson fermions [76]. The lattice results com-
pare very well with the renormalization-group result, as can be seen in
Fig. 15.2. These results are, at present, still mainly of academic interest
and are different in detail from Fig. 14.1, since, in the range αs < 0.4,
we actually have to include s, c, and b quarks, in order to compare with
experiment. On the other hand, the fact that the running is seen as ex-
pected in the theoretical evaluation of two-light-flavor QCD reassures us
regarding the validity of the findings we presented in Fig. 14.1.
The study of hadronic masses allows one to draw conclusions about

the input quark masses. The CP-PACS collaboration has recently com-
pleted an extensive evaluation using its dedicated (peak) 614-GFLOPS
(giga-floating-point-operations) computer [33]. The lattice action and
simulation parameters were chosen with a view to carrying out a pre-
cise extrapolation to the continuum limit, as well as scaling in the chiral
mq → 0 limit for dynamic up- and down-quark masses. However, the
strange quarks were considered in a quenched approximation, which en-
tails an ‘uncontrolled’ error.
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Fig. 15.2. Dots, lattice-gauge theory with two light fermions for αs(µ), com-
pared with the perturbative three-loop result (line); parameters are chosen such
that, for Λ = 1 GeV, αs(MZ) = 0.118; results of the ALPHA collaboration [76].

Evaluation of the masses of kaons and/or φ allows one to determine
the mass of the strange quark. The results found using dynamic u and
d quarks are mMS

s (2GeV) = 88+4−6 MeV (K input) and mMS
s (2GeV) =

90+5−11 MeV (φ input), which are about 25% lower than the values found
with quenched u and d quarks. The low value for the mass of the strange
quark is well within the accepted range; see table 1.1 on page 7. The
consistency of these two results is quite remarkable. Moreover, using the
mass of the K meson to fix the strange-quark mass, the difference from
experiment for the mass of the K∗ meson is 0.7+1.1−1.7%, and that for the φ

meson 1.3+1.8−2.5%. When the φ meson is used as input, the difference in
the mass of the K∗ meson is less than 1%, and that for the mass of the
K meson is 1.3± 5.3%. The masses of (multi)strange baryons are, within
much larger computational error, also in agreement with the experimental
values.
Should this relatively low mass for the strange quark be confirmed

when dynamic strange quarks are introduced, the speed of production of
strangeness at low temperatures T � Tc in QGP as perhaps formed at in-
termediate SPS energies would dramatically increase. Strangeness could
develop into a highly sensitive ‘low energy’ probe of formation of QGP,
even when the initial conditions reached are near to the critical tempera-
ture. In this context, it is interesting to note the steep rise and threshold
of the strangeness-excitation function shown in Fig. 1.5 on page 17.
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Fig. 15.3. The energy density of hadrons obtained with staggered fermions di-
vided by T 4, as a function of T/Tc. Stefan–Boltzmann limits of a non-interacting
gas of quark and gluons are indicated with arrows for each case considered.

In our context, an even more important recent lattice advance has been
the extensive study of 2, 2 + 1 and 3 flavors in hot QCD [159–161]. The
behavior of the energy density ε/T 4 is presented in Fig. 15.3 as a function
of temperature T/Tc, obtained with staggered fermions. The Stefan–
Boltzmann values expected for asymptotically (high-T ) free quarks and
gluons are shown by arrows to the right, coded to the shades of the three
results presented: two and three light flavors (up and down, respectively),
for which the quark mass is mq = 0.4T and a third case (dark line), in
which, in addition to the two light flavors, a heavier flavor ms = T is
introduced. The temperature scale is expressed in units of the critical
temperature Tc, as appropriate for each case (Tc changes with the num-
ber of flavors). The value of Tc is where one observes a rapid change
in the behavior of the quark condensate/susceptibility and, at the same
location, one sees also the onset of deconfinement in the Polyakov loop;
see Fig. 15.1.
We see that, around T/Tc = 1, the number of active degrees of freedom

rapidly rises, and the energy density attains as early as T = 1.2Tc the
behavior characteristic of an ideal gas of quarks and gluons, but with
a somewhat reduced number of active degrees of freedom. The energy
density in the deconfined phase can be well approximated by

εQGP � (11–12)T 4. (15.20)
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Fig. 15.4. The pressure of hadrons obtained with staggered fermions in units
of T 4 as a function of T .

The critical temperature Tc has the value

Tc
mρ

= 0.20± 0.01, Tc = 154± 8 MeV, for nf = 3, (15.21)

where, in addition to the statistical error quoted above, a systematic
error at a similar level, associated with uncertainties in the scaling be-
havior, is expected. In case of two flavors, the value Tc = 173 ± 8 MeV
is found. These results are consistent with calculations performed with
clover-shape-improved Wilson action (see section 15.3) by the CP-PACS
collaboration [32] for two flavors. In Fig. 15.4, we present the behavior of
P/T 4 as a function of temperature, with the temperature scale derived
from Eq. (15.21). The expected Stefan–Boltzmann limits are shown by
arrows. Apart from the cases of 2, 2 + 1 and 3 flavors, we see also the
‘pure gauge’ case with zero flavors.
The conclusion we draw from these results is that the lattice-QCD

evaluation has matured to the level of being able to offer information
directly relevant to the physical properties of hot QCD. These results,
in particular, show that there is a rapid phase transformation or even a
first-order phase transition at Tc = 163± 15 MeV.
We see, in Fig. 15.4, that the phase-transition temperature decreases

significantly with increasing number of flavors. However, the shapes of all
curves scale similarly. This is shown in Fig. 15.5, in which the temperature
scale is expressed in units of Tc and the pressure in terms of the ideal
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Fig. 15.5. The pressure of hadrons obtained with staggered fermions divided
by the appropriate Stefan–Boltzmann limit, as a function of T/Tc.

Stefan–Boltzmann pressure. The zero-flavor pure gauge case is fastest
growing toward the limiting value, but still at a considerably slower rate
than that for the energy density we have seen in Fig. 15.3.
An ideal massless relativistic gas should satisfy the relation ε−3P = 0,

Eq. (4.64). The difference in behavior, comparing Fig. 15.3 with Fig. 15.5,
must originate from the presence of variables with dimensioned scales. We
encountered two such (related) variables, the vacuum property B and the
parameter Λ controlling the magnitude of the running variables (αs and
mi). The deviations of pressure from the Stefan–Boltzmann ideal-gas
behavior seen in lattice results, in particular ε− 3P = 0, are in direct or
indirect fashion related to these quantities. We will quantify this in the
following section.
We note that, using the Gibbs–Duham relation, Eq. (10.26), we can

relate the change in the pressure, seen in Fig. 15.4, to the difference
ε− 3P . We generalize slightly the argument presented in Eqs. (4.62) and
(4.64). We consider the free-energy density

f = −T

V
lnZ(T, V ). (15.22)

P = −f for an infinite system. Moreover, the entropy density σ = ∂/∂Tf ,
see Eq. (10.6). We find, employing Eq. (10.26) at zero baryon density,

ε− 3P
T 4

= T
d

dT

(
P

T 4

)
. (15.23)
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As soon as we understand the gentle slope of pressure P in Fig. 15.4,
i.e., the right-hand side of Eq. (15.23), we will also understand the differ-
ence between the behaviors of energy and pressure, the left-hand side of
Eq. (15.23), noted on comparing Fig. 15.3 with Fig. 15.5.
We will show, in section 16.2, that this non-ideal-gas behavior can be

interpreted as resulting from perturbative quark–gluon interactions and
the presence of the latent heat of the vacuum B. An equivalent expla-
nation invoking the presence of quasi-particles with mass, and quantum
numbers of quarks and gluons, will also be considered.

16 Perturbative quark–gluon plasma

16.1 An interacting quark–gluon gas

As explained in section 14.1, the interactions between quarks and gluons
are contained in the QCD Lagrangian Eq. (13.79), improved by gauge-
fixing and FP-ghost terms Eq. (14.1). Strictly considered, the rules for
Feynman diagrams we presented in Eqs. (14.2)–(14.8) are applicable to
processes in perturbative vacuum, whereas to compute thermal proper-
ties of interacting quark and gluons, we are working in matter at finite
temperature T and chemical potential µ. The generalization required is
discussed in detail in the textbook by Kapusta [157].
A lot of effort in the past few decades has gone into the development of

the perturbative expansion of the partition function. The series expan-
sion, in terms of the QCD coupling constant g, has been carried out to or-
der [(g/(4π)]5 = (αs/π)5/2/32 [282]. This series expansion, which was de-
veloped using as reference the perturbative vacuum in empty space, does
not appear to lead to a convergent result for the range of temperatures of
interest to us [36]: the thermodynamic properties vary widely from order
to order, oscillating quite strongly around the Stefan–Boltzmann limit. It
has therefore been claimed that the perturbative QCD thermal expansion
has a zero-range convergence radius in αs.
Our following considerations will be limited to the lowest-order pertur-

bative term combined with the vacuum energy B and allow an excellent
reproduction of the key features of lattice results. It remains to be un-
derstood why this is the case. It is not uncommon to encounter in a
perturbative expansion a semi-convergent series. The issue then is how
to establish a workable scheme. It is, for example, possible that a differ-
ent scheme of perturbative approach, in which the QCD parameters (αs
and masses) are made nonperturbative functions of the medium using an
in-medium renormalization group, would yield a better converging series
in αs.
Considering the inconclusive and rapidly evolving landscape of thermal
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