
21
Hausdorff and Packing Measures of Compactly

Nonrecurrent Regular Elliptic Functions

From now on, throughout this chapter, and, in fact, throughout the entire
book, Ht

e stands for the t-dimensional Hausdorff measure on C with respect
to the Euclidean metric, whereas Ht

s refers to its spherical counterpart. The
same convention is applied to the packing measures �t

e and �t
s . Note that

the measures Ht
e and Ht

s as well as �t
e and �t

s are equivalent to the Radon–
Nikodym derivative bounded away from zero and∞ on compact subsets of C.
In particular, the Hausdorff dimension of any subset A of C has the same
value no matter whether calculated with respect to the Euclidean or spherical
metric; it will be denoted in what follows simply by HD(A). If Ht or �t is
endowed with neither the subscript “e” nor the subscript “s,” then it refers
simultaneously to both the Euclidean as well as the spherical measures. As in
the previous chapters, we keep

h = HD(J (f )).

The goal of this chapter can be viewed as two-fold. The first is to provide a
geometrical characterization of the h-conformal measure mh, which, with the
absence of parabolic points, turns out to be a normalized packing measure,
and the second is to give a complete description of geometric, Hausdorff,
and packing measures of the Julia sets J (f ). All of this is contained in the
following theorem.

Theorem 21.0.1 Let f : C −→ Ĉ be a compactly nonrecurrent regular elliptic
function. If h = HD(J (f )) = 2, then J (f ) = C. If h < 2, then

(a) Hh
s (J (f )) = 0.

(b) �h
s (J (f )) > 0.

(c) �h
s (J (f )) < +∞ if and only if �(f ) = ∅.
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336 Part VI Fractal Geometry, Stochastic Properties, and Rigidity

In either Case (c) or if HD(J (f )) = 2, the unique spherical h-conformal
measure mh coincides with the normalized packing measure �h

s /�h
s (J (f ))

restricted to the Julia set J (f ).

This theorem has an interesting story: for expanding rational functions f ,
we always have, essentially because of [Bow2], that

0 < Hh(J (f )),�h(J (f )) < +∞,

and these two measures coincided up to a multiplicative constant. Their
probability version is then the unique h-conformal measure. If f is still a
rational function but parabolic or, more generally, nonrecurrent, then (see
[DU5] and [U3], respectively):

(a) Hh(J (f )) < +∞ and �h(J (f )) > 0.
(b) Hh(J (f )) = 0 if and only if h < 1 and �(f ) 	= ∅.
(c) �h(J (f )) = +∞ if and only if h > 1 and �(T ) 	= ∅.

So, the descriptions of Hausdorff and packing measures in the cases of both
nonrecurrent rational functions and compactly nonrecurrent regular elliptic
functions coincide except that, in the latter case, Hh(J (f )) ≤ 1 never holds.
For other transcendental meromorphic and entire functions, even hyperbolic
(expanding), the situation is generally less clear and varies from case to case;
see, for example, [UZ1] and [MyU2].

As an immediate consequence of Theorem 21.0.1, we get the following.

Corollary 21.0.2 Let f : C −→ Ĉ be a compactly nonrecurrent regular
elliptic function. If �(f ) = ∅, then the Euclidean h-dimensional packing
measure �h

e is finite on each bounded subset of J (f ).

21.1 Hausdorff Measures

We start with the proof of the first part of Theorem 21.0.1. Our first preparatory
result is the following.

Lemma 21.1.1 If f : C −→ Ĉ is a compactly nonrecurrent elliptic function,
then

∞⋃
j=1

f−j (∞)\O+(Crit(f )) 	= ∅.

Proof Seeking contradiction, suppose that

f−1(∞) ⊆ O+(Crit(f )).

https://doi.org/10.1017/9781009215985.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009215985.016


21 Hausdorff and Packing Measures 337

So, for each b ∈ f−1(∞), there exists cb ∈ Crit(f ) ∩ J (f ) such that b ∈
O+(cb). It then follows from Definition 18.2.1 that its items (1) and (3) are
ruled out for cb, whence item (2) must hold. We then conclude that

b ∈ O+(f (cb)). (21.1)

Since then O+(f (cb)) is a finite set and since f (Crit(f )) is also a finite set,
we conclude that ⋃

b∈f−1(∞)

O+(f (cb))

is a finite set. But, (21.1) implies that

f−1(∞) ⊆
⋃

b∈f−1(∞)

O+(f (cb)).

Since f−1(∞) is infinite, we arrived at a contradiction, and we are, thus,
done. �

Proof of part (a) of Theorem 21.0.1 By Lemma 21.1.1, there exists
b ∈ f−1(∞)\O+(Crit(f )), say

b ∈ f−1(∞)\O+(Crit(f )).

Hence, there exists κ > 0 such that

Be(b,3κ) ∩O+(Crit(f )) = ∅. (21.2)

Consider an arbitrary point z ∈ Tr(f ). Then there exists an infinite increasing
sequence {nj }∞j=0 such that

lim
j→∞

f nj (z) = b and |f nj (z)− b| < κ/2 (21.3)

for every j ≥ 1. It follows from this, (21.2), and Theorem 17.1.8 that, for every
j ≥ 1, there exists a holomorphic inverse branch

f
−nj
z : Be(f

nj (z),2κ) −→ C

of f nj sending f nj (z) to z. Let mh be the unique h-conformal atomless
measure proven to exist in Theorem 20.3.11. Using now Theorem 8.3.8 and
Lemmas 8.3.13, 10.4.7, and 20.3.8, we conclude that
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338 Part VI Fractal Geometry, Stochastic Properties, and Rigidity

mh,e

(
Be

(
z,2K|(f nj )′(z)|−1|f nj (z)− b|))

≥ mh,e

(
f
−nj
z

(
Be

(
f nj (z),2|f nj (z)− b|)))

≥ K−hmh,e

(
Be

(
f nj (z),2|f nj (z)− b|))|(f nj )′(z)|−h

≥ K−hmh,e

(
Be(b,|f nj (z)− b|))|(f nj )′(z)|−h

$ |f nj (z)− b|(qb+1)h−2qb |(f nj )′(z)|−h

= (
2K|(f nj )′(z)|−1|f nj (z)− b|)h(2K)−h|f nj (z)− b|qb(h−2).

Since h < 2, using (21.3), this implies that

lim
r→0

mh,e(Be(z,r))

rh
≥ lim

j→∞
mh,e

(
Be

(
z,2K|(f nj )′(z)|−1|f nj (z)− b|))(

2K|(f nj )′(z)|−1|f nj (z)− b|)h =+∞.

Hence,

Hh
e (Tr(f )) = 0

in view of Theorem 1.6.3(1). Since, by Theorem 20.3.11, mh,e(J (f )\
Tr(f ))= 0, it follows from Lemma 17.6.4 that Hh

e (J (f )\Tr(f ))= 0. In
conclusion,

Hh
e (J (f )) = 0,

which completes the proof. �

21.2 Packing Measure I

In this section, we shall prove Proposition 21.2.1, stated below. Its item (3)
is just item (b) of Theorem 21.0.1, while item (1) contributes toward the last
assertion of this theorem. We shall also prove Lemma 21.2.2, which establishes
one side of item (c).

Proposition 21.2.1 If f : C −→ Ĉ is a compactly nonrecurrent regular
elliptic function, then

(1) The h-conformal measure mh is absolutely continuous with respect to the
packing measure �h. Moreover,

(2) The Radon–Nikodym derivative dms/d�h
s is uniformly bounded away

from infinity. In particular,
(3)

�h(J (f )) > 0.
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Proof Since

J (f ) ∩ ω
(
Crit(f )\Crit(J (f ))

) = �(f ),

we conclude from Lemma 18.2.6 that there exists y ∈ J (f ) at a positive
distance, and denote it by 8η, from O+(Crit(f )). Fix z ∈ Tr(f ). Then there
exists an infinite sequence (nj )∞j=1 of increasing positive integers such that
f nj (z) ∈ Be(y,η) for every j ≥ 1. Hence,

Be(f
nj (z),4η) ∩O+(Crit(f )) = ∅.

Consequently,

Comp
(
z,f nj ,4η

) ∩ Crit(f nj ) = ∅.

Hence, it follows from Lemmas 8.3.13 and 10.4.7 that

lim inf
r→0

mh,e(Be(z,r))

rh
≤ B

for some constant B ∈ (0,∞) and all z ∈ Tr(f ). Applying Lemma 20.3.4, we,
therefore, get that

lim inf
r→0

mh,s(Bs(z,r))

rh
≤ 2hB.

Therefore, by Theorem 1.6.4(1), the measure mh,s |Tr(f ) is absolutely con-
tinuous with respect to �h

s |Tr(f ). Since, by Theorem 20.3.11, mh,s(J (f )\
Tr(f )) = 0, we are done. �

Lemma 21.2.2 If f : C −→ Ĉ is a compactly nonrecurrent regular elliptic
function and �(f ) 	= ∅, then

�h
s (J (f )) = +∞.

Proof Fix ξ ∈ �(f ). Since the set⋃
n≥0

f−n(ξ)

is dense in J (f ) and since, by Lemma 18.2.6, ω(Crit(f )) is nowhere dense in
J (f ), there exist an integer s ≥ 0, a real number η > 0, and a point

y ∈ f−s(ξ)\Be

⎛⎝⋃
n≥0

f n(Crit(f )),η

⎞⎠ .
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340 Part VI Fractal Geometry, Stochastic Properties, and Rigidity

Since, by Theorem 17.3.1, h > 1, it follows from Lemmas 15.4.1 and 10.4.10
(y may happen to be a critical point of f s!) that

lim inf
r→0

me(Be(y,r))

rh
= 0. (21.4)

Consider now a transitive point z ∈ J (f ), i.e., z ∈ Tr(f ). Then there exists an
infinite increasing sequence nj = nj (z) ≥ 1, j ≥ 1, of positive integers such
that

lim
j→∞

|f nj (z)− y| = 0 and rj = |f nj (z)− y| < η/7

for every j ≥ 1. By the choice of y and Theorem 17.1.8, for all j ≥ 1, there
exist holomorphic inverse branches

f
−nj
z : Be(f

nj (z),6rj ) −→ C

of f nj sending f nj (z) to z. So, applying Lemmas 8.3.13 and 10.4.7 with
R= 3rj , we conclude from (21.4) that

lim inf
r→0

mh,e(Be(z,r))

rh
= 0.

Applying Lemma 20.3.4, we conclude that the same formulas remain true with
mh,e replaced by mh,s and Be(z,r) by Bs(z,r). Therefore, it follows from
Theorems 20.3.11 (mh,s(Tr(f )) = 1) and 1.6.4(1) that �h

s (J (f )) = +∞.
We are done. �

21.3 Packing Measure II

As before, from now on throughout this section, mh denotes the unique
atomless h-conformal measure proven to exist in Theorem 20.3.11. Our aim
in this section is to show that, in the absence of parabolic periodic points, the
h-dimensional Euclidean packing measure is finite on bounded subsets of J (f )

and that �h
s (J (f )) < +∞. This will complete item (c) of Theorem 21.0.1.

Recall that the numbers Rl(f ) and Al(f ) have been defined by (20.28) and
(20.29), respectively.

Recall, for the needs of this section, that the sequence {Cri(f )}pi=1 was
defined inductively by (18.33) and the sequence {Si(f )}pi=1 was defined by
(18.35), while the number p, here and in what follows in this section, comes
from Lemma 18.2.11(c).

Since the number Nf of equivalence classes of the relation ∼f between
critical points of an elliptic function f : C −→ Ĉ is finite, looking at Lemmas
18.2.15 and 17.6.6, the following lemma follows immediately from Lemma
10.4.11.
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21 Hausdorff and Packing Measures 341

Lemma 21.3.1 Let f : C −→ Ĉ be a compactly nonrecurrent regular elliptic
function. Fix 0 ≤ i ≤ p − 1. If C

(l)
i > 0, 0 < R

(l)
i ≤ Rl(f )/3, and 0 < σ ≤ 1

are three real numbers such that all points z ∈ PC0
c(f )i are (r,σ,C

(l)
i )-h-

s.l.e. with respect to the measure mh,e, then there exists C̃
(l)
i > 0 such that all

critical points c ∈ Cri+1(f ) are (r,σ̃,C̃
(l)
i )-h-s.l.e. with respect to the measure

mh,e for all 0 < r ≤ Al(f )−1R
(l)
i , where σ̃ was defined in Lemma 10.4.11.

Let us prove the following.

Lemma 21.3.2 Let f : C −→ Ĉ be a compactly nonrecurrent regular elliptic
function. Suppose that �(f ) = ∅. Fix 0 ≤ i ≤ p. Assume that C

(l)
i,1 > 0,

R
(l)
i,1 > 0, and 0 < σ ≤ 1 are three real numbers such that all critical points

c ∈ Si(f ) are (r,σ,C
(l)
i,1)-h-s.l.e. with respect to the measure mh,e for all 0 <

r ≤ R
(l)
i,1. Then there exist C̃

(l)
i,1 > 0, R̃

(l)
i,1 > 0 such that all points z ∈ PC0

c(f )i

are (r,8K3A22Nf σ,C̃
(l)
i,1)-h-s.l.e. with respect to the measure mh,e for all

0 < r ≤ R̃
(l)
i,1, where A > 0 was defined in (18.20).

Proof Recall that, by Lemma 20.3.5, the set PC0
c(f ) is f -pseudo-compact.

We shall show that this time one can take

R̃
(l)
i,1 := min

{
τθ min{1,‖f ′‖−1

i }λ−1,R
(l)
i,1,1

}
and

C̃
(l)
i,1 := (

8(KA2)2Nf
)h

C
(l)
i,1,

where ‖f ′‖i := ‖f ′‖
PC0

c (f )i

. Indeed, take ε := 4K(KA2)2Nf and then choose

λ > 0 so large that

ε < λ min
{

1,τ−1,θ−1τ−1 min{ρ,R
(l)
i,1/2}

}
. (21.5)

Consider 0 < r ≤ R̃
(l)
i,1 and z ∈ PC0

c(f )i . If z ∈ Critc(J (f )), then z ∈ Si(f )

and we are done. Thus, we may assume that z /∈ Critc(J (f )), then z /∈
Crit(J (f )).

Let s = s(λ,ε,r,z). By the definition of ε,

4Kr|(f s)′(z)| = (KA2)−12−Nf εr|(f s)′(z)|. (21.6)

Suppose first that u(λ,r,z) is well defined and s = u(λ,r,z). Then, by item
(20.4) in Proposition 20.2.1, applied with η = K , we see that the point

f s(z) is (Kr|(f s)′(z)|,σ/K2,Wh(σ/K2))-h-s.l.e.

Using (21.6), it follows from item (20.16) in Proposition 20.2.2 and Lemma
10.4.8 that the point z is (r,σ,Wh(σ/K2))-h-s.l.e. If either u is not defined or
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342 Part VI Fractal Geometry, Stochastic Properties, and Rigidity

s ≤ u(λ,r,z), then, in view of item (20.15) in Proposition 20.2.2, there exists
a critical point c ∈ Crit(f ) such that

|f s(z)− c| ≤ εr|(f s)′(z)|.

Since s ≤ u, by Proposition 20.2.2 and (21.5), we get that

|f s(z)− c| ≤ εr|(f s)′(z)| < min{ρ,R
(l)
i,1/2}. (21.7)

Since z ∈ PC0
c(f )i , this implies that c ∈ Si(f ). Therefore, by the assumptions

of Lemma 21.3.2 and by (21.7), we conclude that c is (2εr|(f s)′(z)|,σ,C
(l)
i,1)-

h-s.l.e. Consequently, in view of Lemma 10.4.4, the point f s(z) is
(εr|(f s)′(z)|,2σ,2hC

(l)
i,1)-h-s.l.e. So, by Lemma 10.4.5, this point is

(Kr|(f s)′(z)|,2σε/K,(2εK−1)hC
(l)
i,1)− h-s.l.e.

Using now (21.6) and item (20.16) in Proposition 20.2.2 along with the
fact that Kε−1 < 1, we have from Lemma 10.4.8 that the point z is
(r,2Kεσ,(2εK−1)hC

(l)
i,1)-h-s.l.e. The proof is complete. �

As a fairly straightforward consequence of these two lemmas, we get the
following.

Lemma 21.3.3 If f : C −→ Ĉ is a compactly nonrecurrent regular elliptic

function, then, with some R > 0 and some G > 0, each point of PC0
c(f )

(in particular, each point of Critc(f )) is (r,1/2,G)-h-s.l.e. with respect to the
measure mh,e for every r ∈ [0,R].

Proof Since S0(f ) = ∅, starting with σ > 0 as small as we wish, it imme-
diately follows from Lemmas 21.3.2, 21.3.1, and 18.2.14 by induction on

i = 0,1, . . . ,p that all the points of Si(f ) and PC0
c(f )i are (r,1/2,G)-h-s.l.e.

with the same G,R > 0 and all r ∈ [0,R]. We are done. �

This lemma and Lemma 20.3.8, taken together, yield the following.

Lemma 21.3.4 If f : C −→ Ĉ is a compactly nonrecurrent regular elliptic
function, then every point of the set Crit(J (f )) ∪ f−1(∞) is h-s.l.e. with
respect to the measure mh,e with σ ∈ (0,1) arbitrary.

Fix c ∈ Crit∞(f ). Since limn→∞ f n(c) = ∞, there exists an integer k ≥ 1
such that qbn ≤ qc (where bn ∈ f−1(∞), defined in (18.48), is near f n(c),
and qc was defined in (18.49)) and

|f n(c)| > max{1,2Diste(0,f (Crit(f )))} (21.8)
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21 Hausdorff and Packing Measures 343

for all n ≥ k. Put

a := f k(c) (21.9)

(we may need, in the course of the proof, k ≥ 1 to be bigger). We shall prove
the following.

Lemma 21.3.5 If f : C → Ĉ is a compactly nonrecurrent regular elliptic
function and c ∈ Crit∞(f ), then there exists a constant C1 ≥ 1 such that

mh,e(Be(a,r)) ≥ C−1
1 rh

for all radii r > 0 small enough, where a is defined by (21.9).

Proof Put

q := qc.

In view of (21.8) and Theorem 17.1.8, for every n ≥ 1, there is a well-defined
holomorphic inverse branch

f−1
n : Be

(
f n(a),

1

2
|f n(a)|

)
−→ C

of f sending f n(a) to f n−1(a). Let bn ∈ f−1(∞) be the unique pole
(assuming that k 	= 1 is large enough) such that

|f n(a)− bn| ≤ δ(f−1(∞)) � 1,

where δ(f−1(∞)) comes from (18.47). Then, by Theorem 8.3.8,

f−1
n

(
Be

(
f n(a),

1

4
|f n(a)|

))
⊂ Be

(
f n−1(a),

K

4
|f n(a)||f ′(f n−1(a))|−1

)
⊆ Be

(
f n−1(a),C|f n(a)||f n(a)|− q+1

q

)
= Be

(
f n−1(a),C|f n(a)|− 1

q

)
⊆ Be

(
f n−1(a),

1

4
|f n−1(a)|

)
,

where C ∈ (0,+∞)0 is a constant and the last inclusion was written assuming
that

|f n−1(a)| ≥ 4c|f n(a)|− 1
q ,

which we can assume to hold for all n ≥ k if k is large enough. So, the
composition

f−n
a := f−1

1 ◦ f−1
2 ◦ · · · ◦ f−1

n : Be

(
f n(a),

1

4
|f n(a)|

)
−→ C,
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sending f n(a) to a, is well defined and forms a holomorphic branch of f−n.
Take 0 < r < 8K/|a| and let n+ 1 ≥ 1 be the least integer such that

r|(f n+1)′(a)| ≥ K

8
|f n+1(a)|.

Such an integer exists since |f ′(z)| � |f (z)|
qb+1

qb if z is near a pole b. By
definition n ≥ 0 and since r < 8K/|a|, we have that

r|(f n)′(a)| < K

8
|(f n)(a)|.

Then, by Theorem 8.3.8, we have that

Be(a,r) ⊃ f−n
a

(
Be(f

n(a)),K−1|(f n)′(a)|). (21.10)

Now we consider three cases determined by the value of r|(f n)′(a)|.
Case 1. δ(f−1(∞)) ≤ r|(f n)′(a)| < K

8 |f n(a)|.
In view of (21.8) and Theorem 8.3.8 along with almost conformality of the
measure mh,e, we get that

mh,e(B(a,r)) ≥ K−h|(f n)′(a)|−hmh,e(Be(f
n(a),4r|(f n)′(a)|))

$ K−h|(f n)′(a)|−h(4r|(f n)′(a)|)2

$ |(f n)′(a)|−h(4r|(f n)′(a)|)h

= 4hrh

(21.11)

and we are done in this case.

Case 2. |f n(a)− bn| ≤ 32A
qmin+1

qmin r|(f n)′(a)| < 32A
qmin+1

qmin δ(f−1(∞)), where
A was defined in (18.20).

It then follows from Lemma 20.3.8 that

mh,e

(
Be(f

n(a),K−1|(f n)′(a)|)
)
$ (K−1|(f n)′(a)|)h.

Thus,

mh,e(Be(a,r)) ≥ K−h|(f n)′(a)|−h(K−1|(f n)′(a)|)h � rh.

And we are done in this case.

It remains to consider the following.

Case 3. r|(f n)′(a)| < 1
8KA

− qmin+1
qmin |f n(a)− bn|.
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But then

r|(f n+1)′(a)| = r|(f n)′(a)||f ′(f n(a))|

<
K

8
A
− qmin+1

qmin |f n(a)− bn|(A|f n+1(z)|) qn+1
qn

≤ K

8
A
− qmin+1

qmin A
1

qn
+1|f n+1(a)|

≤ K

8
|f n+1(a)|

contrary to the definition of n. So this case is ruled out and Lemma 21.3.5 is
proved. �

We are ready to prove the following.

Theorem 21.3.6 Let f : C −→ Ĉ be a compactly nonrecurrent regular elliptic
function. If �(f ) = ∅, then the h-dimensional packing measure �h

e of every
bounded Borel subset of J (f ) is finite and �h

s (J (f )) < +∞.

Proof Consider an arbitrary point

z ∈ J (f )\
∞⋃

n=0

f−n({∞} ∪ Crit(f ))

and a radius r ∈ (0,γ (aξ)−1), where γ > 0 was defined in (18.22) while
a and ξ come from Lemma 20.2.3. Let s ≥ 0 be associated with the point z

and the radius r/ξ according to Lemma 20.2.3. It follows from this lemma and
Theorem 17.1.8 that there exists

f−s
z : Be

(
f s(z),2ξr|(f s)′(z)|) −→ C,

a unique holomorphic branch of f−s sending f s(z) to z. Therefore, if Case (a)
of this lemma holds, then we get from Lemmas 8.3.13 and 10.4.7 that

mh,e(Be(z,r)) ≥ K−h|(f s)′(z)|−hmh,e

(
Be

(
f s(z),K−1r|(f s)′(z)|))

$ K−h|(f s)′(z)|−h(K−1r|(f s)′(z)|)2

� rh(r|(f s)′(z)|)2−h

$ rh. (21.12)

If Case (b) of Lemma 20.2.3 holds, then, applying this lemma along with
Lemma 21.3.4 (with σ ≤ K−1ξ), we get that

mh,e(Be(z,r)) ≥ K−h|(f s)′(z)|−hmh,e(Be(f
s(z),K−1r|(f s)′(z)|))

$ K−4|(f s)′(z)|−h(K−1r|(f s)′(z)|)h

� rh.
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Combining this and (21.12) completes the proof of the first part because of
Theorem 1.6.4(a). Since �h

e (A) = �h
e (A + w) for every ω ∈ � and since

d�h
s

d�h
e
(z) = (1 + |z|2)−h, we get with R = 4diam(R), where R is an arbitrary

fixed fundamental parallelogram, that

�h
s (J (f )) =

∞∑
k=0

�h
s (A(0;2kR,2k+1R))+�h

s (Be(0,R))

� �h
e (Be(0,R))+

∞∑
k=0

�h
e (A(0;2kR,2k+1R))R−2h4−hk

� �h
e (Be(0,R))+

∞∑
k=0

(2kR)2R−2h4−hk

= �h
e (Be(0,R))+ R(2(1−h))

∞∑
k=0

4(1−h)k < +∞

since h > 1. We are done. �

Proposition 21.3.7 Let f : C −→ Ĉ be a compactly nonrecurrent regular
elliptic function. If HD(J (f )) = 2, then J (f ) = C.

Proof Since �2
e and S, the two-dimensional Lebesgue measure on C,

coincide up to a multiplicative constant, it follows from (already proved)
Theorem 21.0.1(b) that if h = 2, then S(J (f )) > 0. So, in order to prove
our proposition, it suffices to show that if J (f ) � C, then S(J (f )) = 0. So,
suppose that J (f ) 	= C. We want to show that

S(J (f )\Sing−(f ))) = 0.

For any integer l ≥ 1, let the set Zl have exactly the same meaning as in the
proof of Theorem 20.3.11. Since J (f ) is a �f -invariant nowhere dense subset

of C, there exists ε > 0 such that, for every y ∈ C, there exists yε ∈ Be

(
y, 1

2l

)
such that

Be(yε,ε) ⊆ Be

(
y,

1

2l

)
\J (f ). (21.13)

Keep the notation from the proof of Theorem 20.3.11. Fix an arbitrary point
z∈Zl . By Theorem 8.3.8, the 1

4 -Koebe Theorem (Theorem 8.3.3), and (21.13),
we have that

f−nk
z (Be(f

nk(z)(z),ε)) ⊆ f−nk
z

(
Be

(
f nk(z)(z),(2l)−1)\J (f )

)
⊆ Be

(
z,K|(f nk )′(z)|−1(2l)−1)\J (f )
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and

f−nk
z (Be(f

nk (z)ε,ε)) ⊃ Be

(
f−nk

z (f nk (z)ε),
1

4
ε|(f nk(z))′(z)|−1

)
.

Therefore, we see that

S
(
Be

(
z,K|(f nk )′(z)|−1(2l)−1

)\J (f )
)

S
(
Be

(
z,K|(f nk )′(z)|−1(2l)−1

)) ≥
(

εl

2K

)2

> 0.

So, z is not a Lebesgue density point for the set Zl ; therefore, S(Zl) = 0.
Hence,

S(J (f )) = S
(
J (f )\Sing−(f )

) = S

(∞⋃
l=1

Zl

)
=

∞∑
l=1

S(Zl) = 0.

The proof of Theorem 21.3.6 is complete. �

Theorem 21.0.1 is now a logical consequence of Section 21.1, Proposition
21.2.1, Lemma 21.2.2, and Theorem 21.3.6.
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