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IN MEMORIAM: VLADIMIR VOEVODSKY
1966–2017

Vladimir Voevodsky was an algebraist whomade enormous contributions
to algebraic geometry and to the foundations and formalization of math-
ematics. He died suddenly of an aneurysm in September, 2017, at home
in Princeton, New Jersey, where he was a faculty member in the School
of Mathematics at the Institute for Advanced Study. Born in Moscow in
1966, Voevodsky attended Moscow State University and received his Ph.D.
at Harvard in 1989–1992 under David Kazhdan.
He had a special talent for bringing techniques from homotopy theory
to bear on concrete problems in other fields, which he put to good use his
entire life. As an undergraduate he wrote an article with Kapranov aiming
to realize a program of Grothendieck involving n-groupoids; in the decade
after that he applied topology fruitfully to algebraic geometry; and after
that he applied topology ingeniously to the problem of formalization of
mathematical proofs.
His creative drive had fully blossomed when, in 1996, he announced a
proof of an algebraic statement concerning the cohomology of fields, the
Milnor Conjecture, and laid the groundwork for the subsequent solution
of the Bloch–Kato Conjecture, a generalization of it. More importantly,
he revealed a close approximation to the theory of mixed motives of alge-
braic varieties long dreamed of by Alexander Grothendieck. His work, parts
of which were jointly conceived and published with Andrei Suslin and
Fabien Morel, fleshes out the details of a world where algebraic varieties
and topological spaces live in perfect harmony. In addition, he pioneered
the fruitful use of certain Grothendieck topologies, those where the repre-
sentable presheaves are not necessarily sheaves. For his work he received
the Fields Medal in 2002. In 2011 he published a proof of the Bloch–Kato
Conjecture, which uses work of Rost. The field of motivic homotopy theory,
which he founded, has remained active and vigorous.
In 2002, Voevodsky started to look into formalization of mathematics,
and that work occupied him for the rest of his life. His work there could
eventually be viewed as even more important than his work in algebraic
geometry, because of its potential to affect the way mathematicians conduct
their daily research. He worked conscientiously until his death to hasten the
day when mathematicians will no longer need to worry about having made
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a mistake in yesterday’s work and referees of journal submissions will no
longer need to verify correctness of arguments.
In 2006Voevodsky gave credit to the articles ofMakkai for convincing him
that “dependent type systems are exactly what we need in order to formalize
categorical thinking”. Moreover, his understanding of the topological form
of a principle he later called univalence was already in place, as was his idea
that soundness of the system would be demonstrated by a model whose
objects are topological spaces. By 2010 his ideas had crystallized sufficiently
that he was able to use his past experience as a computer programmer to
create a repository of proofs of theorems he called Foundations, formalized
in the formal language provided by the proof assistant Coq—it establishes
the foundation, presents the method for encoding informal mathematics in
it, and reveals the new mathematical landscape that one encounters there.
To clarify that terminology, consider set theory: its formal language is first
order logic; its foundation consists of the notions of set and set membership
and the Zermelo–Fraenkel axioms; the encoding of informal mathematics
depends on certain conventions, such as the definition of equality of sets,
the construction of ordered pairs and the proofs of their properties, the
definition of functions as sets of ordered pairs, and the definition of the
natural numbers and its operations, including the usual convention that 3 :=
{0, 1, 2}. One problem with set theory as a language for formalization is that
theorems cannot generally be transported between equivalent situations.
For example, the proposition 2 ∈ 3, which holds in the natural numbers,
yields something falsewhen transported to the equivalent set of non-negative
integers, as the integers are traditionally implemented as certain sets of pairs
of natural numbers. The landscape brought into view by the adoption of set
theory as a foundation is the same as that visible in informal mathematics,
which easily accommodates the sets of set theory as the well-founded rooted
trees with only one automorphism. Voevodsky emphasized this point of
view by introducing the term ZF -structure for those trees and by referring
to them instead of the sets of set theory.
Now consider Voevodsky’s Univalent Foundations and compare it to set
theory. Its formal language is based on the type theories introduced by
Martin-Löf, whose basic objects are types and their elements. Included in
the language are functions, pairs, finite types, natural numbers, a sequence
of universes, and equality. The main novelty of Martin-Löf’s type theory is
that for elements x and x′ of a type X , the equation x = x′ yields a type,
the equality type, or the type of identifications of x with x′. The notion of
proposition is not part of the formal language.
Voevodsky’s chosen encoding of informal mathematics in the formal
language starts as follows. Building on the well-established intuitionist
Curry–Howard correspondence, Voevodsky defined a proposition to be a
type any two elements of which are equal (as had been done as early as 2002
[Awodey & Bauer]); propositions and their elements are used to encode the
informal notions of propositions and their proofs. Then he defined a set to
be a type X , all of whose equality types x = x′ are propositions. A subtype
of a type X defined by a family x �→ P(x) of propositions is encoded by the
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type of pairs (x, p), where p is a proof of P(x). A function from one type to
another is called an equivalence if each of its fibers has exactly one element.
The foundation of the system consists of a single axiom, the Univalence
Axiom. If X and Y are two types living in the universe Un, then we can
consider the equality type X = Y and the type X � Y of equivalences
from X to Y . Voevodsky’s Univalence Axiom asserts that the natural map
(X = Y ) → (X � Y ) is an equivalence. The inverse of that equivalence
is used to promote equivalences to equalities, thereby providing automatic
transport of theorems between equivalent situations. The law of excluded
middle and the axiom of choice are acceptable, too, and, since the language
is intuitionistic, it is easy to observe appeals to them, since they are explicit.
Now comes the hard part: establishing enough facts about the chosen
encoding to see that it “works”. Amazingly, Voevodsky proved and formal-
ized hundreds of them (ignoring resizing issues) in just a few months in
2010—they constitute his Foundations repository and are a major achieve-
ment. Before stating some of them, we present the point of view Voevodsky
adopted in his approach to them.
One may draw the following analogy between type theory and topology.
Given a type X and elements x and x′, one may have two elements p and
p′ of the type x = x′; one may in turn consider whether there is an element
h the type p = p′, and so on. By analogy, one may have a space X , points x
and x′ of X , paths p and p′ from x to x′, and a homotopy h from p to p′,
and so on.
The analogy appears in 2009 [Awodey &Warren] as the basis for a model
in Quillen model categories of the inference rules of a form of type theory
that includes equality types, andwhichmodels families of types as fibrations.
That model in turn was inspired by a 1994 model in groupoids [Hofmann &
Streicher], which implies that it is not provable that every type is a set. Their
model was preceded by a 1991 model in groupoids, but without identity
types [Lamarche].
The analogy motivates an alternative reading of the language of type
theory, where one thinks of a type as a space, an element of a type as a point
of that space, and an element of the type x = x′ as a path from x to x′. It
was with this reading foremost in mind that Voevodsky was able to transfer
many facts from homotopy theory to type theory—indeed, one of his first
lines of code renames the equality type of Coq to paths.
Mirroring the notionof homotopy truncation level in topology,Voevodsky
defines by induction on a natural number n the property that a typeX has h-
level (at most) n, as follows: (1) X has h-level 0 if it has exactly one element;
(2) X has h-level n + 1 if for any elements x and x′ of X , the type x = x′

has h-level n. The types of h-level 1 are the propositions, and the types of
h-level 2 are the sets.
The notion of h-level provides a unifying principle for the results of the
Foundations repository, which include the following: the type of functions
from one set to another is a set; a subtype of a set is a set (call it a subset);
the type of all subsets of a set is a set; whether a type is a proposition, is
a proposition; whether a type is a set, is a proposition; equivalences have
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inverse functions that are equivalences; whether a function is an equivalence,
is a proposition; the type of natural numbers and the finite types are sets;
a type equivalent to a proposition is a proposition; a type equivalent to a
set is a set; propositions that imply each other are equivalent; equivalent
propositions are equal; subsets defined by equivalent predicates are equal;
and two functions whose corresponding values are all equal, are equal.
One then sees, for example, that a feasible way to encode the algebraic
notion of group in the n-th universe Un, say, is as a 10-tuple

(G, e, i, m, α, �, �, �′, �′, �),

where G is a type appearing as an element ofUn, e is the identity element of
G , i : G → G is the inverse function, m : G × G → G is the multiplication
function, α is a proof of associativity, � is a proof of the left unit law, �
is a proof of the right unit law, �′ is a proof of the left inverse law, �′ is a
proof of the right inverse law, and � is a proof that G is a set. Since proofs
of a proposition are equal to each other, there is no way to get a different
group by giving a different proof of one of the six properties, and that’s in
accordance with standard mathematical practice. LetGroup denote the type
of all such tuples.
Similarly, if G and H are two groups, then they are both elements of the
type Group and we may consider the equality type G = H . A consequence
of the Univalence Axiom is that the natural map from G = H to the type of
isomorphisms from G to H is an equivalence. If G and H are isomorphic
in more than one way (which is usually the case) then it follows that G = H
has more than one element. Thus the equation G = H is a type that is not
a proposition, and the type Group is not a set. However, it’s almost as good:
G = H is a set, because the type of isomorphisms between two groups
is a set.
(In set theory it is also true that the class of all groups is not a set, but
that is an issue related to size, and we don’t evade that issue in type theory,
either, for Group lives in the universeUn+1. What we mean when we say that
Group is not a set is that one of its equality types is not a proposition.)
The discussion above shows that Group is of h-level 3. Other inhabitants
of h-level 3 include the classifying type BG of a group G , whose loop space
∗ = ∗ is the group G ; one implements BG as the type of G-torsors, and one
sets ∗ to be the trivial torsor. The classifying type BZ is a type that plays
the role of the topological circle, S1. A new field, synthetic homotopy theory,
proves analogues of theorems of homotopy theory and algebraic topology
in this landscape, including the computation of some homotopy groups of
spheres, such as �nSn = Z and �4S3 = Z/2Z, the Freudenthal suspension
theorem, and the Blakers–Massey connectedness theorem. Only the theo-
rems of topology admitting the most generality can be proved synthetically,
for Martin-Löf’s type theory is Spartan and was designed without this goal
in mind.
Motivated by the type Group above, we see that a natural definition of
category in Univalent Foundations would not include a requirement that
the type of objects of the category be a set; it is also natural to add a
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univalence condition, often satisfied in practice: for any two objects X and
Y of the category C, the natural map from the type X = Y to the type of
isomorphisms from X to Y should be an equivalence. The inverse map of
that equivalence allows isomorphisms to be promoted to equalities, and thus
allows transport of properties between isomorphic objects. This convention
fulfills a long-time dreamof category theorists: a languagewhere all concepts
expressible in the language are invariant under isomorphism of objects and
under equivalence of categories.
Voevodsky viewed h-level 1 as the natural home for element-level math-
ematics, h-level 2 is the natural home for set-level mathematics, h-level 3
is the natural home for category-level mathematics (where the objects have
symmetry), and so on. He regarded the h-level hierarchy of types and thus
of mathematics itself to be one of his most fundamental discoveries, more
fundamental than the Univalence Axiom.
In order to prove soundness of the Univalent Foundations, it was natural
for Voevodsky to consider interpreting the formal language in a model
based on topological spaces. In the model, a type X is interpreted as a
“continuous” family of spaces (fibration) over the space parametrizing the
possible values for the variables in the current context and an element x of
X is interpreted as a section of that fibration. A universe is interpreted as
the base of the universal fibration with small fibers, i.e., as the space of all
spaces that are small, relative to a chosen Grothendieck universe. In 2006
Voevodsky built on an idea of Bousfield to establish an interpretation of
univalence in the model, showing that the space of homotopy equivalences
between small spacesX andY is naturally homotopy equivalent to the space
of paths between the corresponding points in the space of all small spaces.
That topological statement of univalence is both appealing and plausible,
but doesn’t seem to have been previously noticed.
Normally the invocation of an axiom in a proof destroys the possibility to
interpret the proof as a computation, butVoevodsky conjectured that, for the
Univalence Axiom, computation could be accomplished, anyway. Coquand
has devised a new formal language called cubical type theory [Cohen,
Coquand, Huber, & Mörtberg] in which univalence is a theorem, rather
than an axiom, thereby restoring computability and justifying the sound-
ness of axiom-free proofs without assuming the existence of Grothendieck
universes in ZFC.
Interestingly, Voevodsky didn’t see how to impose univalence on equality
types until late 2009, even though he had proved the corresponding topolog-
ical statement in 2006, saying later that: “I did not know how to model the
Martin-Löf identity types and thought that different identity types will need
to be introduced that will satisfy univalence”, and that “I was hypnotized by
the mantra that the only inhabitant of the [identity] type is reflexivity, which
made them useless from my point of view”.
Voevodsky suffered from long periods of depression, during which his
mathematical productivity was greatly diminished. In 2013 he recovered
from his final such period, and thereafter he was highly productive, posting
15 preprints to arXiv.org before his death; others remain in an unfinished
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state in his files. One strategy he developed during that time for maintaining
a high level of productivity was to designate alternate days as the only days
when he would work on mathematics. Approach him with a mathematical
question on a nonmath day, and you would most likely be asked to wait a
day to pose it.
The aim of most of those final articles is to establish the soundness of
the Univalent Foundations, as well as of similar such formal systems, by
developing a completemathematical theory of type theories. It’s a formidable
task, because the entire system, with all of its inference rules and equations,
has to be considered as a complete entity: it doesn’t suffice to consider
one rule at a time. He isolated the key step of the proof as his “Initiality
Conjecture” and intended, perhaps, to prove it in the last article of the series,
which remains unwritten.
His ability to separate a large project, such as this one, into manageable
portions which could be completed sequentially, was part of what made
him so productive, and it was also on display during his work on motivic
homotopy theory.
The ideas in Voevodsky’s Foundations repository form the basis of several
formalization projects in homotopy type theory, and the code itself lives
on as part of the UniMath repository, started as a collaboration to formal-
ize a substantial body of mathematics. Eventually formalizing his work in
motivic homotopy theory would be a fitting memorial to Vladimir. Even
better would be also to find a constructive replacement for an argument of
Merkurjev and Suslin used therein that appeals to the axiom of choice, for
he has stated that “solving this problem would be very beneficial for the
whole field”.

Daniel R. Grayson
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