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Abstract

For a given inverse semigroup, one can associate an étale groupoid which is called the universal groupoid.
Our motivation is studying the relation between inverse semigroups and associated étale groupoids. In this
paper, we focus on congruences of inverse semigroups, which is a fundamental concept for considering
quotients of inverse semigroups. We prove that a congruence of an inverse semigroup induces a closed
invariant set and a normal subgroupoid of the universal groupoid. Then we show that the universal
groupoid associated to a quotient inverse semigroup is described by the restriction and quotient of the
original universal groupoid. Finally we compute invariant sets and normal subgroupoids induced by
special congruences including abelianization.
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1. Introduction

The relation among inverse semigroups, étale groupoids and C*-algebras has been
revealed by many researchers. Paterson associated the universal groupoid to an inverse
semigroup in [4]. He proved that the C*-algebras associated to universal groupoids
are isomorphic to inverse semigroup C*-algebras. Furthermore, Paterson showed
that the universal groupoid has a universal property about ample actions on totally
disconnected spaces (also see [9]). In this paper we investigate a relation between
inverse semigroups and universal groupoids. In particular, we focus on congruences of
inverse semigroups, which is a fundamental concept for considering quotient inverse
semigroups. Indeed, congruences of inverse semigroups induce closed invariant
subsets and normal subgroupoids of universal groupoids. Our main theorem is that
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100 F. Komura [2]

the universal groupoid of a quotient inverse semigroup is isomorphic to the restriction
and quotient of the original universal groupoid (Theorem 4.3).

This paper is organized as follows. In Section 1, we review the notions of inverse
semigroups and étale groupoids. In Section 2, we deal with some least congruences,
although some statements may be well known for specialists. We also show that
there is a one-to-one correspondence between normal congruences of semilattices
and some invariant subsets (Corollary 3.6). In Section 3, we prove that the universal
groupoid of a quotient inverse semigroup is isomorphic to the restriction and quotient
of the original universal groupoid. Then we deal with some special congruences. In
Section 4, we apply propositions and theorems obtained in Sections 2 and 3. We prove
that the number of fixed points of a Boolean action is less than or equal to the number
of certain semigroup homomorphisms (Corollary 5.17).

2. Preliminaries

2.1. Inverse semigroups. We recall basic facts about inverse semigroups. See
[3, 4] for more details. An inverse semigroup S is a semigroup where for every
s ∈ S there exists a unique s∗ ∈ S such that s = ss∗s and s∗ = s∗ss∗. We denote the
set of all idempotents in S by E(S) ··= {e ∈ S | e2 = e}. A zero element is a unique
element 0 ∈ S such that 0s = s0 = 0 holds for all s ∈ S. A unit is a unique element
1 ∈ S such that 1s = s1 = s holds for all s ∈ S. An inverse semigroup does not
necessarily have a zero element or a unit. It is known that E(S) is a commutative
subsemigroup of S. A subsemigroup of S is a subset of S that is closed under the
product and inverse of S. A subsemigroup N of S is said to be normal if E(S) ⊂ N
and sns∗ ∈ N holds for all s ∈ S and n ∈ N. An order on E(S) is defined by e ≤ f
if e f = e.

An equivalence relation ν on S is called a congruence if (s, t) ∈ ν implies
(as, at), (sa, ta) ∈ ν for all s, t, a ∈ S. The quotient set S/ν becomes an inverse
semigroup such that the quotient map q : S→ S/ν is a semigroup homomorphism.
A congruence ρ on E(S) is said to be normal if (e, f ) ∈ ρ implies (ses∗, s f s∗) ∈ ρ
for all e, f ∈ E(S) and s ∈ S. One of the typical examples of normal congruences is
E(S) × E(S). Assume that ρ is a normal congruence on E(S). Define an equivalence
relation νρ,min on S by declaring that (s, t) ∈ νρ,min if (s∗s, t∗t) ∈ ρ and se = te holds
for some e ∈ E(S) with (e, s∗s) ∈ ρ. Then νρ,min is the minimum congruence on S
such that its restriction to E(S) coincides with ρ. One can see that νE(S)×E(S),min is the
least congruence such that the quotient inverse semigroup becomes a group. We call
S/νE(S)×E(S),min the maximal group image of S.

An inverse semigroup S is said to be Clifford if s∗s = ss∗ holds for all s ∈ S. A
congruence ν on S is said to be Clifford if S/ν is Clifford.

2.2. Étale groupoids. We recall the notion of étale groupoids. See [7, 8] for more
details.
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[3] Quotients of universal étale groupoids 101

A groupoid is a set G together with a distinguished subset G(0) ⊂ G, source and
range maps d, r : G→ G(0) and a multiplication

G(2) ··= {(α, β) ∈ G × G | d(α) = r(β)} � (α, β) �→ αβ ∈ G

such that:

(1) for all x ∈ G(0), d(x) = x and r(x) = x hold;
(2) for all α ∈ G, αd(α) = r(α)α = α holds;
(3) for all (α, β) ∈ G(2), d(αβ) = d(β) and r(αβ) = r(α) hold;
(4) if (α, β), (β, γ) ∈ G(2), we have (αβ)γ = α(βγ);
(5) for every γ ∈ G, there exists γ′ ∈ G that satisfies (γ′, γ), (γ, γ′) ∈ G(2) and d(γ) =

γ′γ and r(γ) = γγ′.

Since the element γ′ in (5) is uniquely determined by γ, γ′ is called the inverse of γ
and denoted by γ−1. We call G(0) the unit space of G. A subgroupoid of G is a subset
of G that is closed under inversion and multiplication. For U ⊂ G(0), we define GU ··=
d−1(U) and GU ··= r−1(U). We define also Gx ··= G{x} and Gx ··= G{x} for x ∈ G(0). The
isotropy bundle of G is denoted by Iso(G) ··= {γ ∈ G | d(γ) = r(γ)}. A subset F ⊂ G(0)

is said to be invariant if d(α) ∈ F implies r(α) ∈ F for all α ∈ G. We say that x ∈ G(0)

is a fixed point if {x} ⊂ G(0) is invariant. If G satisfies G = Iso(G), G is called a group
bundle over G(0). A group bundle G is said to be abelian if Gx is an abelian group for
all x ∈ G(0).

A topological groupoid is a groupoid equipped with a topology where the multipli-
cation and the inverse are continuous. A topological groupoid is said to be étale if the
source map is a local homeomorphism. Note that the range map of an étale groupoid is
also a local homeomorphism. The next proposition easily follows from the definition
of étale groupoids.

PROPOSITION 2.1. Let G and H be étale groupoids. A groupoid homomorphism
Φ : G→ H is a local homeomorphism if and only if Φ|G(0) : G(0) → H(0) is a local
homeomorphism.

2.2.1. Quotient étale groupoids. We recall the notion of quotient étale groupoids. See
[1, Section 3] for more details. Let G be an étale groupoid. We say that a subgroupoid
H ⊂ G is normal if:

• G(0) ⊂ H ⊂ Iso(G) holds; and
• for all α ∈ G, αHα−1 ⊂ H holds.

For a normal subgroupoid H ⊂ G, define an equivalence relation ∼ on G by declaring
that α ∼ β if d(α) = d(β) and αβ−1 ∈ H hold. Then G/H ··= G/∼ becomes a groupoid
such that the quotient map is a groupoid homomorphism. If H is open in G, then G/H
is an étale groupoid with respect to the quotient topology. Moreover, the quotient map
is a local homeomorphism (see [1, Section 3.1] for these facts).

We have the fundamental homomorphism theorem. The proof is left to the reader.
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PROPOSITION 2.2. Let G and H be étale groupoids and Φ : G→ H be a continuous
groupoid homomorphism that is a local homeomorphism. Assume that Φ is injective
on G(0). Then kerΦ ··= Φ−1(H(0)) is an open normal subgroupoid of G. Moreover,
there exists an isomorphism Φ̃ : G/ kerΦ→ Φ(G) that makes the following diagram
commutative:

G H

G/ kerΦ

Φ

Q
Φ̃

where Q : G→ G/ kerΦ denotes the quotient map.

For an étale groupoid G, the author of [1] constructed the étale abelian group bundle
Gab. We briefly recall the definition of Gab.

We define Gfix ··= GF, where F ⊂ G(0) denotes the set of all fixed points. Then Gfix

is a group bundle. Define [Gfix, Gfix] ··=
⋃

x∈F[(Gfix)x, (Gfix)x], where [(Gfix)x, (Gfix)x]
denotes the commutator subgroup of (Gfix)x. Then [Gfix, Gfix] is an open normal
subgroupoid of Gfix [1, Proposition 4.9]. Now we define Gab ··= Gfix/[Gfix, Gfix].

The reason why we consider Gab is that the next theorem holds. We denote the
universal groupoid C*-algebra of G by C∗(G). See [4] for the definition of the universal
groupoid C*-algebras.

THEOREM 2.3 [1, Theorem 4.12]. Let G be an étale groupoid such that G(0) is a locally
compact Hausdorff space with respect to the relative topology of G. Then C∗(Gab) is
the abelianization of C∗(G) as a C*-algebra.

2.3. Étale groupoids associated to inverse semigroup actions. Let X be a topo-
logical space. We denote by IX the inverse semigroup of homeomorphisms between
open sets in X. An action α : S� X is a semigroup homomorphism S � s �→ αs ∈ IX .
For e ∈ E(S), we denote the domain of βe by Dα

e . Then αs is a homeomorphism from
Dα

s∗s to Dα
ss∗ . In this paper, we always assume that

⋃
e∈E(S) Dα

e = X holds.
For an action α : S� X, we associate an étale groupoid S �β X as follows. First, we

put the set S ∗ X ··= {(s, x) ∈ S × X | x ∈ Dα
s∗s}. Then we define an equivalence relation

∼ on S ∗ X by (s, x) ∼ (t, y) if

x = y and there exists e ∈ E(S) such that x ∈ Dα
e and se = te.

Set S �α X ··= S ∗ X/∼ and denote the equivalence class of (s, x) ∈ S ∗ X by [s, x]. The
unit space S �α X is X, where X is identified with a subset of S �α X via the injection

X � x �→ [e, x] ∈ S �α X, x ∈ Dα
e .

The source and range maps are defined by

d([s, x]) = x, r([s, x]) = αs(x)
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[5] Quotients of universal étale groupoids 103

for [s, x] ∈ S �α X. The product of [s,αt(x)], [t, x] ∈ S �α X is [st, x]. The inverse is
[s, x]−1 = [s∗,αs(x)]. Then S �α X is a groupoid with these operations. For s ∈ S and
an open set U ⊂ Dα

s∗s, define

[s, U] ··= {[s, x] ∈ S �α X | x ∈ U}.

These sets form an open basis of S �α X. With this structure, S �α X is an étale
groupoid.

Let S be an inverse semigroup. Now we define the spectral action β : S� Ê(S).
A character on E(S) is a nonzero semigroup homomorphism from E(S) to {0, 1},
where {0, 1} is an inverse semigroup with the usual product. The set of all characters
on E(S) is denoted by Ê(S). We view Ê(S) as a locally compact Hausdorff space with
respect to the topology of pointwise convergence. Define

Ne
P
··= {ξ ∈ Ê(S) | ξ(e) = 1, ξ(p) = 0 for all p ∈ P}

for e ∈ E(S) and a finite subset P ⊂ E(S). Then these sets form a basis for the topology
on Ê(S). For e ∈ E(S), we define Dβ

e ··= {ξ ∈ Ê(S) | ξ(e) = 1}. For each s ∈ S and ξ ∈
Dβ

s∗s, define βs(ξ) ∈ Dβ
ss∗ by βs(ξ)(e) = ξ(s∗es), where e ∈ E(S). Then β is an action

β : S� Ê(S), which we call the spectral action of S. Now the universal groupoid of S
is defined to be Gu(S) ··= S �β Ê(S).

3. Certain least congruences

It is known that every inverse semigroup admits the least Clifford congruence and
the least commutative congruence. For example, see [5, Ch. III, Proposition 6.7] for
the least Clifford congruence and [6] for the least commutative congruence. In this
section, we reprove that every inverse semigroup admits the least Clifford congruence
and the least commutative congruence by a new method using the spectrum.

3.1. Invariant subset of ̂E(S). Let S be an inverse semigroup. A subset F ⊂ Ê(S) is
said to be invariant if βs(F ∩ Ds∗s) ⊂ F holds for all s ∈ S. Note that F is invariant if
and only if F is invariant as a subset of the groupoid Gu(S). We omit the proof of the
next proposition.

PROPOSITION 3.1. Let S be an inverse semigroup and F ⊂ Ê(S) be an invariant subset.
We define the set ρF ⊂ E(S) × E(S) of all pairs (e, f ) ∈ E(S) × E(S) such that ξ(e) =
ξ( f ) holds for all ξ ∈ F. Then ρF is a normal congruence on E(S).

Let S be an inverse semigroup and ρ be a normal congruence on E(S). Moreover, let
q : E(S)→ E(S)/ρ denote the quotient map. For ξ ∈ E(S)/ρ, we define q̂(ξ) ∈ Ê(S) by
q̂(ξ)(e) = ξ(q(e)), where e ∈ E(S). Note that q̂(ξ) is not zero since q is surjective. Then
q̂ : Ê(S)/ρ→ Ê(S) is a continuous map by the definition of the topology of pointwise
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convergence. One can see that

q̂(Ê(S)/ρ) =
⋂

(e, f )∈ρ
{ξ ∈ Ê(S) | ξ(e) = ξ( f )}

holds. In particular, Fρ ··= q̂(Ê(S)/ρ) is a closed subset of Ê(S).
We say that F ⊂ Ê(S) is multiplicative if the multiplication of two elements in F

also belongs to F whenever it is not zero.

PROPOSITION 3.2. Let S be an inverse semigroup and ρ be a normal congruence on
E(S). Then Fρ ⊂ Ê(S) is a closed multiplicative invariant set.

PROOF. It is easy to show that Fρ ⊂ Ê(S) is a closed multiplicative set. We show that
Fρ ⊂ Ê(S) is invariant. Take ξ ∈ Fρ and s ∈ S with ξ(s∗s) = 1. By the definition of
Fρ, there exists η ∈ Ê(S)/ρ such that ξ = η ◦ q, where q : E(S)→ E(S)/ρ denotes the
quotient map. Then

βs(ξ)(e) = ξ(s∗es) = η(q(s∗es)) = βq(s)(η)(q(e)) = q̂(βq(s)(η))(e)

for all e ∈ E(S). Therefore, it follows that βs(ξ) = q̂(βq(s)(η)) ∈ Fρ. �

PROPOSITION 3.3. Let S be an inverse semigroup. Then ρ = ρFρ holds for every
normal congruence ρ on E(S).

PROOF. Assume that (e, f ) ∈ ρ. For all η ∈ Ê(S)/ρ,

q̂(η)(e) = η(q(e)) = η(q( f )) = q̂(η)( f ).

Therefore, (e, f ) ∈ ρFρ .
To show the reverse inclusion, assume that (e, f ) ∈ ρFρ . Define ηq(e) ∈ Ê(S)/ρ by

ηq(e)(p) =

⎧⎪⎪⎨⎪⎪⎩1 (p ≥ q(e)),
0 (otherwise),

where p ∈ E(S)/ρ. By (e, f ) ∈ ρFρ , we have ηq(e)(q( f )) = ηq(e)(q(e)) = 1. Therefore,
q( f ) ≥ q(e). Similarly we obtain q( f ) ≤ q(e), so q(e) = q( f ) holds. Thus, it follows
that (e, f ) ∈ ρ. �

We say that F ⊂ Ê(S) is unital if F contains the constant function 1.

LEMMA 3.4. Let S be an inverse semigroup and F ⊂ Ê(S) be a unital multiplicative
set. Assume that F separates E(S) (that is, for e, f ∈ E(S), e = f is equivalent to the
condition that ξ(e) = ξ( f ) holds for all ξ ∈ F). Then F is dense in Ê(S).

PROOF. For e ∈ E(S) and a finite subset P ⊂ E(S), we define

Ne
P
··= {ξ ∈ Ê(S) | ξ(e) = 1, ξ(p) = 0 for all p ∈ P}.

Recall that these sets form an open basis of Ê(S). Observe that Ne
P = Ne

eP holds, where
eP ··= {ep ∈ E(S) | p ∈ P}. Now it suffices to show that F ∩ Ne

P � ∅ holds for nonempty
Ne

P such that p ≤ e holds for all p ∈ P.
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[7] Quotients of universal étale groupoids 105

In the case that P = ∅, the constant function 1 belongs to F ∩ Ne
P. We may assume

that p ≤ e holds for all p ∈ P. Since Ne
P is nonempty, we have e � p for all p ∈ P. Since

F separates E(S), there exists ξp ∈ F such that ξp(e) = 1 and ξp(p) = 0 for each p ∈ P.
Define ξ ··=

∏
p∈P ξp; then ξ ∈ Ne

P ∩ F. �

PROPOSITION 3.5. Let S be an inverse semigroup. Then F = FρF holds for every unital
multiplicative invariant closed set F ⊂ Ê(S).

PROOF. It is easy to show that F ⊂ FρF . Let q : E(S)→ E(S)/ρF denote the quotient
map. Then the set q̂−1(F) is a unital multiplicative closed set which separates
E(S)/ρF. By Lemma 3.4, q̂−1(F) = ̂E(S)/ρF holds. Therefore, we have F ⊃ q̂(̂q−1(F)) =
q̂( ̂E(S)/ρF) = FρF . �

COROLLARY 3.6. Let S be an inverse semigroup. There is a one-to-one correspon-
dence between normal congruences on E(S) and unital multiplicative invariant closed
sets in Ê(S).

PROOF. Just combine Propositions 3.3 and 3.5. �

3.2. The least Clifford congruences. Let S be an inverse semigroup. Recall that
a congruence ρ on S is said to be Clifford if S/ρ is Clifford. For example, S × S
is a Clifford congruence on S. In this subsection, we prove that every inverse
semigroup admits the least Clifford congruence (Theorem 3.11). Our construction of
the congruence is based on the fixed points of Ê(S).

DEFINITION 3.7. Let S be an inverse semigroup. A character ξ ∈ Ê(S) is said to be
fixed if ξ(s∗es) = ξ(e) holds for all e ∈ E(S) and s ∈ S such that ξ(s∗s) = 1. We denote
the set of all fixed characters by Ê(S)fix.

One can see that Ê(S)fix is a closed subset of Ê(S). Moreover, Ê(S)fix is a
multiplicative set. The fixed characters are characterized in the next proposition.

PROPOSITION 3.8. Let S be an inverse semigroup. Then ξ ∈ Ê(S) is fixed if and only if
ξ can be extended to a semigroup homomorphism ξ̃ : S→ {0, 1}. In this case, ξ̃ : S→
{0, 1} is the unique extension of ξ.

PROOF. If ξ ∈ Ê(S) has an extension ξ̃ : S→ {0, 1},

ξ̃(s) = ξ̃(s)2 = ξ̃(s∗s) = ξ(s∗s)

for all s ∈ S. Therefore, a semigroup homomorphism extension of ξ is unique if it
exists.

It is obvious that ξ is fixed if ξ has a semigroup homomorphism extension. Assume
that ξ ∈ Ê(S) is fixed. Then define ξ̃(s) : S→ {0, 1} by ξ̃(s) ··= ξ(s∗s) for s ∈ S. For
s, t ∈ S, if ξ(t∗t) = 1, we have ξ̃(st) = ξ(t∗s∗st) = ξ(s∗s) = ξ̃(s)̃ξ(t). If ξ(t∗t) = 0, we have
ξ̃(st) = ξ̃(s)̃ξ(t) = 0. Thus, ξ̃ is a semigroup homomorphism. �

https://doi.org/10.1017/S1446788721000021 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788721000021


106 F. Komura [8]

DEFINITION 3.9. Let S be an inverse semigroup. We define the normal congruence
ρClif ··= ρÊ(S)fix

on E(S). Furthermore, we define the congruence νClif ··= νρClif ,min on S
and SClif ··= S/νClif .

LEMMA 3.10. Let S be an inverse semigroup, ν be a Clifford congruence on S and
q : S→ S/ν be the quotient map. Then a set

Fν = {ξ ◦ q ∈ Ê(S) | ξ ∈ Ê(S/ν)}

is contained in Ê(S)fix. Moreover, Ê(S)fix = Ê(S) holds if and only if S is Clifford.

PROOF. Take ξ ∈ Ê(S/ν) and assume that ξ(q(s∗s)) = 1 for some s ∈ S. For all e ∈
E(S),

q(s∗es) = q(es)∗q(es) = q(es)q(es)∗ = q(ess∗e) = q(ss∗)q(e) = q(s∗s)q(e)

since S/ν is Clifford. Now

ξ ◦ q(s∗es) = ξ(q(s∗es)) = ξ(q(s∗s)q(e)) = ξ(q(s∗s))ξ(q(e)) = ξ ◦ q(e).

Therefore, ξ ◦ q is a fixed character.
Applying what we have shown for the trivial congruence ν = {(s, s) ∈ S × S | s ∈ S},

it follows that Ê(S)fix = Ê(S) holds if S is Clifford. Assume that Ê(S)fix = Ê(S) holds
and take s ∈ S. Define a character ξs∗s ∈ Ê(S) by

ξs∗s(e) =

⎧⎪⎪⎨⎪⎪⎩1 (e ≥ s∗s),
0 (otherwise),

where e ∈ E(S). Since we assume that Ê(S)fix = Ê(S) and ξs∗s(s∗s) = 1,

ξs∗s(ss∗) = ξs∗s(s∗(ss∗)s) = ξs∗s(s∗s) = 1.

Then we have s∗s ≤ ss∗. It follows that s∗s ≥ ss∗ from the same argument. Now we
have s∗s = ss∗ and S is Clifford. �

Now we show that every inverse semigroup admits the Cliffordization.

THEOREM 3.11. Let S be an inverse semigroup. Then νClif is the least Clifford
congruence on S.

PROOF. First, we show that the congruence νClif is Clifford. Take s ∈ S and ξ ∈ Ê(S)fix.
Then one can see that ξ(s∗s) = ξ(ss∗). Therefore, (s∗s, ss∗) ∈ νClif and νClif is a Clifford
congruence.

Let ν be a Clifford congruence and q : S→ S/ν be the quotient map. To show that
νClif ⊂ ν, take (s, t) ∈ νClif . First, we show that (s∗s, t∗t) ∈ ν. We define η ∈ Ê(S/ν) by

η(e) =

⎧⎪⎪⎨⎪⎪⎩1 (e ≥ q(s∗s)),
0 (otherwise).
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[9] Quotients of universal étale groupoids 107

By Lemma 3.10, it follows that η ◦ q ∈ Ê(S)fix. Since (s, t) ∈ νClif , we have 1 = η ◦
q(s∗s) = η ◦ q(t∗t), which implies q(t∗t) ≥ q(s∗s). The reverse inequality is obtained
symmetrically and therefore q(t∗t) = q(s∗s) holds.

Let η ∈ ̂E(S/νClif) be the above character. Since η ◦ q is a fixed character and (s, t) ∈
νClif , there exists e ∈ E(S) such that η ◦ q(e) = 1 and se = te hold. Since η ◦ q(e) = 1,
we have q(e) ≥ q(s∗s) = q(t∗t) by the definition of η. Now we have q(s) = q(s)q(e) =
q(t)q(e) = q(t). Therefore, (s, t) ∈ ν. �

COROLLARY 3.12. Let S be an inverse semigroup, T be a Clifford inverse semigroup
and ϕ : S→ T be a semigroup homomorphism. Then there exists a unique semigroup
homomorphism ϕ̃ : SClif → T that makes the following diagram commutative:

S T

SClif

ϕ

q
ϕ̃

where q : S→ SClif denotes the quotient map.

3.3. The least commutative congruences. We say that a congruence on an inverse
semigroup is commutative if the quotient semigroup is commutative. In this subsec-
tion, we show that every inverse semigroup admits the least commutative congruence.

We denote the circle group by T ··= {z ∈ C | |z| = 1}. We view T ∪ {0} as an inverse
semigroup with the usual products. By Ŝ, we denote the set of all semigroup
homomorphisms from S to T ∪ {0}.
DEFINITION 3.13. Let S be an inverse semigroup. We define the commutative
congruence νab on S as the set of all pairs (s, t) ∈ S × S such that ϕ(s) = ϕ(t) holds
for all ϕ ∈ Ŝ. We define Sab ··= S/νab.

Let S be a Clifford inverse semigroup and e ∈ E(S). We define He ··= {s ∈ S | s∗s = e}.
One can see that He is a group with the operation inherited from S. Note that the unit
of He is e.

In order to show that νab is the least commutative congruence, we need the next
lemma.

LEMMA 3.14. Let S be a Clifford inverse semigroup and e ∈ E(S). Then a group
homomorphism ϕ : He → T can be extended to a semigroup homomorphism ϕ̃ : S→
T ∪ {0}.
PROOF. Define

ϕ̃(s) =

⎧⎪⎪⎨⎪⎪⎩ϕ(se) (s∗s ≥ e),
0 (otherwise).

Then one can check that ϕ̃ is a semigroup homomorphism extension of ϕ. �
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THEOREM 3.15. Let S be an inverse semigroup. Then νab is the least commutative
congruence on S.

PROOF. Assume that ν is a commutative congruence. Let q : S→ S/ν denote the
quotient map. In order to show that νab ⊂ ν, take (s, t) ∈ νab.

First, we show that q(s∗s) = q(t∗t). It suffices to show that ξ(q(s∗s)) = ξ(q(t∗t)) holds
for all ξ ∈ Ê(S/ν). Note that ξ ◦ q ∈ Ê(S) is a fixed point by Lemma 3.10. Since ξ ◦ q
is a restriction of an element in Ŝ by Proposition 3.8, ξ(q(s∗s)) = ξ(q(t∗t)) follows from
(s∗s, t∗t) ∈ νab.

In order to show that q(s) = q(t), it suffices to show that ψ(q(s)) = ψ(q(t)) for all
group homomorphisms ψ : Hq(s∗s) → T since Hq(s∗s) = {a ∈ S/ν | a∗a = q(s∗s)} is an
abelian group. By Lemma 3.14, there exists a semigroup homomorphism extension
ψ̃ ∈ Ŝ/ν of ψ. Since ψ̃ ◦ q ∈ Ŝ and (s, t) ∈ νab, we have ψ(q(s)) = ψ(q(t)). Therefore,
q(s) = q(t) holds. �

COROLLARY 3.16. Let S be an inverse semigroup, T be a commutative inverse
semigroup and ϕ : S→ T be a semigroup homomorphism. Then there exists a unique
semigroup homomorphism ϕ̃ : Sab → T that makes the following diagram commuta-
tive:

S T

Sab

ϕ

q
ϕ̃

where q : S→ Sab denotes the quotient map.

4. Universal étale groupoids associated to quotient inverse semigroups

4.1. General case. Let S be an inverse semigroup and ν be a congruence on S. Let
q : S→ S/ν denote the quotient map. Note that

Fν = {ξ ◦ q ∈ E(S) | ξ ∈ Ê(S)}

is a closed invariant subset of Gu(S) as shown in Proposition 3.2.
We omit the proof of the next proposition.

PROPOSITION 4.1. Let S be an inverse semigroup and H ⊂ S be a subsemigroup such
that E(S) ⊂ H. Then the map

Gu(H) � [s, ξ] �→ [s, ξ] ∈ Gu(S)

is a groupoid homomorphism which is a homeomorphism onto its image. Moreover,
the image is an open subgroupoid of Gu(S).
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Via the map in the above proposition, we identify Gu(H) with an open subgroupoid
of Gu(S).

Let S be an inverse semigroup, ν be a congruence on S and q : S→ S/ν be the
quotient map. Define ker ν ··= q−1(E(S/ν)) ⊂ S. Then ker ν is a normal subsemigroup
of S. Although Gu(ker ν) is not necessarily a normal subgroupoid of Gu(S), the
following holds.

PROPOSITION 4.2. Let S be an inverse semigroup and ν be a congruence on S. Then
Gu(ker ν)Fν is an open normal subgroupoid of Gu(S)Fν .

PROOF. We know that Gu(ker ν)Fν is an open normal subgroupoid of Gu(S)Fν . We show
that Gu(ker ν)Fν is normal in Gu(S)Fν . Let q : S→ S/ν denote the quotient map.

First, we show that Gu(ker ν)Fν ⊂ Iso(Gu(S)Fν). Take [n, ξ] ∈ Gu(ker ν)Fν , where
n ∈ ker ν. Since ξ ∈ Fν holds, there exists η ∈ Ê(S/ν) such that ξ = η ◦ q. Since q(n) ∈
E(S/ν) holds, we have q(n∗) ∈ E(S/ν) and

βn(ξ)(e) = ξ(n∗en) = η(q(n∗)q(e)q(n))

= η(q(n∗))η(q(e))η(q(n)) = η(q(n∗n))η(q(e)) = ξ(e)

for all e ∈ E(S). Therefore, βn(ξ) = ξ holds and it follows that [n, ξ] ∈ Iso(Gu(ker ν)Fν).
Next we show that [s, η][n, ξ][s, η]−1 ∈ Gu(ker ν)Fν holds for all [n, ξ] ∈ Gu(ker ν)Fν

and [s, η] ∈ Gu(S)Fν such that η = βn(ξ). One can see that

[s, η][n, ξ][s, η]−1 = [sns∗, βs(η)].

Now it follows that [s, η][n, ξ][s, η]−1 ∈ Gu(ker ν)Fν from sns∗ ∈ ker ν. �

THEOREM 4.3. Let S be an inverse semigroup and ν be a congruence on S. Then
Gu(S/ν) is isomorphic to Gu(S)Fν/Gu(ker ν)Fν .

PROOF. Let q : S→ S/ν denote the quotient map. Note that a map

q̂ : Ê(S/ν) � ξ �→ ξ ◦ q ∈ Fν

is a homeomorphism. Define a map

Φ : Gu(S)Fν � [s, q̂(ξ)] �→ [q(s), ξ] ∈ Gu(S/ν).

Using Proposition 2.1, one can see that Φ is a groupoid homomorphism which is a
local homeomorphism and injective on Gu(S)(0)

Fν
. Observe that Φ is surjective.

We show that kerΦ = Gu(ker ν)Fν holds. The inclusion kerΦ ⊃ Gu(ker ν)Fν is obvi-
ous. In order to show that kerΦ ⊂ Gu(ker ν)Fν , take [s, q̂(ξ)] ∈ kerΦ. Since we have
[q(s), ξ] ∈ Gu(S/ν)(0) and q(E(S)) = E(S/ν), there exists e ∈ E(S) such that [q(s), ξ] =
[q(e), ξ]. There exists f ∈ E(S) such that ξ(q( f )) = 1 and q(s)q( f ) = q(e)q( f ). Now we
have s f ∈ ker ν, so it follows that

[s, q̂(ξ)] = [s f , q̂(ξ)] ∈ Gu(ker ν)Fν .

This shows that kerΦ = Gu(ker ν)Fν .
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By Proposition 2.2, Φ induces an isomorphism Φ̃ that makes the following diagram
commutative:

Gu(S)Fν Gu(S/ν)

Gu(S)Fν/Gu(ker ν)Fν

Φ

Q
Φ̃

where Q denotes the quotient map. �

4.2. Universal groupoids associated to special quotient inverse semigroups.

4.2.1. Minimum congruences associated to normal congruences on semilattices of
idempotents. Let S be an inverse semigroup. Recall that a congruence ρ on E(S) is
normal if (e, f ) ∈ ρ implies (ses∗, s f s∗) ∈ ρ for all s ∈ S and e, f ∈ E(S). Note that one
can construct the least congruence νρ,min whose restriction to E(S) coincides with ρ.
Recall that we can associate the closed invariant subset Fρ of Gu(S) as shown in
Proposition 3.2.

PROPOSITION 4.4. Let S be an inverse semigroup and ρ be a normal congruence on
E(S). Then Gu(S/νρ,min) is isomorphic to Gu(S)Fρ .

PROOF. By Theorem 4.3, it suffices to show that Gu(ker νρ,min)Fρ = Gu(S)(0)
Fρ

holds.
Let q : S→ S/νρ,min denote the quotient map. Take [n, q̂(ξ)] ∈ Gu(ker νρ,min)Fρ , where
n ∈ ker νρ,min and ξ ∈ Ê(S/ρ). Since n ∈ ker νρ,min, there exists e ∈ E(S) such that q(n) =
q(e). By the definition of νρ,min, there exists f ∈ E(S) such that n f = e f and (n∗n, f ) ∈ ρ
hold. Observe that q̂(ξ)(n∗n) = ξ(q(n∗n)) = ξ(q( f )) = ξ(q(e)) = 1. We have

[n, q̂(ξ)] = [n f , q̂(ξ)] = [e f , q̂(ξ)] ∈ Gu(S)(0)
Fρ

.

Now we have shown that Gu(ker νρ,min)Fρ = Gu(ker νρ,min)(0)
Fρ

. �

THEOREM 4.5. Let S be an inverse semigroup. Then Gu(SClif) is isomorphic to
Gu(S)fix.

PROOF. Recall the definition of νClif = νρClif ,min (see Definition 3.9). Since we have
Proposition 4.4, it suffices to show that FρClif = Ê(S)fix. By Lemma 3.10, we have
FρClif ⊂ Ê(S)fix. To show the reverse inclusion, take ξ ∈ Ê(S)fix. By Proposition 3.8,
there exists a semigroup homomorphism extension ξ̃ : S→ {0, 1}. Since {0, 1} is
Clifford, there exists a semigroup homomorphism η : SClif → {0, 1} such that η ◦ q = ξ̃,
where q : S→ SClif denotes the quotient map. Therefore, we have ξ = η ◦ q|E(S) ∈ FρClif .
Now we have shown that FρClif = Ê(S)fix. �
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4.2.2. The least commutative congruences. Let S be an inverse semigroup and νab

be the least commutative congruence (see Proposition 3.13 and Theorem 3.15). Recall
that the abelianization of S is defined to be Sab ··= S/νab.

THEOREM 4.6. Let S be an inverse semigroup. Then Gu(Sab) is isomorphic to Gu(S)ab.

PROOF. By Theorem 4.3, it suffices to show that Fνab = Ê(S)fix and Gu(ker νab)fix =

[Gu(S)fix, Gu(S)fix] hold.
Observe that νab is equal to νClif on E(S). Indeed, this follows from the fact that

ϕ|E(S) ∈ Ê(S)fix holds for all ϕ ∈ Ŝ. Therefore, we have Fνab = Ê(S)fix.
Next we show that Gu(ker νab)fix = [Gu(S)fix, Gu(S)fix]. The inclusion

Gu(ker νab)fix ⊃ [Gu(S)fix, Gu(S)fix]

is easy to show.
Let q : S→ Sab and q′ : S→ SClif denote the quotient maps. Since a commutative

inverse semigroup is Clifford, there exists a semigroup homomorphism σ : SClif → Sab

such that q = σ ◦ q′. To show the reverse inclusion

Gu(ker νab)fix ⊂ [Gu(S)fix, Gu(S)fix],

take [n, q̂(ξ)] ∈ Gu(ker νab)fix, where n ∈ ker νab and ξ ∈ Ê(Sab). Since n ∈ ker νab, there
exists e ∈ E(S) such that q(n) = q(e). Then we have q(n∗n) = q(e). Since νab coincides
with νClif on E(S), it follows that q′(n∗n) = q′(e). Define

Hq′(e) = {s ∈ SClif | s∗s = q′(e)};

then Hq′(e) is a group in the operation inherited from SClif . Observe that a unit of Hq′(e) is
q′(e) and we have q′(n) ∈ Hq′(e). Fix a group homomorphism χ : Hq′(e) → T arbitrarily.
By Proposition 3.14, χ is extended to the semigroup homomorphism χ̃ : SClif → T ∪
{0}. Since T ∪ {0} is commutative, there exists a semigroup homomorphism χ : Sab →
T ∪ {0} that makes the following diagram commutative:

S SClif

T ∪ {0}Sab

q′

χ̃q

χ

Now

χ(q′(n)) = χ(q(n)) = χ(q(e)) = χ(q′(e)).

Since we take a group homomorphism χ : Hq′(e) → T arbitrarily, it follows that
q′(n) ∈ [Hq′(e), Hq′(e)], where [Hq′(e), Hq′(e)] denotes the commutator subgroup of Hq′(e).
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Therefore, there exist s1, s2, . . . , sm, t1, t2, . . . , tm ∈ S such that

q′(n) = q′(s1)q′(t1)q′(s1)∗q′(t1)∗ · · · q′(sm)q′(tm)′q′(sm)∗q′(tm)∗

= q′(s1t1s∗1t∗1 · · · smtms∗mt∗m).

By the definition of νClif , there exists f ∈ E(S) such that

n f = s1t1s∗1t∗1 · · · smtms∗mt∗m f

and q′(n∗n) = q′( f ) hold. Then

[n, q̂(ξ)] = [n f , q̂(ξ)]

= [s1t1s∗1t∗1 · · · smtms∗mt∗m f , q̂(ξ)]

= [s1t1s∗1t∗1 · · · smtms∗mt∗m, q̂(ξ)] ∈ [Gu(S)fix, Gu(S)fix].

Thus, it is shown that Gu(ker νab)fix = [Gu(S)fix, Gu(S)fix]. �

5. Applications and examples

5.1. Clifford inverse semigroups from the viewpoint of fixed points. A 0-group
is an inverse semigroup isomorphic to Γ ∪ {0} for some group Γ. For a group Γ, we
denote the 0-group associated to Γ by Γ0 ··= Γ � {0}. It is clear that every 0-group is a
Clifford inverse semigroup. Conversely, we see that every Clifford inverse semigroup
is embedded into a direct product of 0-groups. We remark that this fact is already
known (see [5, Theorem 2.6]). Using fixed characters, we obtain a new proof.

Let S be a Clifford inverse semigroup and ξ ∈ Ê(S). Since {ξ} ⊂ Ê(S) is invariant
by Lemma 3.10, we may consider a normal congruence ρξ ··= ρ{ξ} on E(S) and a
congruence νξ ··= νρ{ξ},min on S. If ξ = 1, ρξ coincides with E(S) × E(S) and S/νξ is
the maximal group image of S. We define S(ξ) ··= {qξ(s) ∈ S/νξ | ξ(s∗s) = 1}, where
qξ : S→ S/νξ is the quotient map. Then S(ξ) is a group.

Define the map ϕξ : S→ S(ξ)0 by

ϕξ(s) ··=
⎧⎪⎪⎨⎪⎪⎩qξ(s) (ξ(s∗s) = 1),

0 (ξ(s∗s) = 0).
(5.1)

Then ϕξ is a semigroup homomorphism.

PROPOSITION 5.1. Let S be a Clifford inverse semigroup. Then the semigroup
homomorphism

Φ : S � s �→ (ϕξ(s))ξ∈Ê(S) ∈
∏
ξ∈Ê(S)

S(ξ)0

is injective. In particular, every Clifford inverse semigroup is embedded into a direct
product of 0-groups.

PROOF. Assume that s, t ∈ S satisfyΦ(s) = Φ(t). Since we have ϕξ(s∗s) = ϕξ(t∗t) for all
ξ ∈ Ê(S), it follows that ξ(s∗s) = ξ(t∗t) for all ξ ∈ Ê(S). Therefore, we obtain s∗s = t∗t.
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Define ξs∗s ∈ Ê(S) by

ξs∗s(e) ··=
⎧⎪⎪⎨⎪⎪⎩1 (e ≥ s∗s),

0 (otherwise).
Then we have ξs∗s(s∗s) = ξs∗s(t∗t) = 1. Combining with ϕξs∗s (s) = ϕξs∗s (t), we obtain
qξs∗s (s) = qξs∗s (t). Therefore, there exists e ∈ E(S) such that ξs∗s(e) = ξs∗s(s∗s) = 1 and
se = te. It follows that e ≥ s∗s(= t∗t) from ξs∗s(e) = 1. Thus, we have shown that s = t
and Φ is injective. �

PROPOSITION 5.2. Let S be a finitely generated Clifford inverse semigroup. Then Ê(S)
is a finite set.

PROOF. Take a finite set F ⊂ S which generates S. Let X denote the set of all nonzero
semigroup homomorphisms from S to {0, 1}. Then a map

X � ξ �→ (ξ( f )) f∈F ∈ {0, 1}F

is injective since F generates S. By Proposition 3.8 and Lemma 3.10, the map X � ξ �→
ξ|E(S) ∈ Ê(S) is bijective. Since Ê(S) is embedded into {0, 1}F, Ê(S) is a finite set. �

COROLLARY 5.3. Let S be a finitely generated Clifford inverse semigroup. Then S is
embedded into a direct sum of finitely many 0-groups.

Let S be a Clifford inverse semigroup and ξ ∈ Ê(S). Recall that Gu(S)ξ is a discrete
group. In [2], the authors gave a way to calculate Gu(S)ξ. Then ξ−1({1}) is a directed set
with respect to the order inherited from E(S). For e∈E(S), define S(e) ··= {s∈S | s∗s=e}.
Then S(e) is a group. For e, f ∈ E(S) with e ≤ f , define a map ϕ

f
e : S( f )→ S(e) by

ϕ
f
e (s) = se for s ∈ S( f ). Then ϕ f

e is a group homomorphism. One can see that (S(e),ϕ f
e )

consists of an inductive system of groups. The authors proved the following theorem.

THEOREM 5.4 [2, Theorem 3.1]. Let S be a Clifford inverse semigroup and ξ ∈ Ê(S).
Then there exists an isomorphism

Gu(S)ξ � lim−−→
ξ(e)=1

S(e).

We give a way to realize lim−−→ξ(e)=1
S(e) as a quotient of S.

PROPOSITION 5.5. Let S be a Clifford inverse semigroup and ξ ∈ Ê(S). Then we have
the following isomorphism:

lim−−→
ξ(e)=1

S(e) � S(ξ).

PROOF. Let ϕξ : S→ S(ξ)0 denote the map in Proposition 5.1 and put Γ ··= lim−−→ S(e).
For e ∈ E(S) with ξ(e) = 1, we define σe : S(e)→ S(ξ) by σe(s) ··= ϕξ(s). We obtain a
group homomorphism σ̃ : Γ→ S(ξ). One can see that σ̃ is an isomorphism. �

Combining Theorem 5.4 with Proposition 5.5, we obtain the next corollary.
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COROLLARY 5.6. Let S be a Clifford inverse semigroup and ξ ∈ Ê(S). Then Gu(S)ξ is
isomorphic to S(ξ).

Let I be a discrete set and {Γi}i∈I be a family of discrete groups. Then the disjoint
union

∐
i∈I Γi is a discrete group bundle over I in the natural way. Using Proposition 5.2

and Corollary 5.6, we obtain the next corollary.

COROLLARY 5.7. Let S be a finitely generated Clifford inverse semigroup. Then there
exists an isomorphism

Gu(S) �
∐
ξ∈Ê(S)

S(ξ).

For an étale groupoid G with the locally compact Hausdorff unit space G(0), we
write C∗(G) (respectively C∗λ(G)) to represent the universal (respectively reduced)
groupoid C*-algebra of G (see [4] for the definitions). Corollary 5.7 immediately
implies the next corollary.

COROLLARY 5.8. Let S be a finitely generated Clifford inverse semigroup. Then we
have isomorphisms

C∗(Gu(S)) �
⊕
ξ∈Ê(S)

C∗(S(ξ)), C∗λ(Gu(S)) �
⊕
ξ∈Ê(S)

C∗λ(S(ξ)).

5.2. Free Clifford inverse semigroups. We investigate universal groupoids and
C*-algebras associated to free Clifford inverse semigroups on finite sets.

First, we recall the definition of the free groups.

DEFINITION 5.9. Let X be a set. A free group on X is a pair (F(X), κ) consisting of a
group F(X) and a map κ : X → F(X) such that:

(1) κ(X) generates F(X); and
(2) for every group Γ and a map ϕ : X → Γ, there exists a group homomorphism

ϕ̃ : F(X)→ Γ such that ϕ̃(x) = ϕ(κ(x)) holds for all x ∈ X.

We define free inverse semigroups in a similar way.

DEFINITION 5.10. Let X be a set. A free inverse semigroup on X is a pair (FIS(X), ι)
consisting of an inverse semigroup FIS(X) and a map ι : X → FIS(X) such that:

(1) ι(X) generates FIS(X); and
(2) for every inverse semigroup T and a map ϕ : X → T , there exists a semigroup

homomorphism ϕ̃ : FIS(X)→ T such that ϕ̃(x) = ϕ(ι(x)) holds for all x ∈ X.

It is known that free inverse semigroups exist and are unique up to isomorphism.
See [3, Section 6.1] for the existence of free inverse semigroups. The uniqueness is
obvious.

https://doi.org/10.1017/S1446788721000021 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788721000021


[17] Quotients of universal étale groupoids 115

DEFINITION 5.11. A free Clifford inverse semigroup on X is a pair (FCIS(X), ι)
consisting of a Clifford inverse semigroup FCIS(X) and a map ι : X → FCIS(X) such
that:

(1) ι(X) generates FCIS(X); and
(2) for every Clifford inverse semigroup T and a map ϕ : X → T , there exists a

semigroup homomorphism ϕ̃ : FCIS(X)→ T such that ϕ̃(x) = ϕ(ι(x)) holds for
all x ∈ X.

Free Clifford inverse semigroups exist and are unique up to isomorphism. Indeed,
for a free Clifford inverse semigroup (FIS(X), ι) and the quotient map q : FIS(X)→
FIS(X)Clif , one can see that (FIS(X)Clif , q ◦ ι) is a free Clifford inverse semigroup on X.
The uniqueness is obvious.

Let X be a set. For A ⊂ X, define a map χA : X → {0, 1} by

χA(x) =

⎧⎪⎪⎨⎪⎪⎩1 (x ∈ A),
0 (x � A).

Since {0, 1} is Clifford, χA can be extended to the semigroup homomorphism from
FCIS(X) to {0, 1}, which we also denote by χA. Every semigroup homomorphism from
FCIS(X) to {0, 1} is of the form χA for a unique A ⊂ X.

By Proposition 3.8, χA|E(FCIS(X)) is a fixed character if A is not empty. By Lemma
3.10, all characters on E(FCIS(X)) are fixed characters. Therefore, we obtain the next
proposition.

PROPOSITION 5.12. Let X be a finite set. Put S = FCIS(X). Then the map

P(X) \ {∅} � A �→ χA|E(S) ∈ Ê(S)

is bijective, where P(X) denotes the power set of X.

We identify χA|E(FCIS(X)) with χA since we can recover χA from the restriction
χA|E(FCIS(X)).

For a nonempty set A ⊂ X, define eA ··=
∏

x∈A ι(x)∗ι(x) ∈ E(FCIS(X)). For e ∈
E(FCIS(X)), the condition that χA(e) = 1 is equivalent to the condition that e ≥ eA.
Using this fact, one can prove the next proposition.

PROPOSITION 5.13. The map

P(X) \ {∅} � A �→ eA ∈ E(FCIS(X))

is bijective.

In order to apply Corollary 5.6 for free Clifford inverse semigroups, we prepare
with the next proposition.

PROPOSITION 5.14. Let X be a set and A ⊂ X be a nonempty set. Put S = FCIS(X).
Then S(χA) is isomorphic to the free group F(A) generated by A.
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PROOF. If X = A, S(χA) is the maximal group image of S. Therefore, S(χA) is
isomorphic to F(A).

We assume that A � X. Let ϕA : S→ S(χA)0 denote the map defined by

ϕA(s) =

⎧⎪⎪⎨⎪⎪⎩Q(s) (χA(s∗s) = 1),
0 (χA(s∗s) = 0),

where Q : S→ S/νχA denotes the quotient map. By the universality of F(A), define
a group homomorphism τ : F(A)→ S(χA) such that τ(κ(a)) = ϕA(ι(a)) for all a ∈ A.
We construct the inverse map of τ. Using the universality of S = FCIS(X), define a
semigroup homomorphism σ : S→ F(A)0 that satisfies

σ(ι(x)) =

⎧⎪⎪⎨⎪⎪⎩κ(x) (x ∈ A),
0 (x � A)

for x ∈ X. We claim that (s, t) ∈ νχA implies σ(s) = σ(t) for s, t ∈ S. If χA(s∗s) = 0,
we have σ(s) = σ(t) = 0. We may assume that χA(s∗s) = 1. By (s, t) ∈ νχA , we have
seA = teA. Since σ(eA) is the unit of F(A), we have σ(s) = σ(t). Therefore, we obtain
a semigroup homomorphism σ̃ : S(χA)0 → F(A)0 that makes the following diagram
commutative:

S F(A)0

S(χA)0

σ

ϕA
σ̃

Now one can verify that σ̃|S(χA) is the inverse map of τ. �

Now we have the following theorem.

THEOREM 5.15. Let X be a finite set. Then there exists an isomorphism

Gu(FCIS(X)) �
∐

A∈P(X)\{∅}
F(A).

PROOF. Put S = FCIS(X). By Proposition 5.12,

Ê(S) = {χA ∈ Ê(S) | A ∈ P(X) \ {∅}}

is a finite set. Therefore, we have an isomorphism

Gu(S) �
∐

A∈P(X)\{∅}
Gu(S)χA .

By Proposition 5.14, we obtain the isomorphism in the statement. �
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5.3. Fixed points of Boolean actions. From [9, Section 5], we recall the notion of
Boolean actions. By a locally compact Boolean space, we mean a locally compact
Hausdorff space that admits a basis of compact open sets. Let S be an inverse
semigroup and X be a locally compact Boolean space. An action α : S� X is said
to be Boolean if:

(1) for all e ∈ E(S), Dα
e ⊂ X is a compact open set of X; and

(2) the family {
Dα

e ∪
⋃
f∈P

(X \ Dα
f ) | e ∈ E(S), P ⊂ E(S) is a finite set

}

forms a basis of X.

It is known that Gu(S) has the following universal property for Boolean actions.

THEOREM 5.16 [9, Proposition 5.5]. Let S be an inverse semigroup, X be a Boolean
space and α : S� X be a Boolean action. Then S �α X is isomorphic to Gu(S)F for
some closed invariant subset F ⊂ Ê(S).

COROLLARY 5.17. Let S be a finitely generated inverse semigroup and α : S� X
be a Boolean action. Then α has finitely many fixed points. More precisely, the
number of fixed points of α is less than or equal to the number of nonzero semigroup
homomorphisms from S to {0, 1}.

PROOF. Since we assume that S is finitely generated, the set of all nonzero semigroup
homomorphisms from S to {0, 1} is a finite set. By Proposition 3.8, there exists a
bijection between the set of all nonzero semigroup homomorphisms from S to {0, 1}
and Ê(S)fix. Now Theorem 5.16 completes the proof. �

EXAMPLE 1 (cf. [4, Example 3 in Section 4.2]). For a natural number n ∈ N, the Cuntz
inverse semigroup Sn is an inverse semigroup which is generated by {0, 1, s1, . . . , sn}
with the relation

s∗i sj = δi,j1

for all i, j ∈ {1, 2, . . . , n}. Define ξ : Sn → {0, 1} by ξ(x) = 1 for all x ∈ Sn. Then ξ is
the unique nonzero semigroup homomorphism from Sn to {0, 1}. Since 0 ∈ Sn, ξ is an
isolated point of Ê(S). Therefore, every Boolean action of Sn has at most one fixed
point, which becomes an isolated point.
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