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Bell Inequalities

17.1 Introduction

From the dawn of the quantum age in 1900, there has been an ongoing debate,

often fierce and hostile, between the supporters of the classical world view and

those of the quantum world view. This debate eventually led to remarkable exper-

iments, the convincing and repeated results of which are claimed by quantum

theorists to support the predictions of quantum mechanics (QM) and not those of

classical mechanics (CM). However, old paradigms tend to linger on the shelves of

science long past their sell-by dates and there are extant schools of theorists that

strive to find loopholes in the above-mentioned experiments. That is a legitimate

activity up to a point, but the divisive nature of the debate requires commentary,

which is the subject matter of this chapter.

QM was discovered only by advanced technology, so it stands to reason that

any test of QM will require even more advanced technology. In the previous

chapter we stressed the differences between active and passive transformations.

The experiments discussed here rely on such technically difficult active trans-

formations that the Hidden Variables (HV) theorists (for that is really what

they are) opposing QM are frequently able to think of objections, known as

loopholes, to the empirical protocols employed by the experimentalists. Some

of these loopholes are reasonable but many are not. Closing those loopholes

convincingly is an ongoing important activity in experimental quantum physics.

A significant feature of the experiments discussed in this chapter is that they

go beyond a certain point of complexity in terms of the number of classical and

quantum degrees of freedom involved. Historically, before that point had been

reached, classical interpretations of quantum wave functions appeared viable and

perhaps even attractive, such as that proposed by Bohm (Bohm, 1952). We

shall refer to the collective of such interpretations as the hidden variables (HV)

paradigm and the point in question as the Heisenberg point .
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It seems obvious with hindsight that the Heisenberg point was reached almost

immediately after Schrödinger introduced his wave mechanics formulation of QM

in 1926 (Schrödinger, 1926). Certainly, the wave function Ψ(x, t) for a single-

particle system under observation (SUO) can be visualized as an objective wave

of sorts in physical space. By the term physical space, we mean the three-

dimensional space P3(Λ) of extension, position, and distance, associated with

a real laboratory Λ,1 a concept that would surely have been understandable to

Aristotle, Galileo, Newton, Hamilton, and Lagrange. But the Schrödinger wave

function Ψ(x1,x2, . . . ,xN ; t) for an SUO consisting of N particles is actually a

time-dependent complex function over a real 3N -dimensional space C3N , known

as configuration space, which is quite different conceptually from P3(Λ).

Humans are remarkably stable creatures, both physically and mentally. Good

health is measured in years and mental outlook is measured in decades. The phe-

nomenon of persistence, which we have attributed as the origin of objectivization,

seems to us responsible for the classical world view. We see objects apparently

unchanged over significant stretches of time, and we come to believe that those

objects have real identities. In fact, we are generally strongly conditioned men-

tally to think in such classical terms. We imagine ourselves as sitting in physical

space P3(Λ) and we try to relate all experience to it. We may refer to this as

mental persistence, or equivalently, classical conditioning .

Absolute physical space and absolute time (Newton, 1687)2 form the con-

ceptual foundations on which Newtonian mechanics was built. We shall refer

to this mathematical model as space-time, noting the hyphen between “space”

and “time.” This hyphen is important: it marks the recognition that observers

operate in their physical space with a process view of time rather than a manifold

or Block Universe perspective. Indeed, QM seems to us empirically meaningful

only in the space-time perspective, simply because probability, as we know it,

makes no sense otherwise.3

Not only does the space-time model give a remarkably good account of many

physical phenomena such as planetary orbits, but it conforms excellently to our

inherited classical conditioning: we think in terms of objects moving around

physical space with the passage of absolute time.

The advent of relativity did little to change this in practice, for the basic

reason that the speed of light is so great in relative terms that the space-time

model is a good one for all practical purposes. Indeed, its replacement, the Block

1 We follow here Schwinger’s statement, quoted in Chapter 24, that space and time are
contextually defined by apparatus.

2 We refer the reader to the Principia for Newton’s defining comments on what he meant by
“absolute space” and “absolute time”.

3 There will be theorists who interpret QM and probability in terms of abstract
mathematical structures over Block Universe manifolds, with operator norms, C∗ algebras,
and such like. Those approaches to QM equate empirical physics with mathematical physics
and generally neglect observers and apparatus, thereby usually having a generalized
propositional classification of one.
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Universe manifold M4 (four-dimensional Minkowski spacetime), came into the

orbit of theorists’ attention only relatively recently, in 1908 (Minkowski, 1908).

It is too soon for human conditioning to have evolved (if it ever will) to the

point where the world around us is interpreted naturally according to the M4

spacetime paradigm rather than the Newtonian space-time paradigm.

When Schrödinger introduced his wave function in 1926, therefore, classical

conditioning ensured that attempts would be made to understand his theory in

classical mechanical terms. Indeed, Schrödinger himself originally interpreted his

wave function in realist terms, but soon realized that the configuration space

argument required a revision in that interpretation.

Such attempts have persisted: there remain groups of theorists who have

the agendas of either refuting relativity (Dingle, 1967) or refuting QM (Bohm,

1952), or refuting both (Kracklauer, 2002). A theme common to these agendas

is contextual incompleteness, with little or no attention being paid to the details

of relative internal context (discussed in Section 2.12). A significant point to

make here is that none of these theorists has reported experiments that they

have actually done, so nullius in verba4 and Hitchens’ razor5 can legitimately

be applied here.

Fortunately, the matter goes beyond talking-shop physics because of the

remarkable contribution of the theorist J. S. Bell. In 1964, Bell discussed an HV

model of a two spin-half SUO such as a two-electron state (Bell, 1964). He based

his model on a number of reasonable assumptions about the nature of classical

reality and discovered the possibility of testing those assumptions. The signifi-

cance of this is that Bell opened the door to empirical tests of quantum principles,

because these give predictions different from those based on classical principles.

To understand his ideas, we need to review some concepts.

Parameters

Parameters are used in the description of apparatus and observers, and they

are to be found in relative internal context and relative external context. Every

classical model, including that of Bell, relies on parameters, such as the masses

of the particles being observed, orientation of apparatus relative to the labora-

tory, and so on. Parameters may be physical constants determined by previous

experiments, such as particle masses, or they may be classical degrees of freedom

under the control of the observer, such as orientation angles of a Stern–Gerlach

(SG) main magnetization field.

Parameters should not be confused with dynamical variables, which are theo-

retical constructs related to states of SUOs. Parameters are generally expressed

in terms of classical real numbers, associated with agreed systems of units. Some

parameters are specific, meaning that they are assumed to be exact to within

4 Take no one’s word for it.
5 That which is asserted without proof can be dismissed without proof.
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measurement errors, or statistical in nature. An example of a specific parameter

is the mass of the free electron in vacuo, 9.1938291 . . . × 10−31 kg. An example

of a statistical parameter would be the temperature of the laboratory in which

an experiment was being carried out.

Variables

Variables have to do with states of SUOs. As the word suggests, variables change

over the course of an experimental run. The point of doing experiments is to

determine to what extent observers understand those changes.

Model Limits

A good model will make predictions about the range over which the variables

can go, for a fixed set Θ of parameters. For example, Newtonian mechanics and

Newton’s law of gravitation predicts how far the Earth could go from the Sun

in its annual orbit, given the known parameters, such as the mass of the Earth

and of the Sun, and the current position and velocity of the Earth relative to

the Sun.

Bell showed, in a CM model of two spin-half particles based on “reasonable”

classical assumptions such as locality, that there was a limit Λ to a certain

empirically measurable function F of the parameters Θ,6 given in the form of an

inequality F (Θ) � Λ. Such inequalities are now universally referred to as Bell

inequalities (Bell, 1988). They are in focus in this chapter, because they provide

an empirical test of CM predictions versus those of QM.

In the following sections we shall first discuss the SG experiment from a

classical perspective. Then we shall show how a classical Bell-type inequality

can be derived. Then we shall show how standard QM predicts the possibility

of a nonclassical violation of this inequality. Then we shall give the quantized

detector network (QDN) account of the violation.

17.2 The Stern–Gerlach Experiment

Along with the double-slit experiment, the SG experiment serves as a standard

test of QM principles. In this section we discuss the latter experiment from the

perspective of HV theorists applying standard CM principles.

The stage diagram Figure 17.1 shows the SG architecture. Observer Ted oper-

ates a preparation device T that directs a beam of particles7 10 toward an SG

module Sa containing a strong inhomogeneous magnetic field aligned principally

6 By empirically measurable, we mean fixing the parameters and then performing an
experiment to calculate a value for F .

7 We emphasize again that such descriptions express a classical interpretation of what
happens in the laboratory: Ted pushes buttons in preparation device T and Alice looks at
signals on the detector screen. Neither Ted nor Alice see “particles” in the way spectators
observe baseballs or cricket balls.
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Figure 17.1. Stage diagram of the SG experiment.

along a fixed direction a. This direction is the significant parameter in this

experiment. Interestingly, while the classical explanation of what is going on

requires a knowledge of the magnetic field in module Sa, that turns out not to

be directly relevant to the outcome of the experiment; what is important here is

the forest, not the trees.

It was observed by Stern and Gerlach (Gerlach and Stern, 1922a,b) that on

a detecting screen on the opposite side of Sa to the source T , signals were

observed in two principal areas, or spots labeled A+
1 and A−

1 in Figure 17.1. These

spots will henceforth be assumed to be disjoint, that is, not overlapping, because

experience suggests that this can always be arranged to a good approximation

in real experiments.

The standard CM interpretation of these empirical observations is that par-

ticles from T have entered the magnetic field in Sa and that, by virtue of

interaction with that field, some of them have been deflected into region A+
1

while the rest have been deflected into region A−
1 . The standard CM theory is

based on the following assumptions.

Extended Charged Particles

Each particle passing through Sa has nontrivial electromagnetic structure, mean-

ing that it is not a point but an extended system of electric charge density that

is swirling around in such a way as to create a time-dependent magnetic dipole

moment, denoted μ.

Electrodynamic Forces

As it passes through the SG module Sa, each particle’s instantaneous magnetic

dipole moment μ interacts with the inhomogeneous magnetic field B in Sa, an

interaction modeled by a term proportional to μ ·B in the classical Hamiltonian.

This generates an additional contribution to the standard Lorentz force qv ×B

on that particle, and it is this additional force that is interpreted classically as

responsible for what Stern and Gerlach observed. Here q is the electric charge of

the particle, v is its instantaneous velocity, and B is the effective magnetic field

in which the particle is moving.
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The fact that Stern and Gerlach observed two regions, labeled by us A+
1

and A−
1 in Figure 17.1, is indisputable. Therefore, a CM calculation should

account for that splitting. We assume that that can be done. There are

good examples of such bifurcations in CM, such as comets either falling into

elliptic captured orbits around the sun or entering the solar system once and

then leaving forever on hyperbolic orbits. Another example is from the statistics

of single car accidents on icy roads: cars will veer off a road either to the left or

to the right.

Lacking more detailed information, particularly about any hidden variables

that could contribute additional forces in the SG experiment, we simply assume

that if we could complete such calculations, they would show the necessary

bifurcation into either A+
1 or A−

1 .
8

Deterministic Outcomes

The classical electromagnetic forces guiding each particle through module Sa

are deterministic, meaning the following. Suppose that at the start of a run,

one of the particles, #1, in 10 has an initial position r0 and initial velocity v0.

Subsequently, it enters Sa and ends up somewhere on the detecting screen. Now

a typical beam will consist of a vast number of particles. Suppose another one

of the particles, #2, started off in 10 at exactly the same initial position, the

same initial velocity, and with the same internal degrees of freedom (HVs), as

#1, although at some other time. Then it would subsequently follow exactly the

same spatial path and would end up in exactly the same spatial position on the

screen as #1.

Consider now a beam of many particles from 10 passing through the same

apparatus. There will be a spread of initial positions and initial momenta, with

most particle velocities approximately along the same common direction toward

Sa. There may also be some additional hidden variables, such as those involved

with the internal charge structure of the particles. Suppose there are N particles

in such a beam. Then the ith particle starts in 10 with a set of initial variables

denoted θi. This includes any hidden variables.

Now according to the deterministic principle outlined above, that particle will

certainly end up in A+
1 or else certainly in A−

1 , assuming perfect transmission,

that is, with no outside interference and with completely efficient detection. It is

important to note that for given θi, which of the two outcomes occurs is not the

question; what matters is the asserted fact that one of them will be definitely

forced to occur by the deterministic nature of the mechanics. Moreover, this is

not a random outcome: which of the two sites it will be is predetermined by θi.

8 The assumption is made that cases where the particle would end up in the middle of the
detecting screen between A+

1 and A−
1 constitute a tiny proportion of the whole and can be

neglected. There must be, for instance, relatively few, if any, comets that are on genuinely
parabolic trajectories.
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It is also important to note that the question of whether we could calculate that

outcome is irrelevant to the discussion.9

The classical deterministic paradigm outlined above leads naturally to the

following assertion. Consider the set Θ ≡
{
θ1,θ2, . . . ,θN

}
of all the initial HVs

associated with a beam in a given run. Then this set can be regarded as the

union Θ = A+ ∪A− of two disjoint subsets A+ and A−, where A+ is the subset

of HVs that send a beam particle into A+
1 and A− is the subset of HVs that send

a beam particle into A−
1 .

Classical Counterfactuality

So far, nothing controversial has been written. To understand the next step,

we need to make a small diversion. There is a piece of logic (or metaphysics,

if you prefer) that is at the heart of the problem in “understanding” QM. It is

the essential point on which Einstein, Podolsky, and Rosen pitched their famous

argument against standard QM (Einstein et al., 1935). It goes by the name of

counterfactuality . A basic definition is the following.

Definition 17.1 If P and Q are two propositions (that is, statements) and

P is known to be false, then the statement P implies Q, written P ⇒ Q, is

a counterfactual (statement) if it is logically true, despite the fact that P is

false.

Example 17.2 Let P be the proposition My computer is broken today

and Q is the proposition I cannot do any typing today. Then it is true

that P ⇒ Q. But actually, at the time of writing this, P is false: my computer

is working and I have just typed out these words.

There are serious questions about the above definition, particularly in view of

the fact that we cannot avoid employing counterfactual reasoning in physics. The

most obvious problem is that Definition 17.1 is contextually incomplete: there

is no reference in it to any observer for whom the “truth” concept is valid, nor

is there any statement of a method by which a “truth” value could be

established. This is not hair-splitting: it matters in physics. That is why we

have qualified the word truth in that definition with the adjective logical. Logic

is not physics.

When it comes to physics, CM adopts a modified form of counterfactual-

ity, referred to here as the principle of classical counterfactuality, also known

9 It is remarkable that QM does not even attempt any such calculation, because not only is it
regarded as a vacuous enterprise, but there is also no mechanism in QM to deal with
individual outcomes. QM is after all a theory about the statistics of observation. HV
theorists, on the other hand, do not consider it contradictory to assert (1) that there are
variables they cannot know anything about, but (2) if they did know about them, they
could predict everything about their behaviour, in principle.
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as counterfactual definiteness. In brief, this principle states that counterfac-

tual statements can be empirically meaningful in physics, that it is meaning-

ful to assume SUOs exist and have properties that are independent of actual

observation.

Classical counterfactuality is used by observers in all experiments, even those

that are described by QM. This is because state preparation is based on prior

established context: how do we know that a beam of particles is entering an

SG apparatus? Such knowledge arises only because we believe in the constancy,

internal consistency, and reliability of the laws of physics that we have established

over centuries, and because we have previously prepared such a beam many times

and tested it for its properties, a process called calibration.

It is just a fact of life that when it comes to actually using such a beam in a

complete run in an experiment, we can no longer test it. If we were to interrupt

the beam before it entered the apparatus, in order to check that the beam is

what we think it is, then the rest of the run could not subsequently take place.

We literally cannot have our cake and eat it.

This is perhaps the only place in science where metaphysics is critical. It is a

self-evidently vacuous assertion to say that we cannot complete an uninterrupted

run if we constantly interrupt it to check on the state of the apparatus. It is a

quasi-religious belief throughout all of science that calibration allows us to make

certain assumptions without the need to check them: I have pressed this button

and I am confident that a beam of electrons is now on its way into an SG module.

It is on such a basis that when each run of the real experiment starts, we do

not check the beam any more but rely on classical counterfactuality: that what

we are doing in the beam preparation stage means what we think it means.

Classical counterfactuality is an article of faith in the laws of persistence and

consistency, and in a universe that does not play tricks on us by arbitrarily

changing its laws. It is implicit in the protocol of every experiment. The point

about Bell inequality experiments is that they show that on the quantum level,

classical counterfactuality is a false principle. That surely is enough to worry

anyone, because it means we do not really “understand” physical reality: it is

not completely described by a classical world view, only most of the time.

The relevance of classical counterfactuality to the SG experiment is as follows.

Suppose that the same, identical (at the HV level) beam had been sent into

the given SG apparatus but with one crucial difference: the direction of the

magnetic field had previously been altered by the observer and was now along

some different direction b and not a. According to classical counterfactuality, it is

legitimate to discuss both scenarios “simultaneously.” Of course, that is fanciful,

for it is not possible to go back and alter the past, as far as we know.

Classical counterfactuality and the principle of CM, however, allow us to

imagine the possibility of a different past. We are permitted to decompose Θ

as the union Θ = B+ ∪B−, where B+ is the subset of HVs that would have sent

a beam particle into B+
1 and B− is the subset of HVs that would have sent a
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beam particle into B−
1 , if the magnetic field axis had been b and not a. Here B+

1

and B−
1 are the two regions on the detecting screen observed with module Sb.

Classical counterfactuality allows us to go further and to make the decompo-

sition

Θ = (A+ ∩ B+) ∪ (A+ ∩ B−) ∪ (A− ∩ B+) ∪ (A− ∩ B−). (17.1)

This is a proposition rather different from the assertion Θ = A+∪A− = B+∪B−:

we could at least perform each experiment Sa and Sb separately, at different

times, with magnetization direction well defined each time, whereas none of the

four terms on the right-hand side of (17.1) could be tested directly. For instance,

the first term, A+ ∩ B+, is the set of HV that would send a beam particle into

A+
1 if the magnetization axis were along direction a, and would send the same

beam particle into B+
1 if the magnetization axis were along direction b instead

of a.

In the real world it is physically not possible to have both directions a and b

in the same run.

That is not considered a problem by theorists who accept the CM paradigm,

but is a point of view inconsistent with Wheeler’s participatory principle, stated

in Chapter 1. It is on such points of interpretation and natural philosophy that

rest the irreconcilable differences between CM and QM. These very different,

incompatible visions of physical reality are what this debate is all about.

Counterfactual Probabilities

HV theorists address the problem of the meaning of the counterfactual intersec-

tion A+ ∩ B+ by the following argument. Consider a very large number Na of

particles, prepared by Ted in a standard way, passed through Sa. By counting the

number N(A+
1 ) that land in A+

1 , we can estimate the probability PCM (A+) �
N(A+

1 )/N
a that a particle would land in A+

1 and not in A−
1 . Likewise, if the

axis were b, then we can estimate the probability PCM (B+) � N(B+
1 )/Nb that

a particle would land in B+
1 and not in B−

1 .

Note that we are now discussing a probability measure on the set Θ of hidden

variables associated with a beam prepared in a standard way by Ted.

According to CM, the rules of classical probability apply, so the counterfactual

probability PCM (A+∩B+) that a particle would land in A+
1 if the magnetization

axis were a, but would have landed in B+
1 if the magnetization axis were b, is

given by the rule

PCM (A+ ∩ B+) = PCM (A+)PCM (B+). (17.2)

HV theorists simply cannot escape this assertion, unless they are prepared to

introduce novel possibilities such as nonlocality, contextual effects, and such like,

and these generally make their line of argument unappealing.

The problem is, we cannot do any experiments to measure PCM (A+ ∩ B+)

directly, or any of the other counterfactual probabilities directly, because as
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stated, only one magnetization axis can be set up at a time. We shall call this

the simultaneity problem.

17.3 Circumventing the Simultaneity Problem

An ingenious way of getting around the simultaneity problem is to use two

electrons or photons at a time, as follows.

Spin-Zero Two-Electron States

In both CM and QM, electrons are imagined as having an internal degree of

freedom called spin, associated with angular momentum. There is great evidence

for the empirical validity of this idea.

CM and QM treat spin differently, however: the former puts no restriction on

the direction of an electron’s spin axis or the magnitude of the electron’s angular

momentum, whereas the latter requires external context (that is, the parameters

associated with the apparatus being used) and predicts the quantization of

angular momentum in units of �, the reduced Planck’s constant.10 Despite their

fundamental differences, however, both CM and QM theorists are happy to

discuss a two-electron state with total angular momentum of zero.

This means the following in both paradigms: if a spin-zero state of two electrons

is prepared and subsequently one of the electrons is passed through Sa and

observed to land in region A+
1 , then if the other electron was passed through

another, identical11 apparatus S
a
, then that second electron would land in region

A
−
1 and not in A

+

1 . Likewise, for every electron that landed in A−
1 , its partner

electron would land in A
+

1 .

There is a useful fact about electrons that we can exploit: electrons repel each

other. If we fired a beam of two-electron states along a given direction, we should

expect that beam to spread out due to this repulsion. This would then allow us

to make observations on separate electrons.

We are in position now to circumvent the simultaneity problem as follows.

Alice, Bob, and Ted

Imagine now three experimentalists, Alice, Bob, and Ted, with apparatus shown

schematically in Figure 17.2(a). We will call this the enhanced Stern–Gerlach

(eSG) experiment. In eSG, Bob has an identical copy S
a
of Alice’s SG module

Sa, except Bob’s module is displaced in the laboratory so as not to overlap Alice’s

module in their common physical space P3(Λ).

By stage Σ0, Ted has prepared a beam of two-electron, spin-zero states. By

stage Σ1, the beam has split by electric repulsion into subbeams 11 and 21.

10 The angular momentum of an electron state is generally discussed in terms of �/2.
11 Empirically identical, apart from being spatially displaced, so not identical in the sense of

Leibniz.
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Figure 17.2. The enhanced SG experiment on two-electron, spinless states.

Subbeam 11 then enters Alice’s SG module Sa, while subbeam 21 enters Bob’s

module S
a
. By conservation of angular momentum (which holds in both CM and

QM), whenever Bob observes an electron in region A
+

2 he can be sure that Alice

has observed her electron in region A−
2 , and so on.

It is important to appreciate that this statement is not about statistics; it

is about what happens in each individual run. The conservation of angular

momentum (as well as that of electric charge, energy, linear momentum, and

other classically motivated conserved quantities) takes place at the emergent,

process time level of observation. It is an extraordinary and deep fact that in QM,

there are classical concepts that can be relied on. The neutrino was discovered

precisely because the conservation of energy applies at the individual-run level in

beta decay, as proposed by Pauli in 1930, not at the statistical level, as proposed

by Bohr.12

Now we come to the circumvention of simultaneity problem. The trick here is

that Bob need not set the main magnetic field axis in his module to be in the

same direction a as that set by Alice in her module Sa. Suppose Bob sets his

12 At the time, beta decay experiments could not account for a discrepancy between the
energy going into a beta decay process and that going out. Pauli proposed that there was
an unobserved particle, now known as the neutrino and subsequently detected by Cowan,
Reines, and collaborators in 1956 (Cowan et al., 1956), carrying off the energy discrepancy.
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field axis to some different direction b (we will now refer to his module as S
b

rather than S
a
). The relevant stage diagram is now Figure 17.2(b). Then we can

give an operational definition of PrCM (A+ ∩ B+) and the other counterfactual

probabilities as follows.

Consider a large number N of runs in the eSG experiment. Suppose Alice

and Bob count their respective outcomes, recording the time of each. Afterward,

they come together and compare data sets and times. Then for every outcome in

which Alice found her electron in A+
2 and Bob found his electron in B

−
2 , in the

same run, then that is counted as originating from the subset A+ ∩ B+, as if all

that information came from the original DS experiment, with a single electron.

Essentially, the second electron observed by Bob is like a ghost version of the

electron observed by Alice, and both are observed in the same run. Of course,

care is taken to take the opposite spins into account. Given the total count, an

estimate for the counterfactual probability PrCM (A+∩B+) follows immediately.

With this procedure, it is clear that total probability is conserved, that is, we

have

PrCM (A+ ∩ B+) + PrCM (A+ ∩ B−) + PrCM (A− ∩ B+) + PrCM (A− ∩ B−) = 1.

(17.3)

Bob & Carol & Ted & Alice

To derive the appropriate Bell inequality, the analysis requires the above dis-

cussion to be extended to a third direction, c, with observer Carol, giving the

decomposition Θ = C+ ∩ C−, where C+ is that subset of Θ that would send an

electron into C+, and similarly for C−. Classical counterfactuality also entitles us

to make the decomposition

Θ = (A+ ∩ B+ ∩ C+) ∪ (A+ ∩ B+ ∩ C−) ∪ (A+ ∩ B− ∩ C+) ∪
(A+ ∩ B− ∩ C−) ∪ (A− ∩ B+ ∩ C+) ∪ (A− ∩ B+ ∩ C−) ∪
(A− ∩ B− ∩ C+) ∪ (A− ∩ B− ∩ C−). (17.4)

A Bell Inequality

We are now in position to construct a Bell inequality for this experiment. The

first step is to direct the discussion from the set Θ of HV (which by definition we

have no knowledge about), to outcome probabilities, for which we have empirical

data. Suppose we passed a beam with a large number N of electrons through our

SG device, and repeated that run a large number of times. By counting electron

impacts on the detector screen, we would then determine outcome frequencies,

and finally we would be in position to discuss probabilities.

Given a probability measure P over Θ, then for any subsets A, B of Θ, we

have the rule

P (A ∪B) = P (A) + P (B)− P (A ∩B). (17.5)
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With this rule and what we know about the subsets involved, we can deduce the

following relations:

PCM (A+ ∩ B−) = PCM (A+ ∩ B− ∩ C+) + PCM (A+ ∩ B− ∩ C−), (17.6)

PCM (B+ ∩ C−) = PCM (A+ ∩ B+ ∩ C−) + PCM (A− ∩ B+ ∩ C−), (17.7)

PCM (A+ ∩ C−) = PCM (A+ ∩ B+ ∩ C−) + PCM (A+ ∩ B− ∩ C−). (17.8)

Every term in these equations is a probability, so is nonnegative. Adding (17.6)

to (17.7) and subtracting (17.8), we exploit this nonnegativity directly to find

the Bell inequality

PCM (A+ ∩ B−) + PCM (B+ ∩ C−) � PCM (A+ ∩ C−). (17.9)

This and similar inequalities are the focus of interest in numerous experiments.

Exercise 17.3 Use (17.5) and other relevant information to prove (17.6),

(17.7), and (17.8). Hence prove (17.9).

It has to be pointed out that there are more serious questions about this

inequality than those we raised about PCM (A+ ∩ B+). We used two-spin states

to circumvent that latter problem, but that approach cannot deal with three

simultaneous magnetization axes. Essentially, we have to perform separate subex-

periments to determine the empirical values PEMP (A+ ∩ B−), PEMP (B+ ∩
C−), and PEMP (A+ ∩ C−) separately, ensuring that standardization across all

three subexperiments makes the test of the inequality (17.9) beyond reasonable

doubt.

We note in passing that (17.9) looks like the triangle inequality d(a, b) +

d(b, c) � d(a, c) defined for a metric space, where d(a, b) is the “distance” between

elements a and b of the metric space.

17.4 The Standard Quantum Calculation

We give now a brief account of the standard QM calculation used to test the

inequality (17.9). We will use the nonrelativistic Pauli electron theory, but taking

account only of the internal spin degree of freedom of each particle, assumed

to be an electron. This is modeled by a qubit Hilbert space Q, no different

in mathematical structure from the qubits used to construct QDN quantum

registers.

Calibration of Single Electron States

With reference to Figure 17.1, consider an uncalibrated beam of electrons sent by

Ted into an SG calibration module Sk where k = (0, 0, 1) in standard Cartesian

coordinates defined previously by Ted. As discussed above, this beam will split

into two subbeams, denoted K+
1 and K−

1 . An electron state entering K+
1 will be
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denoted | + k〉, while one entering K+
1 will be denoted | − k〉. These two states

form a calibration basis for Q and satisfy the orthonormality conditions

〈+k|+ k〉 = 〈−k| − k〉 = 1, 〈+k| − k〉 = 0. (17.10)

In contrast to QDN, standard QM tends to work with a fixed Hilbert space over

any given run. Neither of these approaches is incorrect: they encode the same

information differently. We will use the calibration basis as a reference to describe

all state vectors and other bases in the following discussion.

Having calibrated his module T , Ted now uses it to create a beam of normalized

particle states, |Ψ〉, at stage Σ0, given by

|Ψ〉 = u|+ k〉+ v| − k〉, (17.11)

where |u|2 + |v|2 = 1.13

With reference to Figure 17.1, now suppose a beam of particles represented by

such a state is subsequently sent through SG module Sa, where the main mag-

netic field direction a is given by a = (sin θ cosψ, sin θ sin ψ, cos θ), where θ and

ψ are standard spherical polar coordinates relative to the standard Cartesians

referred to hitherto. Any beam passing through Sa will in turn be split into two

components, denoted A+
1 and A−

1 , as discussed above. In standard QM, each

of these components will be associated with orthogonal, normalized quantum

outcome states |+ a〉 and | − a〉, respectively, and these can be used to form an

orthonormal preferred basis for Q, associated with Sa.

Standard quantum theory gives the following relations between the calibration

basis {|+k〉, |−k〉} and the preferred basis {|+a〉, |−a〉} (the outcome states),

up to inessential arbitrary overall phase factors:

|+ k〉 = sin θ√
2− 2 cos θ

|+ a〉 + sin θ√
2 + 2 cos θ

| − a〉,

| − k〉 = (1− cos θ)√
2− 2 cos θ

|+ a〉 − (1 + cos θ)√
2 + 2 cos θ

| − a〉.
(17.12)

From this we can find the amplitude A(+a| + k) ≡ 〈+a| + k〉 for outcome

state |+a〉 given initial state |+k〉, and so on. Hence we can find the conditional

probabilities. We find, for example,

Pr(+a|+ k) ≡ |A(+a|+ k)|2 = cos2( 12θ). (17.13)

Two-Spin States

Disregarding all factors inessential to the present discussion, a normalized two

half-spin state |Φ〉 of zero total spin zero is given by

|Φ〉 = 1√
2
|+ ka〉 ⊗ | − kb〉− 1√

2
| − ka〉 ⊗ |+ kb〉, (17.14)

13 The reader will appreciate by now how difficult it is to describe such a process without
using suggestive, misleading language.
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where the superscripts label the two spin-half particles.14 We now imagine that

particle a is sent through Alice’s module Sa and particle b is sent through Bob’s

module Sb.

Using (17.12), we may write

|+ ka〉 = αa|+ a〉+ βa| − a〉, |+ kb〉 = αb|+ b〉+ βb| − b〉,
| − ka〉 = γa|+ a〉+ δa| − a〉, | − kb〉 = γb|+ b〉+ δb| − b〉,

(17.15)

where again, superscripts label particles and

αa ≡ sin θa√
2− 2 cos θa

, αb ≡ sin θb√
2− 2 cos θb

, (17.16)

and so on. Note that here {| + a〉, | − a〉} is a preferred basis for Qa, the qubit

associated with Alice’s electron, and {| + b〉, | − b〉} is a preferred basis for Qb,

the qubit associated with Bob’s electron.

Given (17.15), we readily find

|Φ〉 = 1√
2

{(αaγb − γaαb)|+ a〉 ⊗ |+ b〉+ (αaδb − γaβb)|+ a〉 ⊗ | − b〉
+(βaγb − δaαb)| − a〉 ⊗ |+ b〉+ (βaδb − δaβb)| − a〉 ⊗ | − b〉} .

(17.17)

The Bell Inequality

Now recall that the focus of attention here is the classical Bell inequality (17.9).

Considering the CM single particle counterfactual probability PCM (A+,B−), this

translates into the QM outcome probability PQM (+a,+b|Φ) in the extended SG

experiment (involving both Alice and Bob). This means that the classical Bell

inequality (17.9) is replaced by the assertion that

PQM (+a,+b|Φ) + PQM (+b,+c|Φ)− PQM (+a,+c|Φ) � 0. (17.18)

The first term in this expression is just the squared modulus of the coefficient of

the tensor product term |+ a〉 ⊗ |+ b〉 in (17.17). Hence we deduce

PQM (+a,+b|Φ) = 1
2 |α

aγb − γaαb|2. (17.19)

We can simplify this expression by using rotational symmetry, orienting our

Cartesian coordinates along the direction of vector a. Then we find

PQM (+a,+b|Φ) = 1
2 sin

2( 12θ
ab), (17.20)

where θab is the angle between a and b. A similar calculation for the other two

terms in (17.15) gives

sin2( 12θ
ab) + sin2( 12θ

bc)− sin2( 12θ
ac) � 0. (17.21)

14 We can ignore the fact that electrons are identical and obey Fermi–Dirac statistics,
because the spreading of the beam prior to the electrons entering either SG(a) or else
SG(b) has introduced a form of classical labelling.
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bc
ab

q q

Figure 17.3. Plot of the function f(θab, θbc) over a suitable domain.

The problem is that we can find vectors a, b, and c for which (17.21) is wrong.

For example, take these vectors to lie in a plane, with θab = π/3, θbc = π/3,

θac = θab + θbc = 2π/3. Then

sin2( 12
π
3 ) + sin2( 12

π
3 )− sin2( 12

2π
3 ) = 1

4 + 1
4 − 3

4 = − 1
4 . (17.22)

In Figure 17.3 we show a plot of the function f(θab, θbc) ≡ sin2( 12θ
ab) +

sin2( 12θ
bc)− sin2( 12θ

ab+ 1
2θ

bc) over a range of possibilities. There are two distinct

regions where the function value is negative, while the HV calculation predicts

that there should be no such regions.

There have been many experiments related to the one discussed here that

have shown violations of Bell’s inequalities, a frequently quoted one being that

of Aspect and others using photons (Aspect et al., 1982).

There is now not much doubt among the majority of physicists that classical

counterfactuality has been shown empirically to be a false principle in physics.

It remains an excellent principle as far as relative external context (the wider

Universe) is concerned: we can usually go to work and remain confident that our

house will still be there when we get back in the evening.

There remains a relatively small group of committed HV theorists who continue

to probe this issue and have come up with classically based possible explanations

for the observed empirical violations of Bell’s inequalities. Experimentalists con-

tinue to test these loopholes, and have reached the point where the HV classically

motivated “explanations” seem more unpalatable than the quantum theory they

are trying to circumvent.

17.5 The QDN Calculation

In this section we apply QDN to the eSG scenario discussed above. The relevant

stage diagram is Figure 17.4.
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S

T

a Sb

Figure 17.4. The QDN stage diagram of the enhanced SG experiment.

It was found that the total state at stage Σ1, corresponding to the entangled

state (17.14) needs to be described as a state in the tensor product of a four-

dimensional internal spin space and a rank-four quantum register.

Stage Σ0

The preparation switch stage Σ0 creates a beam of spin-zero, two electron states,

represented by the total state |Ψ0) ≡ |s10〉⊗ Â1
000. Here, |s10〉 represents a normal-

ized state in the one-dimensional Hilbert space of two-electron spin zero states.

Stage Σ0 to Stage Σ1

By the first stage, Σ1, the beam has split into two entangled spin-half subbeams.

This stage is before any of the subbeams enter their respective SG apparatus.

Bitification requires each of these sub-beams to be associated with two signal

qubits,15 so we require a rank-four quantum register at that stage, as stated

above.

The dynamics is given by the rule

U1,0

{
|s10〉 ⊗ Â1

000

}
=

1√
2

{
|+ ka

1〉 ⊗ | − kb
1〉 ⊗ Â1

1Â
3
1−

| − ka
1〉 ⊗ |+ kb

1〉 ⊗ Â2
1Â

4
1

}
01. (17.23)

Stage Σ1 to Stage Σ2

Using (17.15) and from Figure 17.4 we have

U2,1

{
|+ ka

1〉 ⊗ | − kb
1〉 ⊗ Â1

1Â
3
101

}
=
{
αa|+ a2〉 ⊗ Â1

2 + βa| − a2〉 ⊗ Â2
2

}
×
{
γb|+ b2〉 ⊗ Â3

2 + δb| − b2〉 ⊗ Â4
2

}
02,

U2,1

{
| − ka

1〉 ⊗ |+ kb
1〉 ⊗ Â2

1Â
4
101

}
=
{
γa|+ a2〉 ⊗ Â1

2 + δa| − a2〉 ⊗ Â2
2

}
×
{
αb|+ b2〉 ⊗ Â3

2 + βb| − b2〉 ⊗ Â4
2

}
02.

(17.24)

15 This is on account of the fact that entanglement can be detected, given the right apparatus.
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This is all that is needed to run our computer algebra program MAIN, which

gives us much more information than we need here. Our interest originated in

PCM (+a,−b). Context tells us that we need to calculate the probability that

detectors 12 and 32 are each in their respective signal state at stage Σ2. Program

MAIN gives us the answer

Pr(Â1
2Â

3
202|Ψ0) =

1
2 |α

aγb − γaαb|2, (17.25)

which is precisely (17.19), the result of the standard QM calculation. The same

argument applies to the other terms in the Bell inequality (17.18).

Our conclusion is that QDN gives the same results as standard QM, and hence

the same prediction of violations of Bell inequalities.
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