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Maximal Subbundles of Rank 2 Vector
Bundles on Projective Curves
E. Ballico

Abstract. Let E be a stable rank 2 vector bundle on a smooth projective curve X and V (E) be the set of all
rank 1 subbundles of E with maximal degree. Here we study the varieties (non-emptyness, irreducibility and
dimension) of all rank 2 stable vector bundles, E, on X with fixed deg(E) and deg(L), L ∈ V (E) and such that
card
(
V (E)

)
≥ 2 (resp. card

(
V (E)

)
= 2).

0 Introduction

Let X be a smooth projective curve of genus g defined over an algebraically closed field K.
For every integer d, M(X; 2, d) will denote the scheme of all rank 2 stable vector bundles
on X of degree d. It is known that M(X; 2, d) is irreducible, smooth and of dimension
4g−3 (see e.g. the introduction of [12]). For every E ∈ M(X; 2, d) there is a unique integer
s(E) with 0 < s(E) ≤ g and such that E has a line subbundle of degree

(
d − s(E)

)
/2

but no line subbundle of degree >
(
d − s(E)

)
/2 [12]. For historical reasons this integer

s(E) is often called the C. Segre-M. Nagata-H. Lange-M. S. Narasimhan invariant of E. For
shortness we will call it the Lange invariant of E. By its very definition we have s(E) ≡
d mod(2). Set M(X; 2, d, s) := {E ∈ M(X; 2, d) : s(E) = s}. We will see M(X; 2, d, s)
as a locally closed subset of M(X; 2, d), and we will always use the corresponding reduced
structure as scheme structure on M(X; 2, d, s). By [12, Prop. 3.1] for all integers d, s with
d ≡ s mod(2) and 0 < s ≤ g−2 the scheme M(X; 2, d, s) is a non-empty irreducible scheme
of dimension 3g − 2 + s. By [12, Prop. 3.3] for every integer s with 0 < s ≤ g − 2 and every
integer d with d ≡ s mod(2) a general element of M(X; 2, d, s) has a unique line subbundle
of degree (d − s)/2. For any E ∈ M(X; 2, d) let V (E) be the set of all maximal degree
rank 1 subbundles of E. Set V (X; 2, d, s ; 2) := {E ∈ M(X; 2, d, s) : card

(
V (E)

)
≥ 2} and

W (X; 2, d, s ; 2) := {E ∈ M(X; 2, d, s) : card
(
V (E)

)
= 2}. In the first section of this note

we prove the following result.

Theorem 0.1 Let X be a smooth projective curve of genus g ≥ 3. For every integer s with
0 < s ≤ g− 2 and every integer d the set V (X; 2, d, s; 2) is an irreducible variety of dimension
2g + 2s− 1 and W (X; 2, d, s; 2) is a non-empty open subset of it.

For every integer s with 0 < s ≤ g − 2 we will construct bundles E ∈ M(X; 2, d, s)
with card

(
V (E)

)
= 3 (Proposition 1.6). For an upper bound for card

(
V (E)

)
for any

E ∈ M(X; 2, d, s) with card
(
V (E)

)
finite, see [11]. The irreducibility of V (X; 2, d, s; 2)

was proved in [10]; the same paper contains the computation of its dimension. Only the
non-emptyness of W (X; 2, d, s; 2) is new. But our method is completely different: we use
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130 E. Ballico

vector bundles, while in [10], [11] and [12] it was given and used the following very nice
translation of these problems in terms of secant varieties and linear series; for proofs and
more details, see [12, Sections 1 and 2].

Let E be a rank 2 stable vector bundle on X. Up to a twist by a line bundle we may
assume that ωX is a maximal degree line subbundle of E. Hence E fits in an exact sequence

0→ ωX → E→ L→ 0(1)

with L ∈ Pic(X) and deg(L) = 2g − 2 + s(E). Set s := s(E). If s ≥ 3 or E is general
L is very ample. By Serre duality the extension (1) gives E as a point e ∈ P

(
H0(X, L)

)
.

The very ample line bundle L induces an embedding hL : X → P
(
H0(X, L)

)
∼= Ps+g−2. Set

Y := hL(X) ∼= X. Let Y (s) be the s-th symmetric product of Y and S(s−1)(Y ) ⊂ P
(
H0(X, L)

)
the s−1 secant variety of Y . We have dim

(
S(s−1)(Y )

)
= 2s−1. There is another subbundle

S of E with deg(S) = 2g − 2 if and only if e ∈ S(s−1)(Y ). Let p1 : Y (s) × Y → Y (s) and
p2 : Y (s) × Y → Y be the projections. Set W := {(D, y) ∈ Y (s) × Y : D − y ≥ 0}.

Set A := p1∗

(
p∗2
(

OY (1)
)
| W
)

. Hence A is a rank s vector bundle on Y (s). A is called

the s-secant bundle of the pair (X, L). There is a morphism γ : P(A) → P
(

H0(X, L)
)

with
γ
(

P(A)
)
= S(s−1)(Y ). The non-emptyness of W (X; 2, d, s; 2) says that for general L the

secant bundle map γ is birational. It is amusing that Theorem 0.1 is proved here only using
vector bundle techniques, not the secant varieties.

Then we will consider the case s = g − 1. It is known that for every d with d − g
odd a general E ∈ M(X; 2, d) has s(E) = g − 1 and it has finitely many maximal degree
subbundles [12, Cor. 3.2]. For an open dense subset Ω of M(X; 2, d) (with d − g odd)
there is an integer, δ, such that every E ∈ Ω has s(E) = g − 1 and exactly δ maximal
degree subbundles. By [11] we have δ = 2g (see also [6] and [9, Section 8]. If d is odd
(i.e., if g is even), there is a universal family π : E → M(X; 2, d) and hence, taking for
every E ∈ π−1(Ω) the finite set V (E) of its maximal degree subbundles, we obtain a finite
degree δ covering α : T → Ω. Let G(X) be its Galois group; this is defined even if T is
not irreducible, but we will see (Remark 0.3) that T is irreducible and hence G(X) is the
Galois group of the normalization of the field extension K(T) \ K

(
M(X; 2, d)

)
. G(X) acts

as permutation group of the fiber of α over the generic point of M(X; 2, d) and hence it
is a subgroup of the symmetric group Sδ . G(X) is usually called the monodromy group
of this problem. Obviously this monodromy group depends only on X and not on the
congruence class of d modulo 2. Now assume d even, i.e., g odd. Now M(X; 2, d) is not a
fine moduli scheme and hence there is no universal family of rank 2 vector bundles on it.
However, there is still a universal family β : P → M(X; 2, d) of projectivizations of rank 2
stable vector bundles. Since every maximal degree line subbundle of E corresponds to a
suitable section of P(E), we may define δ, Ω and the finite covering α : T → Ω just using
β. Hence we may define G(X) if g is odd, too. At the end of Section 1 we will prove the
following result.

Proposition 0.2 Assume char(K) = 0. Let X be a smooth curve of genus g. Then G(X) is at
least double transitive.

Remark 0.3 The transitivity of G(X) is equivalent to the irreducibility of T.

https://doi.org/10.4153/CMB-2000-020-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2000-020-2


Rank 2 Bundles on Curves 131

In Section 2 we will use some ideas contained in [4] to prove the non-existence of rank 2
stable vector bundles on X with low s(E) and with infinitely many rank 1 subbundles with
maximal degree. D. Butler in [4] proved the following very nice result.

Theorem 0.4 ([4, Theorem 1]) Assume char(K) = 0. Fix integers g, s with s > 0 and
g > s(2s−1). Let X be a smooth projective curve of genus g and E a rank 2 vector bundle on X
with s(E) = s and such that E has infinitely many maximal degree line subbundles. Then there
exists a smooth curve C of genus q > 0, a covering π : X → C with deg(π) > 1, L ∈ Pic(X),
a rank 2 vector bundle F on C with s(F) = s(E)/ deg(π), π∗(F) ∼= E ⊗ L and such that for
every maximal degree line subbundle, R, of E⊗L there exists a maximal degree line subbundle
M of F with π∗(M) ∼= R.

We liked Theorem 0.4 but we liked even more Butler’s proof of it, because we believe
that it may be used in several other situations. In Section 2 we will prove the following
result.

Proposition 0.5 Assume char(K) �= 2. Let X be a smooth curve of genus g ≥ 3 with general
moduli and E a rank 2 vector bundle on X such that E has infinitely many rank 1 subbundles
with maximal degree. Then s(E) ≥ (g − 2)/3.

Proposition 0.5 improves the lower bound on s given in [4, Remark on p. 31].

Acknowledgement This research was partially supported by MURST and GNSAGA of
CNR (Italy). We want to thank the referee for several suggestions on the presentation of
these topics.

1 Proofs of 0.1 and 0.2

Fix an integer s with 0 < s ≤ g. For every E ∈ M(X; 2, d, s) let V (E) be the set of all
line subbundles of E with maximal degree; V (E) is in a natural way a Quot-scheme and
hence it has a natural scheme structure; however, we will always consider V (E) with the
associated reduced structure; hence we will see V (E) as a reduced projective scheme; there
is a natural morphism πE : V (E) → Pic(d−s(E))/2(X); by [12, Lemma 2.1], πE is injective.
For every R ∈ Pict (X) and every E ∈ M(X; 2, d, s) we have E ⊗ R ∈ M(X; 2, d + 2t, s).
Hence instead of studying all schemes M(X; 2, d, s), d ≡ s mod(2), it is sufficient to study
all schemes M(X; 2, s, s). By definition every E ∈ M(X, 2, s, s) has a maximal degree line
subbundle of degree 0. Fix an integer s with 0 < s ≤ g and L,M ∈ Pic0(X) with L �= M.
V (s, L) will denote the subset of M(X; 2, s, s) formed by the stable bundles which have a
subsheaf isomorphic to L; by definition of M(X; 2, s, s) such subsheaf is saturated and it
is a maximal degree rank 1 subbundle. When s ≤ g − 2, W (s, L) will denote the subset
of V (s, L) formed by the bundles with a unique degree 0 line subbundle (which is thus
isomorphic to L). V (s, L,M) will denote the set of all stable rank 2 vector bundles on
X which have at least one subbundle isomorphic to L and one subbundle isomorphic to
M. Since L �= M, every E ∈ V (s, L,M) contains a subsheaf isomorphic to L ⊕ M. If
s ≤ g − 2, W (s, L,M) will denote the subset of V (s, L,M) formed by the bundles with
exactly two subbundles of degree 0; by definition of V (s, L,M) one of these subbundles is
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isomorphic to L and the other one is isomorphic to M. All sets V (s, L), W (s, L), V (s, L,M)
and W (s, L,M) are algebraic subsets of M(X; 2, s) and we will see them as schemes with the
associated reduced structure. Tensoring any rank 2 vector bundle with L ⊗M∗ we obtain
V (s,M) ∼= V (s, L) and W (s,M) ∼= W (s, L). Tensoring with any R ∈ Pic0(X) we obtain
V (s, L,M) ∼= V (s, L ⊗ R,M ⊗ R) and W (s, L,M) ∼= W (s, L ⊗ R,M ⊗ R) for all s, L and
M. The proofs of [12, 3.1 and 3.3] show that for every s ≤ g − 2 and every L, the scheme
V (s, L) is irreducible of dimension 2g − 2 + s and W (s, L) is a non-empty open subset of
W (s, L).

For every integer s > 0 and every R ∈ Pic0(X), set D(R, s) := {(P1, . . . , Ps,
Q1, . . . ,Qs) ∈ X2s : R ∼= OX(

∑
1≤i≤s Pi −

∑
1≤i≤s Qi)}. We will see D(R, s) as a closed

subset of the product X2s with the reduced structure. We have a map π(s) : X2s → Pic0(X)
defined by π(s)((P1, . . . , Ps,Q1, . . . ,Qs)) := OX(

∑
1≤i≤s Pi−

∑
1≤i≤s Qi). Since X is com-

plete, this map is proper. This map is surjective if and only if 2s ≥ g (e.g. fix P ∈ X and
check by induction on t , 0 ≤ t < s that, with the notation of [8], Ws−(s−t)P−Wt �=Ws−
(s−t−1)P−Wt+1 as subset of Pic0(X) and hence dim

(
Ws−(s−t)P−Wt

)
) = min{g, s+t}

for all s, t . For the same reason if 0 < 2s ≤ g, dim(Im
(
π(s)
)
= 2s, i.e., the map π(s) is

generically finite. Since π(s)−1(R) = D(R, s) for every R ∈ Pic0(X), a simple computation
of dimensions gives the following remark.

Remark 1.1

(i) If R is general in Pic0(X) and 2s < g we have D(R, s) = ∅.
(ii) If R is general in Pic0(X) and g ≤ 2s ≤ 2g − 4 we have dim

(
D(R, s)

)
= 2s− g < s.

(iii) If 0 < 2s ≤ g the set of all R ∈ Pic0(X) with D(R, s) finite and not empty has
dimension 2s.

(iv) For every integer s with 0 < 2s ≤ g and every integer t > 0 the set A(s, t) :=
{R ∈ Pic0(X) : D(R, s) �= ∅ and D(R, s) has dimension ≥ t} is a subset of Pic0(X)
with dim

(
A(s, t)

)
≤ 2s− t − 1.

Let E(s, L,M) be the set of all isomorphism classes of bundles obtained from L ⊕ M
making s positive elementary transformations. E(s, L,M) is parametrized in a natural way
(but not one to one) by an irreducible variety of dimension 2s: we choose s points of X and
for each of these points we choose a positive elementary transformation supported by that
point. First we study the case s = 1. Fix P ∈ X. There are three possibilities for a positive
elementary transformation of L ⊕ M supported by P. Two of them are very special and
they give bundles isomorphic to L(P) ⊕ M or L ⊕ M(P), i.e., are the positive elementary
transformations corresponding to the set T(1, L,M) considered below. The other one has
an associated degree rank 2 bundle, F, with deg(F) = 1 a bundle in which both L and M
are saturated. Since H0

(
X, End(L ⊕ M)

)
= 2 the group Aut(L ⊕ M) acts transitively on

the set of lines of P
(

(L⊕M) | {P}
)
\ {P(L | {P})∪P(M | {P})} which is the complement

of 2 points in P1. This imples that the isomorphism class of F is uniquely determined by
L, M and P, i.e., that E(1, L,M) \ T(1, L,M) is parametrized one to one by an irreducible
variety of dimension 1. It is easy to check that any such F is stable and in particular simple.
Hence this phenomenon does not occur for s ≥ 2 and we see that E(s, L,M) \ T(s, L,M) is
parametrized by an irreducible variety of dimension 2s− 1.

Lemma 1.2 Fix L,M ∈ Pic0(X) with L �= M and an integer s with 0 < s ≤ g − 2.
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(a) The reduced scheme V (s, L,M) is either empty or irreducible of dimension at most 2s−1.
(b) The reduced scheme W (s, L,M) is either empty or irreducible of dimension at most 2s−1.

Proof Every E ∈ V (s, L,M) is obtained from L ⊕M making s positive elementary trans-
formations, i.e., V (s, L,M) ⊆ E(s, L,M). Vice versa, if V (s, L,M) �= ∅, the openness
of stability and the semicontinuity of the Lange invariant gives that a general element of
E(s, L,M) is stable and with Lange invariant s. Hence either V (s, L,M) is empty or it is
irreducible. The same proof gives part (ii).

Now we will describe the set T(s, L,M) of isomorphism classes of all vector bundles, A,
obtained from L ⊕ M making s positive elementary transformations and such that either
L or M is not saturated in A; for instance if L is not saturated in A, then A is obtained
from E taking P ∈ X, making the uniquely determined positive elementary transformation
supported by P such that the saturation of L into the corresponding degree 1 rank 2 bundle
is isomorphic to L(P) and then making s−1 arbitrary positive elementary transformations.
Hence T(s, L,M) is parametrized (a priori not necessarily one to one or even generically
finite to one) by the union (not the disjoint union) of two varieties of dimension 2s − 1;
indeed the discussion on the set E(1, L,M) \ T(1, L,M) made before shows that for every
integer s ≥ 2 T(s, L,M) is parametrized by the union of two varieties of dimension 2s− 2.
We have T(s, L,M) �= E(s, L,M) for every s > 0. Fix any vector bundle F obtained from
L ⊕M making s positive elementary transformations. Hence there are rank 2 subsheaves
Ft , 0 ≤ t ≤ s of F with F0 = L ⊕M, Ft ⊂ Ft+1 for 0 ≤ t < s, Fs = F and deg(Ft ) = t for
every t . Let R be a subbundle of F with maximal degree. Set m := deg(R), Rt := Et ∩ R
and m(t) := deg(Rt ). We have m(t − 1) ≤ m(t) ≤ m(t − 1) + 1, 1 ≤ t ≤ s. We assume
F /∈ T(s, L,M). F ∈ V (s, L,M) (or, equivalently, F ∈ M(X; 2, s, s)) if and only if for every
such R we have m ≥ 0, while F ∈ W (s, L,M) if and only if for every such R we have
m < 0. F is stable if and only if for every such R we have 2m < s. If Fs−1 /∈ V (s− 1, L,M)
(resp. Fs−1 /∈ W (s − 1, L,M)) then F /∈ V (s, L,M) (resp. F /∈ W (s, L,M)). If Fs−1 ∈
W (s − 1, L,M) we have deg(Rs−1) < 0 and this is true not only for R but for all maximal
degree line subbundles of F different from L and M. Hence if Fs−1 ∈ W (s − 1, L,M) and
F /∈ T(s, L,M), then F ∈ V (s, L,M). Since F /∈ T(s, L,M) there is a non-zero map R0 → L
and a non-zero map R0 → M, i.e., there is an integer x with 0 < x ≤ s, R0 ∈ Pic−X(X)
and effective degree x divisors D, D ′ with L ∼= R0(D) and M ∼= R0(D ′); in particular we
have L ⊗M∗ ∼= OX(D − D ′). By definition we have x = m(0). Since x ≤ s we obtain the
following result.

Lemma 1.3 Fix L,M ∈ Pic0(X) with L �= M and an integer s with 0 < s ≤ g − 2.

(i) If D(L⊗M∗, s) = ∅ we have E(s, L,M) \ T(s, L,M) ⊆W (s, L,M).
(ii) If D(L⊗M∗, s− 1) = ∅ we have E(s, L,M) \ T(s, L,M) ⊆ V (s, L,M).

From now on we will study the case in which F is the general element of E(s, L,M).

Lemma 1.4 Fix L,M ∈ Pic0(X) with L �= M and an integer s with 0 < s ≤ g − 2. Assume
dim
(
D(L ⊗M∗, t)

)
≤ t − 1 for every integer t with 1 ≤ t ≤ s. Then a general element of

E(s, L,M) belongs to W (s, L,M).
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134 E. Ballico

Proof Fix a sequence of s general positive elementary transformations of L ⊕ M, i.e., fix
rank 2 vector bundles Ft , 0 ≤ t ≤ s of F with F0 = L ⊕ M, Ft ⊂ Ft+1 for 0 ≤ t < s,
deg(Ft ) = t for every t and such that for every integer t with 1 ≤ t ≤ s, Ft is a “general”
element of E(s, L,M). Set F := Ft . In order to obtain a contradiction we assume that F
is not in W (s, L,M). For every integer u with 0 ≤ u ≤ s, let B(u) be the set of all rank 1
subsheaves of L ⊕ M with degree −u and not contained in L or in M. For all integers u,
v, t with 0 ≤ v ≤ u and 0 < t ≤ s, let A(u, v, t) be the set of all elements of B(u) whose
saturation in Ft has degree at least−v. By assumption we have dim

(
B(u, u, 0)

)
≤ u− 1 for

every integer u with 0 < u ≤ s. By the generality of the positive elementary transformation
giving Ft+1 from Ft and induction on t we obtain that for all u, v, t with t < s either
A(u, v, t) = ∅ or dim

(
A(u, v, t + 1)

)
< dim

(
A(u, v, t)

)
.

Lemma 1.5 Fix L,M ∈ Pic0(X) with L �= M and an integer s with 0 < s ≤ g − 1. Assume
dim
(
D(L ⊗ M∗, t)

)
≤ t for every integer t with 1 ≤ t ≤ s. Then a general element of

E(s, L,M) belongs to V (s, L,M).

Notice that in the statement of Lemma 1.5 the case s = g − 1 is allowed. This case will
be used to prove Theorem 0.2.

Proof of Theorem 0.1 We stress again the openness of stability and the semicontinuity
of the Lange invariant. By Remark 1.1, Lemma 1.2 and Lemma 1.3 (the case 2s < g)
plus the discussion on the general element of E(s, L,M) (the case 2s ≥ g) we obtain
the non-emptyness of W (X; 2, d, s; 2) and hence of V (X; 2, d, s; 2). The irreducibility of
both schemes follows from the irreducibility of E(s, L,M) as in Lemma 1.2. To obtain
dim
(
V (X; 2, d, s; 2)

)
= 2g + 2s− 1 and dim

(
W (X; 2, d, s; 2)

)
= 2g + 2s− 1 it is sufficient

to show that every E ∈
(
V (X; 2, d, s; 2) ∩ V (s, L,M)

)
is in a unique way obtained from

L⊕M making s positive elementary transformations, i.e., that the injective map of sheaves
L ⊕M → E (which is assumed to exist) is unique. This is obvious if E ∈ W (s, L,M), but
it is true even assuming only E ∈ V (s, L,M) because the maps L → E and M → E are
uniquely determined by [9, Lemma 2.1], i.e., by the injectivity of the map πE : V (E) →
Pic(d−s(E))/2(X).

An alternative proof of 0.1 could be given using in a more efficient way the set-up of [12],
in particular the proofs of [12, 1.1, 2.3, Remark at p. 59, and 3.3], but we prefer to give this
proof to obtain 0.2, too.

Now we will consider rank 2 vector bundles with exactly 3 maximal degree subbundles.

Proposition 1.6 Fix L,M ∈ Pic0(X) with L �= M and an integer s with 0 < s ≤ g − 2.
Assume dim

(
D(L ⊗ M∗, t)

)
≤ t − 1 for every integer t with 1 ≤ t ≤ s. Assume the

existence of an integer v with 0 < v ≤ s and D(L ⊗ M∗, v) �= ∅. Then there exists E ∈(
E(s, L,M) ∩ V (s, L,M)

)
such that E has exactly 3 line subbundles of degree 0, i.e., with

card
(
V (E)

)
= 3.

Proof Let u be the minimal integer> 0 with D(L⊗M∗, u) �= ∅. Since D(L⊗M∗, u) �= ∅

and u is minimal with this property there exists U ∈ Pic−u(X) such that there is an embed-
ding of U into L ⊕M as saturated subbundle. We take any such U which is a sufficiently
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general element of an irreducible component of D(L ⊗ M∗, u). We may take u positive
elementary transformations of L ⊕ M such that the saturation, U ′, of U into the corre-
sponding degree U rank 2 vector bundle, F, has degree 0. Furthermore, by the generality of
U we may assume that U is the unique element of D(L ⊗M∗, u) with this property. Then
we take a degree s rank 2 vector bundle E ∈ E(s, L,M) obtained from F applying s − u
general positive elementary transformations. The proof of Lemma 1.5 shows that E has no
line subbundle of positive degree and that L, M and U ′ are the unique line subbundles of
E with degree 0.

Proof of 0.2 Just use Lemma 1.5 for s = g − 1 and the fact that Pic0(X) × Pic0(Y ) is
irreducible. A minor point: to check that a general E ∈ M(X; 2, d, g − 1) is contained in
some V (g − 1, L,M) we need δ �= 1; by [11] we have δ = 2g .

2 Infinitely Many Subbundles

In this section we will prove Proposition 0.5. It seems to us an interesting problem to know
for which integers s < g a smooth genus g curve with general moduli has a rank 2 stable
vector bundle E with s(E) = s and such that E has infinitely many rank 1 subbundles with
maximal degree deg(E)− 2s.

Lemma 2.1 Assume char(K) �= 2. Let Y ⊂ Pg−1 be the canonical embedding of a gen-
eral smooth curve of genus g ≥ 3. Assume the existence of an effective divisor D on Y with
deg(D) = s > 0 such that 2D spans a linear subspace 〈2D〉 of dimension 2s − 2 and the
corresponding g1

2s is base point free and complete. Then 3s ≤ g − 2.

Proof Let U be the non-empty Zariski open dense subset of the moduli scheme Mg para-
metrizing curves without non-trivial automorphisms. On U there is a universal curve, C ,
and on C a universal scheme G1

2s parametrizing the pencils of degree 2s. Since ρ(g, 1, 2s) ≥
1, restricting U to a Zariski open subset (call it U , again) we may assume that G1

2s is non-
empty, smooth of dimension ρ(g, 1, 2s)+3g−3 (Brill-Noether theory (see e.g. [3, Ch. IV and
Ch. V])) and connected [6] and hence irreducible; for the connectedness when char(K) >
0, see [6, Remark 2.8]; for the smoothness (and hence the irreducibility) for a general X
when char(K) > 0, see [6]. The pair (Y, 2D) corresponds to a base point free complete
g1

2s and hence, by the generality of Y , to an element of
∏

:= G1
2s × MgC such that the

corresponding map f : Y → P1 has 2D as a fiber, f−1(o). We may even assume D reduced
by the deformation theory of pencils. Since char(K) �= 2 we may deform each point of
f−1(o)red independently inside the total space of

∏
. Hence by the generality of Y we obtain

that ρ(g, 1, 2s) + 3g − 3 + 1 ≥ 3g − 3 + s, as wanted.

Proof of 0.5 Set s := s(E). By [4, Prop 1.1], there is a one dimensional family of line
bundles on X, say {Lt}t∈T , with Lt ∈ Pic2s(X) and Lt spanned and such that there is an
effective degree s divisor Dt on X with Lt

∼= OX(2Dt ). If h0(X, Lt ) ≥ 3 for every t , then
ρ(g, 2, 2s) := g − 3(g + 2− 2s) ≥ 1 by Brill-Noether theory because X has general moduli
(see e.g. [3, Ch. V]). Hence we may assume h0(X, Lt ) = 2 for some t ∈ T and hence
h0
(

X,OX(Dt )
)
= 1 for the corresponding t ; we fix one such pair (Lt ,Dt ). Let hK : X →
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Pg−1 be the canonical embedding. By the geometric form of Riemann-Roch, hK (2Dt ) spans
a linear space of dimension 2s− 2. Hence the result follows from Lemma 2.1

Remark 2.2 The proof of the lower bound (g + 3)/4 for s(E) and any E with V (E) infinite
for X general given in [4, Remark on p. 31], uses only that X if “general” from the point of
view of the Brill-Noether theory of pencils, i.e., that if X has infinitely many base point free
g1

2s, then ρ(g, 1, 2s) := g − 2(g + 1 − 2s) ≥ 1. By [2, Th. 2.6], this is true even if X is only
assumed to be a general k-gonal curve for some integer k with 2 ≤ k ≤ g/2. For the case in
which X is a double covering of a curve of genus q > 0, see Proposition 2.3.

Proposition 2.3 Fix integers g, n, q, s with n ≥ 2, q ≥ 0 g ≥ 2, 2g − 2 ≥ n(2q − 2),
s > 0 and g > 2ns + sq − n − 2s + 1. Let X be a smooth curve of genus g such that there is
a degree n morphism π : X → Y with Y a smooth curve of genus q. Assume that there is no
factorization of π, say π = π ′ ◦ π ′′ with deg(π ′′) > 1 and deg(π ′) > 1. Then for every
rank 2 vector bundle E on X with s(E) = s and with infinitely many maximal degree rank 1
subbundles there is A ∈ Pic(X) and a rank 2 vector bundle F on X with E ⊗ A ∼= π∗(F) and
such that for every maximal degree rank 1 subbundle L of E there is a rank 1 subbundle M of
F with π∗(M)⊗ A∗ ∼= L.

Proof Let E be a rank 2 vector bundle E on X with s(E) = s and with infinitely many
maximal degree rank 1 subbundles. By [4, 1.1], there are infinitely many base point free
line bundles, L, on X with h0(X, L) ≥ 2 and deg(L) = 2s. By the non-factorizability of the
covering π and Castelnuovo-Severi inequality (see e.g. [1, Ch. 3]), if char(K) is arbitrary,
just use that an integral curve T ⊂ P1 × Y with numerical equivalence class of type (2s, n)
has pa(T) = 1 + 2ns + sq − n − 2n < g by the adjunction formula (and hence X cannot
be the normalization of T), for every such L there is M ∈ Pic2s/n(Y ) with L ∼= π∗(M) and
H0(X, L) = π∗

(
H0(X,M)

)
. The proofs of [4, Prop. 1.4 and Th. 1] give the result.

Remark 2.4 Note that if n is prime (and in particular if n = 2) no degree n morphism
π : X → Y has a factorization π = π ′ ◦ π ′′ with deg(π ′) > 1 and deg(π ′ ′) > 1.
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