
TWO REMARKS ON THE HOMOLOGY OF GROUP

EXTENSIONS

Dedicated to the memory of Hanna Neumann

PETER HILTON and URS STAMMBACH

(Received 28 July 1972)

0. Introduction

In this note we apply a particular technique to obtain information on the
homology homomorphism e+: H^G; A) -> i/*(Q; A) associated with a group ex.
tension

(0.1) N >—£-> G —?-» Q,

and a Q-module A. The technique consists of using e itself to pull-back (0.1); that
is, we construct the pull-back extension induced from (0.1) by E. This, however,
is nothing but the semidirect product, N] G, of N and G, with G operating on
the left on N by conjugation. Thus we obtain from (0.1) the commutative
diagram

(0.2)

N >-

where e0 is the projection and et is the multiplication £i(n,x) = nx,neN,xeG.
We now apply the Lyndon-Hochschild-Serre spectral sequence functor to (0.2) and
carry out computations in dimensions 2 and 3.

In Chapter 1 we are concerned to study the kernel of £*: H2(G;A) -> H2(Q',A).
Thus we seek to extend the standard 5-term exact sequence

(0.3) H2(G; A) -> H2(Q; A) -» Nab ® Q A - HX(G ;A) -* Ht(Q; A) - » 0

one place to the left. We obtain, by the method outlined above, a generalization
to arbitrary coefficients of a theorem proved by Nomura [6], by topological meth-
ods, for integer coefficients. The rest of Chapter 1 is concerned with refinements
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of the result and with the relation of the result to Ganea's extension of (0.3) in [5]
in the case of a central extension (0.1) and integer coefficients.

In Chapter 2 we refer to the 8-term sequence obtained in [4] which extends
(0.3) three places to the left, again in the case of a central extension and integer
coefficients. The extended sequence (2.1) is then extended a further two places to
the left, provided thet we replace £*: H3G -> H3Q, which is the initial homo-
morphism of the 8-term sequence, by an induced homomorphism

where B is an explicitly described subgroup of H3G. Once again, the technique is
as described earlier, but we make decisive use, first, of the fact that the spectral
sequence of a direct product collapses (if JV is central, then the semi-direct prod-
uct N] G is just the direct product NxG) and, second, of Andre's calculation [1]
of the differential d2 in the Lyndon-Hochschild-Serre spectral sequence.

The rest of Chapter 2 consists ;of a discussion oflthe subgroup B of H3G and
the associated quotient group H3G/J3. We remark that a similar extension of the
8-term sequence (2.1) was obtained in [2] by topological arguments, and that this
extension also involved factoring out a certain subgroup B' of H3G. It is always
the case that B' £ B, but we show by an example that, in general, B' # B. Of
course, this difference in the third term of the two extensions of (2.1) (i.e (2.2) of
this paper and (1.5) of [2]) is compensated by a complementary difference in
their second term.

The fact that an exact sequence of the type of (2.2) must exist was first dis-
covered by Gut.

1. Nomura's Theorem
ii p

1.1 Let £ : JV >—-—*• G » Q be an exact sequence of groups. Given
any t: P -> Q we form the pull-back

Gt - ^ - » P

G —-» Q

and hence an induced sequence

(1.1) T*£:JV >-^-> Gr -^--» P

together with a map

a.2) ( 1 , K , T ) : T * £ - > £ .

It follows from the pull-back property that any map (a, / J , T ) : £ ' -»E of sequences,
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£': M>-

d-3) l | «
E : N >-

factors uniquely through T*£ as

(a,/?, T) = (1 ,K, T)O (a,/?', 1)

for a uniquely determined /?': H -> Gt.
Now consider, in particular, e*£. It is easy to see that s*E is just

where JV} G is the semi-direct product of JV and G, with G operating on the left
on JV by inner automorphism. Moreover, fi0 is the canonical embedding, e0 the
canonical projection; and, further, there is a canonical splitting Xo: G-> JV} G of
(1.4) such that e0X0 = 1, given by A0(x) = (1, x), x e G. We regard the splitting 20

as part of the structure of the semi-direct product.
The map e*£->£ is ( l .e^e) ,

e*£:

(1.5)

£ : JV>

where et: N] G -* G is the multiplication map, given by e^n, x) = nx,ne JV, x e G.
Now, for any a: P -* G, <r*e*£ splits. Indeed we obtain

(1.6) I!

N>J^ NlG

together with a splitting X: P -> H such that p i = AQ*7• We prove a strong converse
of this.

PROPOSITION 1.1. The sequence e*E is universal for splitting exact se-
quences over E. Precisely, if in (1.3), E' splits by X: P -> H then we have a unique
factorization.

(1.7) (a,0,T) = (l,61,e)o(a,p,ff),

where p satisfies

(1.8) pk
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PROOF. Set a = PX: P -> G. Then so = sfiX = ZE'X = x.

Now sos' = XE' = 6)3. Thus, by the pull-back property, there exists a unique
p:H-+N]G, given by sop = ere', zxp = p. One easily proves that p\i' = n0.
Moreover, observing that EJAQ = 1, it follows readily that pX = Xoa. Conversely,
from (1.7) and (1.8) we infer that a = E^pX = flX, and then p is determined by
the equations sop = as', £tp = P.

NOTE. In fact, p is given by px = (Px(f}Xs'xyl, flXs'x), xeH.

COROLLARY 1.2. / / a = 1, then E' = c7*e*£.
Finally, we remark that, if N is central in G, then (1.4) reduces to the direct

product

(1.9) N > - ^ - » NxG ^ 2 _ ^ G ;

we will exploit this in Chapter 2.
1.2 In this section we prove the following theorem, generalizing (to arbitrary

coefficient modules) a theorem proved by Nomura [6] by topological methods.

THEOREM 1.3. Given the short exact sequence of groups

£ i V ^ > G - » Q

and the Q-mndule A, there exists an exact sequence

ker e 0 . - i i l * H2(G;A)-^ H2(Q; A) ->N a b ® Q A^H^G;A\ -> Hi(Q;A) -> 0,
where £0,£1 areas in (1.5) and e0*: H2(N]G; A) -»H2(G; A).

PROOF. Of course only exactness at H2{G;A) is in question. We prove this
by considering the map of Lyndon-Hochschild-Serre (henceforth, L-HS) spectral
sequences induced by (1.5). For s*E we have a spectral sequence {Ej!q}, such that

£? = Hp(G;Hq(N;A)y,

and there is a filtration Fo c Fl £ F2 of H2(N] G;A) such that

Fo = El\ FJFO = Ei\ FJF, = £™, F2 = H2(N] G;A)

Moreover, Ft = ker e0.: H2(N] G;A)^>H2(G; A).

Similarly, for the extension E we have a spectral sequence {£,'} such that

E? = Hp(Q;Hq(N;A));

and there is a filtrat;on Fo s f t c F2 of H2(G;A) such that

Fo = E°J, FJF0 = El\ F2IF1 = E™, F2 = H2(G;A).

Moreover, Ft = ker e*: H2(G;A)-> H2(Q;A).

Thus we must prove that (l,£i,e): E*E-*E induces a surjection F1^F1

We have the diagram, with exact rows,
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£°J > > Ft

(1.10)

so it suffices to show that (l .e^e) induces surjections

Now £°2
2 = H2(N;A)G, E°2

2 = H2(N;A)Q, so that (1,8!,e) induces an iso-
morphism E2

2-*E2
2. Since £^2,E°J are quotients of £2

2,E2
2 respectively, it

follows that y0 is surjective.
Again

so that (l,8i,e) induces a surjection El1 -» £2*. Since £ " , E^,1 are quotients
of El1, El1 respectively, it follows that yt is surjective. Thus the theorem is
proved.

NOTES, (a) It may be observed from the proof that we may replace the first
term of the exact sequence by

ke re t * -^ -> . H2(G;A),

for any surjective T: P -» Q, where (see (1.1), (1.2))

x*E: N Ur " £ '

(b) Since (1.4) splits it follows that, in the spectral sequence {.£**}, the differential
dr: Ef^-£?-'"'l is always zero. Thus E2

ll= E11 and E°2 = E%2. We therefore
obtain from the top row of (1.10) the exact sequence

(1.11) if2(G;//!(Af;/C))—^-> /f2(JVM)G-»ker eo.-»-Hi(G;Wi(N;/!))-»0.

2.3 Nomura states in the introduction to [6] that the exact sequence of
Theorem 1.3, with A = Z, provides a generalization of Ganea's result [5] for
central extensions. He does, in fact, reprove Ganea's result in [6], but Theorem 1.3
does not immediately yield that result. For if we suppose that N is central in G,
then, as pointed out in 1.1,JVJG becomes the direct product NxG and kere0.
admits a natural direct sum decomposition

(1.12) ker £0* = H2N ®(N® Gab).
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Moreover elif\H2N is just n* and £1#|(N ® Gab) is the Ganea term x [3], which
Ganea proved, by topological arguments, could be added to the left of the 5-term
homology sequence, with integer coefficients. Explicitly, Theorem 1.3 yields, for
central extensions, the exactness of

(1.13) H2N@(N®Gab)

while Ganea proved the exactness of

(1.14)

Thus, to deduce (1.14) from (1.13) one must prove

(1.15) fi^H2N £ %(N ® Gab).

Now naturality yields a commutative diagram

N® N -^—> H2N

(1.16) J"* j *

where x is the Ganea term for the central extension N > ± N » 1. Thus
(1.15) follows immediately from

PROPOSITION 14. x- N ®N -*H2N is surjective.

NOTE. This proposition follows immediately if one assumes Ganea's result.
However, to deduce Ganea's result from Theorem 1.3 we should provide an
independent proof of the proposition.

PROOF. It is sufficient to consider the case where N is finitely generated, since
we may then complete the proof by a direct limit argument. Since the case of N
cyclic is trivial, the proof is completed by observing that, if N = NX®N2, then
x\Ni® N2 maps Nt ® N2 identically onto JVX ® N2 £ H2N.

1.4. We return to the general case. In the light of (1.11) which may be re-
garded as a generalization of (1.12), it is reasonable to ask when we may replace
the term ker eOl|c

 £ l* >H2G in Theorem 2.3 by / ^ (G; No()) —Z-+H2G, for some
suitably defined x • We give below a sufficient condition which, of course, includes
the case where N is central in G. However, we first draw a trivial inference from
Theorem 1.3 and (1.11).

PROPOSITION 1.5. / / d~2: H2(G\H1{N;A))-+H2{N;A)G is surjective, (e.g., if
H2(N,A)G = 0), we have an exact sequence

H1(G;Hl(N;A))-+H2(G;A)^H2(Q;A)-+-.
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To describe the sufficient condition referred to above, we present the exten-

sion JV > ^ G » Q (see (2.5) of [3]). Thus if R > — ^ F " » G is a free
presentation of G we set S = n~1N, and

S> > F »Q

are free presentations of JV, Q respectively.

The condition we impose is

( l . i / ) LL^'^J'^J — L^'^J-

We first prove

LEMMA 1.6. The condition (1.17) is independent of the choice of presenta-
tion.

PROOF. If also R' >-^—> F ' — — » G presents G, and S' = n^^N), there is
a homomorphism cj>:F-+F' such that

TT'^» = 7 t .

Plainly (f>S E S ' , 0i? £ K'. Moreover, $ is determined modulo a function F -> /?'.
It follows that the homomorphism

induced by >̂ is uniquely determined. We conclude, by standard arguments of
a homological-algebraic type, that, in fact, (f> induces an isomorphism

Now <t>[[F,S~],S'] s [ [F ' ,S ' ] ,S ' ] . Suppose that [ [F ' ,S ' ] ,S ' ] c [F ' .U'] and
let x e [ [ F , S ] , S ] . Then iKx[F,K]) is the neutral element of [F',F']/[F',7?'] so
that X G [ F , R ] . Thus [[F,S],S] E [F,R] and the lemma is proved.

We remark that the condition [ [F ,5 ] ,5 ] £ [F,/?] is certainly satisfied by a
central extension. However it is also plain that it is satisfied when JV is commu-
tative and H2N = 0 (or H2G = 0), so that it is more general than centrality.

We prove

THEOREM 1.7. Let JV > > G » Q be an extension satisfying (1.17), with
N commutative. Then there is a natural exact sequence

PROOF. Since ker £„ = (R n [F, S~])I[F, R~\, it is sufficient to exhibit a natural
surjection Xo • Ht(G; JV) » (R n [F, S])/[F, R]. Consider the diagram
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IG®GN

a

N N

Here the columns are exact and [F,S~\I[F,R~\ is commutative by (1.17). Further
6 is defined by

(1.18) 9((xR- l)®GyR) = [x,,y] mod [F,iR], x e F , yeS.

Now [x,yi>>2] = [ x . ^ I x , ^ ] " 1 = tx, y^[x, y2] mod [F,R], by (1.17). Also

[xz,y]\z,yYl = [

which shows that 9 respects the defining relations involved in passing to the tensor
product over G, and so is well-defined by (1.18). It is obvious that 0 is surjective.
It is also clear that 19 = a, since o((xR - 1) ®GyR) = [x,3>] mod R. Thus 6
induces %0: H!(G;N)->(R n [F, S^JlF,R~] and Xo is surjective because 6 is sur-
jective.

That x is canonical is proved as follows. If we define 6' as in (1.18), but with
respect to the presentation R' > *• F ' -» G, then plainly 6'= \j/9, where i/f
is the isomorphism of the proof of Lemma 1.6. Thus x'o = ^Xo- However we
use V>|(Rn[F,S])/[F,R] to indentify the two kernels, (R n [F, S])/[F,/?] and
(R' O[F ' ,S ' ] ) / [F ' ,R ' ] , of e*: H2G -* H2Q. Thus x is canonical. A similar type
of argument shows x to be natural.

We remark that the definition of 9 makes it plain that the homomorphism %
of this theorem generalizes the Ganea map.

NOTE. It is easy to deduce from the L-HS spectral sequence that, if
H2(N;A)Q = 0, then there is an exact sequence

H3(G, A) -* H3(Q;A) -> H^Q;H,(N; A)) -+ H2(G; A) -+ H2(Q; A) ^ • ••.

The exact sequence of Proposition 1.5 then arises by composing the third homo-
morphism above with the surjection

2. The 10-term sequence

2.1 In the second chapter of our note we confine ourselves to the study of
central extensions. We recall from [4] that given the central extension
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N>JL+GJ-^Q

there is an exact sequence

(2.1) H 3 G - H 3 Q -*N® GJU - H2G->H2Q-> N->Gab-+Qab-+0

Here (see (1.16)) the subgroup U of N®Gab is defined as ^#(ker£) where
/ : N ® N -* H2N is the Ganea-Pontryagin map and n*: N ® N -> N ® Gab is in-
duced by fi: N -+ G.

Here we will discuss the continuation to the left of the exact sequence (2.2).
We note that such a discussion is already contained in [2]. However, whereas [2]
uses topological methods, we proceed in a purely algebraic way. Our main result
differs slightly from the main result of [2]; the precise deviation is discussed in 2.5.

Thus, our main result is as follows.

THEOREM 2.1. Given the central extension N > >G » Q, there is a
natural exact sequence

(2.2) HAQ^ A-»H3G/B^H3Q-+C->H2G->H2Q^N^ Gab-+Qab^0

The groups A, C appearing in (2.2) are defined as follows. We define
Ho: ker % -> N ® Gab to be the restriction of p*: N ® N -> N ® Gab to the kernel
of x- N ® N -> H2N. Then

A = k e r n 0 , C = cokerfi0.

Thus, explicitly, A = ker I n ker /i*, C = (N ®
The subgroup B of H3G is defined as follows. Denote by s0: N x G-* G the

projection and by ex: N x G-> G the multiplication, as in (1.5). Then B is the
image under elie:H3(N x G)^H3G of the group kereo+:H3(iV x G)->H3G.
Since es0 = ££!, it is obvious that e*: H3G -* H3Q annihilates B and thus induces
s:H3GIB-*H3Q in (2.2).

PROOF OF THEOREM 2.1. We have only to define the first two homomorphisms
of the sequence (2.2) and prove exactness at A and H3GjB. We will again exploit
the map of L-HS spectral sequences induced by

N>-^-5> G £

Here we concentrate on dimension 3. Then there is a filtration

, , Fo^ Ft^ F2s F3 = H3G
such that 0 1 2 3 3

(2.4) Fo = E^,FJF0 = Elf.FJF! = E",F2 = ker e*: H3G-
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We note in particular that

(2.5) leers* = F2jB.

Now, in the L-HS spectral sequence {Ef} associated with

N > » N x G » G

all differentials dr, r ^ 2, are trivial,

(2.6) E2 = £at.

There are also relations analogous to (2.4).

We will study the homomorphisms <5f: Ft-+ Ft induced by (2.3), i = 0,1,2,

?o ^ F, £ F2

(2.7) U U \S2

Fo s Ft £ F2

Naturally, in this study, we utilize the spectral sequence maps yt: E^3'1-* £^ 3 " ' ,
i = 0,1,2, so that

(2.8) y0 = <5o

and there is a commutative diagram, with exact rows

(2-9)

I — 1 , Z .

Now ^ 3 = H3N, £ j 3 = ^ 3 ^ - Thus y0 ( = <50) is clearly surjective. Next,
we observe that E\2-*E\2 is just i/1(G;H2N)-+/f1(Q;i:/2Ar) and thus certainly
surjective. It follows that yt is surjective, so that, by (2.9), 8t is also surjective.

We now consider (2.9) with i = 2. Since 5 t is surjective, we know that

(2.10) coker<52 = cokery2.

However, B = im 52, so that, by (2.5) and (2.10),

(2.11) kere* ^ cokery2.

It remains to compute coker y2. We know that

El;' = El'l=H2{G;N).

Also ElA = £3
2>1. Thus we must study
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p40 dl. r.21 d2 _02

(2A2) I , 1 ,
We now require to exploit the computation by Andre [1] of the differential d2

in the L-HS spectral sequence. This computation, applied to the special case of
a central extension and trivial coefficients, shows that

d2:H2(Q;N)-*H2N

is the composite of the homomorphism /?, appearing in the 5-term exact sequence
with coefficient module N,

(2.13) H2(G;N) - ^ > H2(Q;N) J—> N®N-?*-+ N® Gab^ N® Qab-+ 0,

and the Ganea-Pontryagin map

X:N®N-*H2N;
thus,

(2.14) d2 = xP:H2(Q;N)^H2N.

If we regard e# in (2.13) as a map e^: H2(G;N) -> ker d2 = /T^ker jf), it is
then plain that

(2.15) coker e** = p~x(ker £)/ker ^ s ker x n ker ^ = yl.

The proof of the theorem is then completed by appeal to (2.11) and the
diagram

H2(G;N)= E2J

(2.16) I £,„ I y2

#4(6) > A •» coker y2,

which shows the bottom row to be exact.

2.2 In this section and the next it is convenient to write G x N instead of
N x G. Our concern is with the quotient group H3G/B appearing in (2.2). By
the Kiinneth Theorem one knows that H3(G x JV) fits into the natural short
exact sequence

(2.17) H3N © (HtG ® H2N) © (H2G ®N)@ H3G>^ H3(G xJV)
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This sequence splits, but non-naturally in general. It follows that ker eOt fits into
the exact sequence

(2.18) H3N ® (HtG ® H2N) © {H2G ® N) > - ker £0# H» T o r ^ G , JV),

which also splits non-naturally.

We recall that the subgroup B £ H3G is the image under e^: H3(G x N)
-»H3G of ker £<,,,.. Here £t: G x N -> G is the multiplication and e0: G x N-+ G
is the projection. It is the purpose of this section to show that

(2.19) £i*(HiG ® H2N) c elif(H2G ® N)

As a consequence we may write

(2.20) H3G/B = H3GI£l*(H3N © H2(G;N)\

in the sense that one first factors out e ^ i / j i V © ( H 2 G ® N)), and then factors
.N) out of the quotient.

For the proof of (2.19) we consider the diagram

G x N x N - ^ > G x W

(2.21) £ l x l I L
GxN - ^ - > G (m = £t |N x N)

which is obviously commutative, and the induced square

(2.22)

H2G®N - ^ i > H3G

Since z: iV ® iV -> H2iV is surjective, so is 1 ® x and (2.19) now follows immediate-

ly.

2.3 We show by a counterexample that in equation (2.20) the term H3N
cannot be dropped.

Consider the diagram

(2.23)

where CB denotes a cyclic group of order n. Of course we have e1#(H3CI1) = H3Cn.
However we claim that, if n is even,
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We first show that e^l tf^C^HjC,,) is well-defined. Since H2Cn = 0, we
have the exact sequence (see (2.17))

(2.24) H3Cn 0 H3Cn >^ H3(Cn x Cn) -» Tor(tf ^ tf tCn).

Now the embeddings H3Cn >->H3(CnxCn) have natural left inverses induced by
the projections Cn x Cn -> Cn. Hence the splitting of (2.24) is canonical.

Next we use [2; Theorem 2.2] to show that under e1+ the subgroup
iCn, HtCn) = Zn is mapped onto 2 • H3Cn = 2 • Zn. Thus, if n is even,

(2.25) e,*(H2(Cn:HxCn)) = 2 • H3Cn # H3Cn.

Finally, comparing sequence (2.2) with sequence (1.5) of [2], we see that in
sequence (2.2) the group

(2.26) H3

appears, whereas in sequence (1.5) of [2] we have the group

(2.27)

The above example (2.23) shows that these two groups do not in general agree,
so that the two sequences are not in general the same. However, it is not at
all difficult to deduce (2.2) from (1.5) of [2].
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