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Landau-type theorems for certain bounded
bi-analytic functions and biharmonic
mappings

Ming-Sheng Liu and Saminathan Ponnusamy

Abstract. In this article, we establish three new versions of Landau-type theorems for bounded bi-
analytic functions of the form F(z) = z̄G(z) + H(z), where G and H are analytic in the unit disk
with G(0) = H(0) = 0 and H′(0) = 1. In particular, two of them are sharp, while the other one either
generalizes or improves the corresponding result of Abdulhadi and Hajj. As consequences, several
new sharp versions of Landau-type theorems for certain subclasses of bounded biharmonic mappings
are proved.

1 Introduction and preliminaries

One of the open problems in classical complex analysis is to obtain the precise
value of the Bloch constant for analytic functions in the unit disk. In [6], Chen
et al. considered the analogous problem of estimating the Bloch constant for planar
harmonic mappings. See also the work of Chen and Guathier [5] for planar harmonic
and pluriharmonic mappings. Motivated by the work from [6], this topic was dealt
by a number of authors with considerable improvements over the previously known
Landau-type theorems. These will be indicated later in this section. In this article,
we consider bi-analytic and biharmonic mappings and establish several new sharp
versions of Landau-type theorems for these two classes of mappings.

1.1 Definitions and notations

A complex-valued function f is a bi-analytic (resp. harmonic) on a domain D ⊂ C if
and only if f is twice continuously differentiable and satisfies the bi-analytic equation
fz̄ z̄(z) = 0 (resp. Laplacian equation fzz(z) = 0) in D, where we use the common
notations for its formal derivatives:

fz = 1
2

( fx − i fy), and fz = 1
2

( fx + i fy), z = x + iy.
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Note also that

Δ f = 4 fzz = ∂2 f
∂x2 + ∂2 f

∂y2 .

It is well-known that every bi-analytic function f in a simply connected domain D has
the representation (cf. [1])

f (z) = z̄g(z) + h(z),

where g and h are complex-valued analytic functions in D. Similarly, every harmonic
function f in a simply connected domain D can be written as f = h + g with f (0) =
h(0), where g and h are analytic on D (for details, see [11]).

A complex-valued function F is said to be biharmonic on a domain D ⊂ C if
and only if F is four times continuously differentiable and satisfies the biharmonic
equation Δ(Δ f ) = 0 in D. It is well-known (cf. [3]) that a biharmonic mapping F in a
simply connected domain D has the following representation:

F(z) = ∣z∣2G(z) + H(z),

where G and H are harmonic in D.
A domain D ⊂ C is said to be starlike if and only if the line segment [0, w] joining

the origin 0 to every other point w ∈ D lies entirely in D.

Definition 1.1 (cf. [23–25]) A continuously differentiable function F on D = {z ∶
∣z∣ < 1} is said to be fully starlike in D if it is sense-preserving, F(0) = 0, F(z) ≠ 0 in
D/{0} and the curve F(re i t) is starlike with respect to the origin for each r ∈ (0, 1).
The last condition is same as saying that

∂ arg F(re i t)
∂t

= Re( zFz(z) − z̄Fz̄(z)
F(z) ) > 0

for all z = r e i t and r ∈ (0, 1).

For a complex-valued function f in D, its Jacobian J f (z) is given by J f (z) =
∣ fz(z)∣2 − ∣ fz(z)∣2. We say that a harmonic mapping f is locally univalent and sense-
preserving if and only if its Jacobian J f (z) > 0 for z ∈ D (cf. [16]). For continuously
differentiable function f, let

Λ f (z) = ∣ fz(z)∣ + ∣ fz(z)∣ and λ f (z) = ∣∣ fz(z)∣ − ∣ fz(z)∣∣.

Throughout, Dr = {z ∈ C ∶ ∣z∣ < r} denotes the open disk about the origin so that
D ∶= D1 is the unit disk. For the convenience of the reader, let us fix some basic
notations.
• Hol(D) = { f ∶ f is analytic in D}.
• BM = { f ∈ Hol(D) ∶ ∣ f (z)∣ ≤ M in D}.
• A0 = { f ∈ Hol(D) ∶ f (0) = 0} and A1 = { f ∈ Hol(D) ∶ f ′(0) = 1}.
• A = { f ∈ Hol(D) ∶ f (0) = 0 = f ′(0) − 1} ∶= A1 ∩ A0 .
• H = { f ∶ f is harmonic in D}.
• H0 = { f ∈ H ∶ f (0) = 0}.
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• BHM = { f ∈ H ∶ ∣ f (z)∣ ≤ M in D}.
• BH

0
M = BHM ∩H0 .

• BiH = { f ∶ f is biharmonic in D}.
• BiA0 = { f ∶ f is bi-analytic in D with f (0) = 0}.

Definition 1.2 A function f in a family is said to belong to S(r; R) if it is univalent in
Dr and the range f (Dr) contains a schlicht disk DR .

1.2 Landau and Bloch theorems

The classical theorem of Landau states that if f ∈ BM ∩A for some M > 1, then
f ∈ S(r; R) with r = 1/(M +

√
M2 − 1) and R = Mr2. This result is sharp, with the

extremal function f0(z) = Mz 1−Mz
M−z .

The Bloch theorem asserts the existence of a positive constant number b such that
if f ∈ A1, then f (D) contains a schlicht disk of radius b, that is, a disk of radius b
which is the univalent image of some subregion of the unit disk D. The supremum of
all such constants b is called the Bloch constant (see [6, 13]).

In 2000, under a suitable restriction, Chen et al. [6] first established two non-sharp
versions of Landau-type theorems for bounded harmonic mapping on the unit disk
which we now recall with the help of our notation.

Theorem A [6, Theorem 3] If f ∈ BH
0
M with the normalization fz(0) = 0 and

fz(0) = 1, then f ∈ S(r1; r1/2), where

r1 = π2

16mM
≈ 1

11.105M
,

where m ≈ 6.85 is the minimum of the function (3 − r2)/(r(1 − r2)) for 0 < r < 1.

Theorem B [6, Theorem 4] If f ∈ H0 such that λ f (0) = 1, and Λ f (z) ≤ Λ for z ∈ D,
then f ∈ S(r2; r2/2), where r2 = π

4(1+Λ) .

Theorems A and B are not sharp. Better estimates were given in [12] and this topic
was later dealt by a number of authors (cf. [5, 7, 9, 10, 14, 15, 18, 19]). In 2008, Abdulhadi
and Muhanna established two versions of Landau-type theorems for certain bounded
biharmonic mappings in [2]. For later developments on this topic, we refer to [8, 9, 17,
20, 22, 26]. In particular, sharp versions of Theorem B have been established in [15, 18,
19], and the corresponding sharp versions of Landau-type theorems for normalized
bounded biharmonic mappings have also been established in [21].

Theorem C [21, Theorem 3.1] Suppose that Λ1 ≥ 0 and Λ2 > 1. Let F ∈ BiH and
F(z) = ∣z∣2G(z) + H(z), where G , H ∈ H0, λF(0) = 1, ΛG(z) ≤ Λ1 and ΛH(z) < Λ2
for all z ∈ D. Then F ∈ S(r3; R3), where r3 is the unique root in (0, 1) of the equation

Λ2
1 − Λ2r
Λ2 − r

− 3Λ1r2 = 0,
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and

R3 = Λ2
2r3 + (Λ3

2 − Λ2) ln (1 − r3

Λ2
) − Λ1r3

3 .

This result is sharp.

Theorem D [21, Theorem 3.3] Suppose that Λ ≥ 0. Let F ∈ BiH and F(z) =
∣z∣2G(z) + H(z), where G , H ∈ H0, λF(0) = 1, ΛG(z) ≤ Λ and ΛH(z) ≤ 1 for all z ∈ D.
Then F ∈ S(r4; R4), where

r4 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, when 0 ≤ Λ ≤ 1
3

,
1√
3Λ

, when Λ > 1
3

,

and R4 = r4 − Λr3
4. This result is sharp.

However, the sharp version of Landau-type theorem for normalized bounded
harmonic mappings or Theorem A for the case of the bound M > 1 has not been
established. In 2022, Abdulhadi and Hajj established the following non-sharp Landau-
type theorem for certain bounded bi-analytic functions.

Theorem E [1] Let F ∈ BiA0 and F(z) = z̄G(z) + H(z), where G , H ∈ A ∩BM for
some M > 0. Then, F ∈ S(r5; R5), where

r5 = 1 −
√

2M
2M + 1

and R5 = r5 − r2
5 − M r2

5 + r3
5

1 − r5
.

Theorem E is not sharp too.

1.3 Two natural question on Landau-type theorem

From the discussion above, a couple of natural questions arise.

Problem 1.3 Can we establish some sharp versions of Landau-type theorems for
certain bounded bi-analytic functions?

Problem 1.4 Whether we can further generalize and/or improve Theorem E?

The article is organized as follows: In Section 2, we present statements of four
theorems out of which one of them improves Theorem E. In addition, we provide
several sharp versions of Landau-type theorems for certain bounded bi-analytic
functions, which provide an affirmative answer to Problems 1.3 and 1.4. In particular,
as consequence, we also obtain four sharp versions of Landau-type theorems for
certain bounded biharmonic mappings. In Section 3, we state a couple of lemmas
which are needed for the proofs of main results in Section 4.
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2 Statement of main results and remarks

We first establish the following sharp version of Landau-type theorem for certain
subclass of bounded bi-analytic functions.

Theorem 2.1 Suppose that Λ1 ≥ 0 and Λ2 > 1. Let F ∈ BiA0 and F(z) = z̄G(z) +
H(z), where G ∈ A0, H ∈ A, ∣G′(z)∣ ≤ Λ1 and ∣H′(z)∣ < Λ2 for all z ∈ D. Then F ∈
S(ρ1; σ1), where

ρ1 = 2Λ2

Λ2(2Λ1 + Λ2) +
√

Λ2
2(2Λ1 + Λ2)2 − 8Λ1Λ2

,(2.1)

and

σ1 = F1(ρ1), F1(z) = Λ2
2z − Λ1∣z∣2 + (Λ3

2 − Λ2) ln (1 − z
Λ2

).(2.2)

This result is sharp, with an extremal function given by F1(z).

For the case Λ1 ≥ 0 and Λ2 = 1, we will prove the following sharp version of
Landau-type theorem for certain subclass of bounded bi-analytic functions.

Theorem 2.2 Suppose that Λ ≥ 0. Let F ∈ BiA0 and F(z) = z̄G(z) + H(z), where G ∈
A0, H ∈ A, ∣G′(z)∣ ≤ Λ, and ∣H(z)∣ < 1 or ∣H′(z)∣ ≤ 1 for all z ∈ D. Then F ∈ S(ρ2; σ2),
where

ρ2 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, when 0 ≤ Λ ≤ 1
2

,
1

2Λ
, when Λ > 1

2
,

and σ2 = ρ2 − Λρ2
2 . This result is sharp.

Remark 2.3 Note that G ∈ A0 implies that G(z) = zG1(z) with G1(z) being analytic
in D. Thus, the bi-analytic function F(z) = z̄G(z) + H(z) reduces to the form F(z) =
∣z∣2G1(z) + H(z) which is clearly a biharmonic mappings. Hence, we conclude the
following corollaries from Theorems 2.1 and 2.2.

Corollary 2.4 Suppose that Λ1 ≥ 0 and Λ2 > 1. Let F(z) = ∣z∣2G(z) + H(z) belong to
BiH, where G ∈ Hol(D) and H ∈ A.
(1) If ∣G(z) + zG′(z)∣ ≤ Λ1, and ∣H′(z)∣ < Λ2 for all z ∈ D, then F ∈ S(ρ1; σ1) where

ρ1 and σ1 are given by (2.1) and (2.2), respectively. This result is sharp, with an
extremal function F1(z) given by (2.2).

(2) If ∣G(z) + zG′(z)∣ ≤ Λ1, and ∣H(z)∣ < 1 or ∣H′(z)∣ ≤ 1 for all z ∈ D, then F ∈
S(ρ2; σ2) where ρ2 and σ2 are as in Theorem 2.2. This result is sharp, with an
extremal function given by F2(z) = Λ1∣z∣2 + z.

If we replace the condition “∣G(z) + zG′(z)∣ ≤ Λ1 for all z ∈ D” by the conditions
“G(0) = 0 and ∣G′(z)∣ ≤ Λ1 for all z ∈ D” in Corollary 2.4, then, by Theorems C and

https://doi.org/10.4153/S0008439523000577 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000577


Landau-type theorems for bi-analytic functions and biharmonic mappings 157

D, we have the following sharp versions of Landau-type theorems for the special
subclasses of bounded biharmonic mappings.

Corollary 2.5 Suppose that Λ1 ≥ 0 and Λ2 > 1. Let F(z) = ∣z∣2G(z) + H(z) belong to
BiH, where G ∈ Hol(D) and H ∈ A.
(1) If ∣G′(z)∣ ≤ Λ1, and ∣H′(z)∣ < Λ2 for all z ∈ D, then F ∈ S(r3; R3), where r3 and

R3 are as in Theorem C. This result is sharp, with an extremal function given by

F0(z) = Λ2
2z − Λ1∣z∣2z + (Λ3

2 − Λ2) ln (1 − z
Λ2

).

(2) If ∣G′(z)∣ ≤ Λ1, and ∣H(z)∣ < 1 or ∣H′(z)∣ ≤ 1 for all z ∈ D, then F ∈ S(r4; R4),
where r4 and R4 are as in Theorem D. This result is sharp, with an extremal
function given by F2(z) = Λ1∣z∣2 + z.

Now, we improve Theorem E by establishing the following results.

Theorem 2.6 Let F ∈ BiA0 and F(z) = z̄G(z) + H(z), where G ∈ BM1 ∩A and H ∈
BM2 ∩A for some M1 > 0 and M2 > 0. Then F ∈ S(ρ3; σ3), where ρ3 is the unique root
in (0, 1) of the equation

1 − (M2 − 1
M2

) 2r − r2

(1 − r)2 − (M1 − 1
M1

)(3 − 2r)r2

(1 − r)2 − 2r = 0,(2.3)

and

σ3 = ρ3 − ρ2
3 − (M2 − 1

M2
) ρ2

3
1 − ρ3

− (M1 − 1
M1

) ρ3
3

1 − ρ3
.

Remark 2.7 If we set M1 = M2 = 1 in Theorem 2.6, then it is clear that G(z) = z
and H(z) = z by Schwarz lemma. Thus, ρ3 = 1

2 and σ3 = 1
4 are sharp, with an extremal

function F3(z) = ∣z∣2 + z. Moreover, if we set M1 = M2 = M in Theorem 2.6, then one
can easily gets an improved version of Theorem E.

Furthermore, as with Remark 2.3, we easily have the following.

Corollary 2.8 Let F(z) = ∣z∣2G(z) + H(z) belong to BiH, where G ∈ BM1 ∩A and
H ∈ BM2 ∩A for some M1 > 0 and M2 > 0. Then F ∈ S(ρ3; σ3), where ρ3 and σ3 are as
in Theorem 2.6.

Remark 2.9 Again, if M1 = M2 = 1, then we have ρ3 = 1
2 and σ3 = 1

4 with an extremal
function F3(z) = ∣z∣2 + z.

Finally, we improve Theorem 2.6 by establishing the following theorem.

Theorem 2.10 Let F ∈ BiA0 and F(z) = z̄G(z) + H(z), where 0 /≡ G ∈ BM1 ∩A and
H ∈ BM2 ∩A for some M1 > 0 and M2 > 0. Then F is sense-preserving, univalent and
fully starlike in the disk Dρ3 , where ρ3 is the unique root in (0, 1) of equation (2.3).
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3 Key lemmas

In order to prove our main results, we need the following lemmas which play a key
role in establishing the subsequent results in Section 4.

Lemma 3.1 Let H ∈ A1 and ∣H′(z)∣ < Λ for all z ∈ D and for some Λ > 1.
(1) For all z1 , z2 ∈ Dr (0 < r < 1, z1 ≠ z2), we have

∣H(z1) − H(z2)∣ = ∣ ∫
γ

H′(z) dz∣ ≥ Λ 1 − Λr
Λ − r

∣z1 − z2∣,

where γ = [z1 , z2] denotes the closed line segment joining z1 and z2.
(2) For z′ ∈ ∂Dr (0 < r < 1) with w′ = H(z′) ∈ H(∂Dr) and ∣w′∣ = min{∣w∣ ∶ w ∈ H

(∂Dr)}, set γ0 = H−1(�0) and �0 = [0, w′] denotes the closed line segment joining
the origin and w′. Then we have

∣H(z′)∣ ≥ Λ ∫
r

0

1
Λ − t
1 − t

Λ
dt = Λ2r + (Λ3 − Λ) ln (1 − r

Λ
) .

Proof Set ω(z) = H′(z)/Λ, z ∈ D. Then ω ∈ B1 with α ∶= ω(0) = H′(0)
Λ = 1

Λ . Using
Schwarz–Pick Lemma, we have

1
Λ − r
1 − r

Λ
= α − r

1 − αr
≤ Re ω(z) ≤ ∣ω(z)∣ ≤ α + r

1 + αr
, z ∈ Dr .

(1) Fix z1 , z2 ∈ Dr (0 < r < 1) with z1 ≠ z2, set θ0 = arg(z2 − z1). Then

∣H(z1) − H(z2)∣ = ∣ ∫
γ

H′(z) dz∣ = ∣∫
γ

Λ ω(z)e iθ0 ∣dz∣∣

≥ Λ ∫
γ

Re ω(z)∣dz∣

≥ Λ ∫
γ

1
Λ − r
1 − r

Λ
∣dz∣ = Λ 1 − Λr

Λ − r
∣z1 − z2∣.

(2) For z′ ∈ ∂Dr (0 < r < 1) with w′ = H(z′) ∈ H(∂Dr), ∣w′∣ = min{∣w∣ ∶ w ∈ F
(∂Dr)} and �0 = [0, w], set γ0 = H−1(�0) so that

∣H(z′)∣ = ∣w′∣ = ∫
γ0

∣H′(ζ)∣ ∣dζ ∣ = Λ ∫
γ0

∣ω(ζ)∣ ∣dζ ∣

≥ Λ ∫
r

0

1
Λ − t
1 − t

Λ
dt = Λ2r + (Λ3 − Λ) ln (1 − r

Λ
) ,

and the proof is complete. ∎

Lemma 3.2 (Carlson lemma, [4]) If F ∈ B1 and F(z) = ∑∞n=0 anzn , then the follow-
ing inequalities hold:
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(a) ∣a2n+1∣ ≤ 1 − ∣a0∣2 − ⋯ − ∣an ∣2 , n = 0, 1, . . ..
(b) ∣a2n ∣ ≤ 1 − ∣a0∣2 − ⋯ − ∣an−1∣2 − ∣an ∣

2

1+∣a0 ∣
, n = 1, 2, . . ..

These inequalities are sharp.

Lemma 3.3 If f ∈ BM ∩A0 for some M > 0 and f (z) = ∑∞n=1 anzn , then

(a) ∣a2n ∣ ≤ M [1 − (∣a1∣2 + ⋯ + ∣an ∣2
M2 )] , n = 1, 2, . . ..

(b) ∣a2n+1∣ ≤ M [1 − (∣a1∣2 + ⋯ + ∣an ∣2
M2 ) − ∣an+1∣2

M(M + ∣a1∣)
] , n = 1, 2, . . ..

In particular, if ∣a1∣ = 1, i.e., if f ∈ BM ∩A, then M ≥ 1 and

∣an ∣ ≤ M − 1
M

for n = 2, 3, . . . .

These inequalities are sharp, with the extremal functions fn(z), where

f1(z) = z, fn(z) = Mz 1 − Mzn−1

M − zn−1 = z − (M − 1
M

)zn −
∞

∑
k=3

M2 − 1
Mk−1 z(n−1)(k−1)+1

for n = 2, 3, . . ..

Proof Setting g(z) = f (z)
Mz for z ∈ D/{0}, and g(0) = a1

M , shows that g ∈ B1 and

g(z) =
∞

∑
n=0

bnzn ,

where bn = an+1/M for n ≥ 0. Note that b0 = a1/M. Applying Lemma 3.2 to the
coefficients bn of g gives the desired inequality.

In particular, if ∣a1∣ = 1, then we have M ≥ 1 and it follows from (a) and (b) that

∣an ∣ ≤ M (1 − ∣a1∣2
M2 ) = M − 1

M
for n ≥ 2,

and it is evident that equalities hold for all n = 2, 3, . . . for the functions

fn(z) = Mz 1 − Mzn−1

M − zn−1 = z − (M − 1
M

)zn −
∞

∑
k=3

M2 − 1
Mk−1 z(n−1)(k−1)+1 ,

and the proof is complete. ∎

Lemma 3.4 Let F(z) = z̄G(z) + H(z) be a bi-analytic function of the unit disk D,
where G(z) =

∞

∑
n=1

anzn /≡ 0 and H(z) = z +
∞

∑
n=2

bnzn are analytic in D, and satisfy the

condition
∞

∑
n=2

n∣bn ∣rn−1 +
∞

∑
n=1

(n + 1)∣an ∣rn ≤ 1,(3.1)

for some r ∈ (0, 1). Then F(z) is sense-preserving, univalent and fully starlike in the
disk Dr .
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Proof We may use arguments similar to those in the proof of [23, Lemma 1]. For
the sake of readability, we provide the details. Elementary computation gives

zFz(z) − z̄Fz̄(z) − F(z) = z̄
∞

∑
n=1

(n − 2)anzn +
∞

∑
n=2

(n − 1)bnzn .(3.2)

Evidently, JF(0) = 1. Now, we fix r ∈ (0, 1] and find that

∣Fz(z)∣ − ∣Fz̄(z)∣ = ∣z̄
∞

∑
n=1

nanzn−1 + 1 +
∞

∑
n=2

nbnzn−1∣ − ∣
∞

∑
n=1

anzn ∣

> 1 −
∞

∑
n=2

n∣bn ∣rn−1 −
∞

∑
n=1

(n + 1)∣an ∣rn ≥ 0,

and therefore, JF(z) = (∣Fz(z)∣ + ∣Fz̄(z)∣)(∣Fz(z)∣ − ∣Fz̄(z)∣) > 0 for ∣z∣ < r.
Thus, F is sense-preserving in Dr . Finally, fix r0 ∈ (0, r] and consider the circle

∂Dr0 = {z ∶ ∣z∣ = r0}. For z ∈ ∂Dr0 , it follows from G(z) =
∞

∑
n=1

anzn /≡ 0, (3.1) and (3.2)

that

∣zFz(z) − z̄Fz̄(z) − F(z)∣ ≤
∞

∑
n=1

∣n − 2∣ ∣an ∣ ∣z∣n+1 +
∞

∑
n=2

(n − 1)∣bn ∣ ∣z∣n

= ∣z∣(
∞

∑
n=2

n∣bn ∣ ∣z∣n−1 +
∞

∑
n=1

(n + 1)∣an ∣ ∣z∣n)

− ∣a1∣ ∣z∣2 − 3
∞

∑
n=2

∣an ∣ ∣z∣n+1 −
∞

∑
n=2

∣bn ∣ ∣z∣n

< ∣z∣ −
∞

∑
n=2

∣bn ∣ ∣z∣n − ∣z̄∣
∞

∑
n=1

∣an ∣ ∣z∣n

≤ ∣H(z)∣ − ∣z̄G(z)∣ ≤ ∣F(z)∣,

which implies that

∣ zFz(z) − z̄Fz̄(z)
F(z) − 1∣ < 1 for ∣z∣ = r0 .

Thus, we obtain that F is univalent on ∂Dr0 , and it maps ∂Dr0 onto a starlike curve.
Hence, by the sense-preserving property and the degree principle, we see that F is
univalent in Dr0 . Since r0 ∈ (0, r] is arbitrary, we conclude that F is univalent and
fully starlike in Dr . The proof is complete. ∎

4 Proofs of the main results

4.1 Proof of Theorem 2.1

By the assumption on G ∈ A0, we have

∣G(z)∣ = ∣ ∫
[0,z]

G′(z) dz∣ ≤ ∫
[0,z]

∣G′(z)∣ ∣dz∣ ≤ Λ1∣z∣, z ∈ D.(4.1)
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We first prove that F is univalent in the disk Dρ1 . Choose, for all z1 , z2 ∈ Dr (0 < r <
ρ1, z1 ≠ z2), where ρ1 is defined by (2.1). As H′(0) = 1, ∣G′(z)∣ ≤ Λ1 and ∣H′(z)∣ < Λ2
for all z ∈ D, we obtain from Lemma 3.1 that

∣F(z2) − F(z1)∣ = ∣∫
[z1 ,z2]

Fz(z) dz + Fz̄(z) dz̄∣ = ∣∫
[z1 ,z2]

(z̄G′(z) +H′(z)) dz +G(z) dz̄∣

≥ ∣∫
[z1 ,z2]

H′(z) dz∣ − ∣∫
[z1 ,z2]

z̄G′(z) dz +G(z) dz̄∣

≥ ∣z1 − z2 ∣ (Λ2
1 − Λ2r
Λ2 − r

− 2Λ1r)

= ∣z1 − z2 ∣ ⋅
2Λ1r2 − Λ2(2Λ1 + Λ2)r + Λ2

Λ2 − r

= ∣z1 − z2 ∣
2Λ1(r − ρ1)(r − A)

Λ2 − r
,

which is positive, if r < ρ1, where

A =
Λ2(2Λ1 + Λ2) +

√
Λ2

2(2Λ1 + Λ2)2 − 8Λ1Λ2

4Λ1
.

This proves the univalency of F in the disk Dρ1 .
Next, we prove that F(Dρ1 ) ⊇ Dσ1 , where σ1 is defined by (2.2). First, we note

that F(0) = 0, for z′ ∈ ∂Dρ1 with w′ = F(z′) ∈ F(∂Dρ1 ) and ∣w′∣ = min{∣w∣ ∶ w ∈ F
(∂Dρ1 )}. By (4.1) and Lemma 3.1, we have that

∣w′∣ = ∣z̄′G(z′) + H(z′)∣ ≥ ∣H(z′)∣ − Λ1ρ2
1 ≥ h0(ρ1) = σ1 ,

which implies that F(Dρ1 ) ⊇ Dσ1 , where

h0(x) = Λ2
2x − Λ1x2 + (Λ3

2 − Λ2) ln (1 − x
Λ2

) , x ∈ [0, 1].(4.2)

Now, we prove the sharpness of ρ1 and σ1. To this end, we consider the bi-analytic
function F1(z) which is given by (2.2). It is easy to verify that F1(z) satisfies the
hypothesis of Theorem 2.1, and thus, we have that F1(z) is univalent in Dρ1 , and
F1(Dρ1 ) ⊇ Dσ1 .

To show that the radius ρ1 is sharp, we need to prove that F1(z) is not univalent in
Dr for each r ∈ (ρ1 , 1]. In fact for the real differentiable function h0(x) given above,
we have

h′0(x) = 2Λ1x2 − Λ2(2Λ1 + Λ2)x + Λ2

Λ2 − x
,

which is continuous and strictly decreasing on [0, 1] with h′0(ρ1) = 0. It follows that
h′0(x) = 0 for x ∈ [0, 1] if and only if x = ρ1. So h0(x) is strictly increasing on [0, ρ1)
and strictly decreasing on [ρ1 , 1]. Since h0(0) = 0, there is a unique real ρ′1 ∈ (ρ1 , 1]
such that h0(ρ′1) = 0 if h0(1) ≤ 0, and

σ1 = Λ2
2ρ1 + (Λ3

2 − Λ2) ln (1 − ρ1

Λ2
) − Λ1ρ2

1 = h0(ρ1) > h0(0) = 0.(4.3)
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For every fixed r ∈ (ρ1 , 1], set x1 = ρ1 + ε, where

ε =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min { r − ρ1

2
, ρ′1 − ρ1

2
} , if h0(1) ≤ 0,

r − ρ1

2
, if h0(1) > 0.

By the mean value theorem, there is a unique δ ∈ (0, ρ1) such that x2 ∶= ρ1 − δ ∈
(0, ρ1) and h0(x1) = h0(x2).

Let z1 = x1 and z2 = x2. Then z1 , z2 ∈ Dr with z1 ≠ z2 and observe that

F1(z1) = F1(x1) = h0(x1) = h0(x2) = F1(z2).

Hence, F1 is not univalent in the disk Dr for each r ∈ (ρ2 , 1], and thus, the radius ρ1 is
sharp.

Finally, note that F1(0) = 0 and picking up z′ = ρ1 ∈ ∂Dρ1 , by (2.2), (4.2), and (4.3),
we have

∣F1(z′) − F1(0)∣ = ∣F1(ρ1)∣ = ∣h0(ρ1)∣ = h0(ρ1) = σ1 .

Hence, the radius σ1 of the schlicht disk is also sharp. ◻

4.2 Proof of Theorem 2.2

The assumption on H, namely, H ∈ B1 ∩A, clearly gives that H(z) ≡ z in D (by
Schwarz’s lemma). Thus, F reduces to the form F(z) = z̄G(z) + z.

Now, we prove F is univalent in the disk Dρ1 . To this end, for any z1 , z2 ∈ Dr (0 <
r < ρ2) with z1 ≠ z2, by the condition G(0) = 0 and ∣G′(z)∣ ≤ Λ for all z ∈ D, and (4.1),
it follows that ∣G(z)∣ ≤ Λ∣z∣ in D. Consequently,

∣F(z1) − F(z2)∣ ≥ ∣z1 − z2∣ − ∣ ∫
[z1 ,z2]

z̄G′(z)dz + G(z)dz̄∣

≥ ∣z1 − z2∣(1 − 2Λr) > 0,

which proves the univalency of F in the disk Dρ2 , where ρ2 is given in the statement
of the theorem.

Noticing that F(0) = 0, for any z = ρ2e iθ ∈ ∂Dρ2 , we have

∣F(z)∣ = ∣z̄G(z) + z∣ ≥ ∣z∣ − ρ1∣G(z)∣ ≥ ρ2 − Λρ2
2 = σ2 .

Hence, F(Dρ2 ) contains a schlicht disk Dσ2 .
Finally, for F2(z) = Λ∣z∣2 + z, a direct computation verifies that ρ2 and σ2 are sharp.

This completes the proof.◻

4.3 Proof of Theorem 2.6

As G ∈ BM1 ∩A and H ∈ BM2 ∩A by assumption, we may write

G(z) =
∞

∑
n=1

anzn and H(z) =
∞

∑
n=1

bnzn ,
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where a1 = b1 = 1, and it follows from Lemma 3.3 that

∣an ∣ ≤ M1 − 1
M1

and ∣bn ∣ ≤ M2 − 1
M2

for all n ≥ 2.(4.4)

We first prove that F is univalent in the disk Dρ3 , where ρ3 is defined by (2.3).
Indeed, for all z1 , z2 ∈ Dr (0 < r < ρ3, z1 ≠ z2), we see that (with γ = [z1 , z2])

∣F(z2) − F(z1)∣ = ∣∫
γ

Fz(z)dz + Fz̄(z)dz̄∣

≥ ∣ ∫
γ

H′(0)dz∣ − ∣ ∫
γ
(H′(z) − H′(0))dz∣ − ∣ ∫

γ
z̄G′(z)dz + G(z)dz̄∣

≥ ∣z1 − z2∣[1 −
∞

∑
n=2

n∣bn ∣rn−1 −
∞

∑
n=1

(n + 1)∣an ∣rn]

≥ ∣z1 − z2∣[1 − (M2 − 1
M2

)
∞

∑
n=2

nrn−1 − (M1 − 1
M1

)
∞

∑
n=2

(n + 1)rn − 2r]

= ∣z1 − z2∣[1 − (M2 − 1
M2

) 2r − r2

(1 − r)2 − (M1 − 1
M1

)(3 − 2r)r2

(1 − r)2 − 2r] > 0.

This implies F(z1) ≠ F(z2), which proves the univalency of F in the disk Dρ3 .
Next, we prove that F(Dρ3 ) ⊇ Dσ3 , where σ3 is as in the statement. Indeed, note

that F(0) = 0 and for any z′ ∈ ∂Dρ3 with w′ = F(z′) ∈ F(∂Dρ3 ), it follows from (4.4)
that

∣w′∣ = ∣z̄′G(z′) + H(z′)∣ ≥ ∣H(z′)∣ − ρ3∣G(z′)∣

≥ ∣z′∣ −
∞

∑
n=2

∣bn ∣ ∣z′∣n − ρ3

∞

∑
n=1

∣an ∣ ∣z′∣n

≥ ρ3 − ρ2
3 − (M2 − 1

M2
) ρ2

3
1 − ρ3

− (M1 − 1
M1

) ρ3
3

1 − ρ3
= σ3 ,

which implies that F(Dρ3 ) ⊇ Dσ3 . ◻

4.4 Proof of Theorem 2.10

We apply Lemmas 3.3 and 3.4. Now, by the assumption and the method of proof of
Theorem 2.6, the inequalities in (4.4) hold, and thus, we have

∞

∑
n=2

n∣bn ∣rn−1 +
∞

∑
n=1

(n + 1)∣an ∣rn

≤ (M2 − 1
M2

)
∞

∑
n=2

nrn−1 + (M1 − 1
M1

)
∞

∑
n=2

(n + 1)rn + 2r ≤ 1

for r ≤ ρ3. Hence, the desired conclusion of Theorem 2.10 follows from Lemma 3.4. ◻
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