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Abstract
For a graphH and a hypercubeQn, ex(Qn,H) is the largest number of edges in anH-free subgraph ofQn. If
limn→∞ ex(Qn,H)/|E(Qn)| > 0,H is said to have a positive Turán density in a hypercube or simply a positive
Turán density; otherwise, it has zero Turán density. Determining ex(Qn,H) and even identifying whether
H has a positive or zero Turán density remains a widely open question for general H. By relating extremal
numbers in a hypercube and certain corresponding hypergraphs, Conlon found a large class of graphs,
ones having so-called partite representation, that have zero Turán density. He asked whether this gives a
characterisation, that is, whether a graph has zero Turán density if and only if it has partite representation.
Here, we show that, as suspected by Conlon, this is not the case. We give an example of a class of graphs
which have no partite representation, but on the other hand, have zero Turán density. In addition, we show
that any graph whose every block has partite representation has zero Turán density in a hypercube.
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1. Introduction
A hypercube Qn with a ground set X of size n is a graph on a vertex set {A :A⊆ X} and an edge
set consisting of all pairs {A, B}, where A⊆ B and |A| = |B| − 1. Unless specified, X = [n], where
[n]= {1, . . . , n}. We often identify vertices of Qn with binary vectors that are indicator vectors
of respective sets. If a graph is a subgraph of Qn, for some n, it is called cubical. We denote the
number of vertices and the number of edges in a graphH by |H| and ||H||, respectively. The degree
of a vertex y in a graph H is denoted d(y) or dH(y). A block in a graph is a maximal connected
subgraph without a cut-vertex. Note that two distinct blocks in a graph share at most one vertex.
We shall need the notion of layers. The ith vertex layer of Qn, denoted Vi, is the set of vertices([n]

i
)
, i= 0, . . . , n. The ith edge layer Li of Qn is a graph induced by Vi ∪Vi−1, i ∈ [n]. A cycle of

length n is denoted by Cn.
For a graph H, let the extremal number of H in Qn, denoted ex(Qn,H), be the largest number

of edges in a subgraph G of Qn such that there is no subgraph of G isomorphic to H. A graph
H is said to have zero Turán density in a hypercube if ex(Qn,H)= o(||Qn||). Otherwise, we say
that H has a positive Turán density in a hypercube. Note that by using a standard double counting
argument, the sequence ex(Qn,H)/||Qn|| is non-increasing; thus, the above density notions are
well defined. When clear from context, we simply say Turán density instead of Turán density in
a hypercube. The behaviour of the function ex(Qn,H) is not well understood in general, and it
is not even known what graphs have positive or zero Turán density. Currently, the only known
cubical graphs of positive Turán density are those containing C4 or C6 as a subgraph, [8, 9], and
one special graph of girth 8 [2]. Conlon [10] observed a connection between extremal numbers
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2 M. Axenovich

Figure 1. A graph H(3) with the grey vertex being a main pole of the top theta graph and a subdivision vertex the bottom
theta graph. The labelling of the edges and a corresponding colouring is a nice edge-colouring of one theta graph. Larger
vertices correspond to the poles.

in a hypercube and classical extremal numbers for uniform hypergraphs. This connection proved
that graphs in a large class, including some subdivisions, have zero Turán density, see [2]. For
more results on extremal numbers in a hypercube, see [1, 5, 6, 16, 17].

A graph H has a k-partite representation H, where H is k-partite k-uniform hypergraph, if for
some n, H is isomorphic to a subgraph H′ of the kth layer Lk of Qn such that V(H′)∩Vk is an
edge set of H. The graph H′ is called a representing graph. If H has a k-partite representation for
some k, we say thatH has a partite representation. Here, a k-uniform hypergraph is k-partite if the
vertex set can be partitioned into k parts such that each hyperedge has exactly one vertex in each
part. Here, we omit the brackets and commas denoting sets, when clear from context, that is, for
a set {1, 2} we simply write 12. For example, if H = C8, it has a 2-partite representation H with
hyperedges 12, 23, 34, 14 corresponding to an C8 with vertices 1, 12, 2, 23, 3, 34, 4, 14, 1, in order.
For a k-uniform hypergraph H, exk(n,H) denotes the largest number of edges in a k-uniform
n-vertex hypergraph with no subgraph isomorphic toH.

Using a theorem by Erdős [11], that states that exk(n,H)= on(nk) for any k-partite hypergraph
H, Conlon [10] proved that if a graphH has partite representation, then ex(Qn,H)= o(||Qn||). In
the same paper, Conlon [10] asked whether cubical graphs that have no partite representation have
positive Turán density. Here, we show that it is not the case, that is, having a partite representation
is not a characterisation for zero Turán density in a hypercube. For that, we construct a family of
cubical graphs that have no partite representation but have zero Turán density. These graphs are
formed by two copies of so-called theta-graphs that we define below.

For a graph G, let G(1) be a 1-subdivision of G, that is, a graph G′ with a vertex set V(G)∪ E(G)
and an edge set {ue, ev : e= uv ∈ E(G)}. We call the vertices from V(G) in G′, the poles of G′ and
other vertices, the subdivision vertices. LetKs,t denote a complete bipartite graph with parts of sizes
s and t, respectively. We shall be considering the 1-subdivision of Kq,2, q≥ 3. We shall call the two
vertices of degree q in Kq,2(1), themain poles. Note that Kq,2(1) is also referred to as a theta graph
with q legs of length 4. Here, the legs are paths with end points being main poles. We shall use a
shorter notation �(q) for Kq,2(1), when appropriate. If a graph G contains a subgraph isomorphic
to H, we call such a subgraph a copy of H.

A characterisation by Havel andMoravek [14] states that a graph is cubical if and only if it has a
nice edge-colouring. Here, an edge-colouring is nice if any cycle uses each colour an even number
of times and each nontrivial path uses some colour an odd number of times.

Let H(q) be a union of two copies of �(q) sharing exactly one vertex that is a main pole of one
copy and a subdivision vertex in another copy, see Fig. 1.

Marquardt [15] showed that H(q) has no partite representation for q= 3. Here, we give a
slightly different proof of this fact for any q≥ 3 and show that H(q) has zero Turán density. In
doing so, we prove a result of an independent interest that gives a new class of cubical graphs
of zero Turán density. Note that this class contains all previously known graphs of zero Turán
density, as well as new such graphs.
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Theorem 1. Let H be a graph whose every block has a partite representation. ThenH has zero Turán
density in a hypercube.

Theorem 2. For any q≥ 3 the graph H(q) is cubical, has no partite representation, but has zero
Turán density in a hypercube.

2. Proofs of main results
We shall need the following lemmas. Lemma 3 gives a property of graphs with partite represen-
tations, formulated by Marquardt [15], we include it here for completeness. Lemma 4 is a slight
variation of a result of Conlon [10], about an embedding of a graph in a layer in two different
ways. Finally, Lemma 5 is the main lemma needed for Theorem 1. If a graph H has a k-partite
representation with representing graph H′, then the vertices of H corresponding to V(H′)∩Vk
are called top vertices with respect to this representation, and all other vertices are called bottom
vertices. Note that if a graph has a k-partite representation, it has a (k+ 1)-partite representation
that could be seen by simply adding a new element to every vertex of a representing graph.

Lemma 3. Let H and G be connected graphs, each having a k-partite representation. Assume that
V(H)∩V(G)= {v}, where v is a top vertex for both H and G or a bottom vertex for both H and G.
Then H ∪G has a partite representation.

Proof. LetH′ and G′ be copies ofH and G that are subgraphs of the kth edge layers in hypercubes
with ground sets X and Y , respectively, such that V(H′)∩ (X

k
)
and V(H′)∩ (Y

k
)
are the edge sets of

k-partite hypergraphs with parts U1, . . . ,Uk and parts W1, . . . ,Wk, respectively. Let u and w be
respective copies of v in H′ and G′. We shall specify X and Y in two cases below.

Assume first that v is a top vertex of H and of G. Let X and Y be chosen such that X ∩ Y = ∅.
Let F be an induced subgraph of a hypercube Q with ground set X ∪ Y and vertex set {x ∪w : x ∈
V(H′)} ∪ {u∪ y : y ∈V(G′)}. We see that F contains a copy F′ of H ∪G and is contained in the
edge layer 2k ofQ with the vertex u∪w playing a role of v. Moreover, V(F′)∩ (X∪Y

2k
)
is an edge set

of a 2k-partite hypergraph with parts U1, . . . ,Uk,W1, . . . ,Wk.
Assume now that v is a bottom vertex of H and of G. Let X and Y be chosen such that X ∩ Y =

[k− 1] and u=w= [k− 1]. Assume further that i ∈Ui, i ∈Wi, for each i ∈ [k− 1]. Let F be an
induced subgraph of a hypercube Q with ground set X ∪ Y and vertex set V(H′)∪V(G′). We see
that F contains a copy F′ ofH ∪G and is contained in the edge layer k ofQwith vertex v′ = [k− 1]
playing a role of v. Moreover, V(F′)∩ (X∪Y

k
)
is an edge set of a k-partite hypergraph with parts

U1 ∪W1, . . . ,Uk ∪Wk. �
Lemma 4. Let Z be a connected bipartite graph with a partite representation. Fix one of the two
partite set of Z arbitrarily and call its vertices odd. Then for any γ > 0 there is n1 = n1(γ , Z) such
that for any n> n1 the following holds. Let Lj be the jth edge layer of Qn, where n/2− n2/3 ≤ j≤
n/2+ n2/3. Let G⊆ Lj be a graph such that ||G|| ≥ γ ||Lj||. Then there is a copy of Z with odd vertices
in Vj and there is a copy of Z in G with odd vertices in Vj−1.

Proof. Let Z have a k-partite representation in a hypercube Qn with ground set [n]. We need
the following notation. For any x ∈V(Qn), let Up(x) be the up set of x, that is, Up(x)= {y⊆ [n] :
x⊆ y}. Note that Up(x) induces a graph isomorphic to Qm, form= n− |x|.

We need to consider four cases according to whether the odd vertices of Z correspond to k- or
(k− 1)-element sets in the representation and whether we are embedding the odd vertices in Vj
or in Vj−1. Note, however, that we can assume that the odd vertices correspond to the k-element
sets of the representation by selecting the vertices of other partite set of Z as odd vertices instead.

So, from now on, we assume first that the odd vertices of Z correspond to the k-element sets of
the representation.
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We shall first a copy of Z in G with odd vertices in Vj.
Let Ux =Ux,k be the intersection of G and the kth edge layer of the hypercube Q induced by

Up(x), for each x ∈Vj−k. Note that Ux is a subgraph of Lj, the jth layer of Qn. We call a vertex y
of Ux a full vertex if it has degree k in Ux, the largest possible degree. Let ux be the number of full
vertices in Ux. We shall argue that there is a vertex x ∈Vj−k such that ux is large.

Let t be the number of k-edge stars in G with the centre in Vj. Then

t =
∑
y∈Vj

(
dG(y)
k

)
≥ |Vj|

(
γ ||Lj||/|Vj|

k

)
.

Each such a star corresponds to a full vertex in Ux, for some x. Thus,
∑

x∈Vj−k
ux ≥ t and there

is a vertex x such that

ux ≥ |Vj|
|Vj−k|

(
γ ||Lj||/|Vj|

k

)
.

Since n/2− n2/3 ≤ j≤ n/2+ n2/3 and k is a fixed constant, we have that ||Lj||/|Vj| = n
2 (1+ o(1))

and |Vj|/|Vj−k| ≥ c′(k), so

ux ≥ c(k)nk,

for positive constants c(k) and c′(k). Consider the full vertices inUx. They correspond to ux hyper-
edges in a k-uniform hypergraph with the vertex set [n]− x of size n− j+ k= n

2 (1+ o(1)). By a
theorem of Erdős [11], such a hypergraph contains any fixed k-partite k-uniform hypergraph, and
thus in particular the one representing Z. Therefore, G contains a copy of Z with odd vertices in
Vj.

Next, we shall find a copy of Z in G with odd vertices in Vj−1. To do this, we repeat the above
argument by considering the vertices x in Vj+k−1 and their downsets. Alternatively, we see that Lj
corresponds to Lj′ , a “symmetric” layer, where j′ = n+ 1− j, Vj′ corresponds to Vj−1, and Vj′−1
corresponds to Vj. Thus, finding a copy of Z in Lj′ with odd vertices in Vj′ corresponds to finding
a copy of Z in Lj with odd vertices in Vj−1. Since j′ satisfies the same conditions as j, that is,
n/2− n2/3 ≤ j′ ≤ n/2+ n2/3, we thus could use the first part of the Lemma to obtain the second
one. �
Lemma 5. Let H be a connected bipartite graph with � blocks, where every block has a partite rep-
resentation. Then for any γ > 0 there is n0 = n0(γ ,H) such that for any n> n0 the following holds.
Let Lj be the jth edge layer of Qn, where n/2− n2/3 ≤ j≤ n/2+ n2/3. Let G⊆ Lj be a graph with
||G|| = γ ||Lj||. Fix one of two partite sets of H arbitrarily and call its vertices odd. Then there is a
copy of H in G with odd vertices in Vj and there is a copy of H in G with odd vertices in Vj−1.

Proof. We shall prove the statement by induction on � with the base case � = 1 directly following
from Lemma 4.

IfH has � blocks, � ≥ 2, such that each has a k-partite representation, letH =H′ ∪H′′, whereH′
andH′′ share a single vertex v′, andH′′ is a block ofH, that is, a leaf block. Let F be a graph that is a
union of q> |V(H′)| copies F1, . . . , Fq ofH′′ that pairwise share only a vertex corresponding to v′.
Let γ > 0 and n0 be sufficiently large (we shall specify how large later). Let G⊆ Lj, ||G|| = γ ||Lj||.

Assume first that v′ is an odd vertex.
The idea of the proof is as follows. We shall first find many copies of H′ in G for which the

vertex corresponding to v′ is in Vj. Then we shall find a copy F∗ of F and a copy H∗ of H′ such
that V(F∗)∩V(H∗)∩Vj = {v}, where v plays a role of v′. Finally, since q is large enough, we shall
claim that there is a copy F∗

i of Fi for some i such that V(F∗
i )∩V(H∗)∩Vj−1 = ∅. This will imply

that F∗
i ∪H∗ is a copy of H. Next, we shall give the details of this argument:
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First, we shall construct sets V(1),V(2), and V(3), such that V(3) ⊆V(2) ⊆V(1) ⊆Vj as follows:
Assume that n0 > n0(γ /4,H′). Consider all copies of H′ in G with a vertex playing a role of v′

in Vj. Let V(1) ⊆Vj be the set of all such vertices playing a role of v′ in some copy ofH′ in G. Note
that

∣∣∣∣G[(
Vj −V(1)) ∪Vj−1

]∣∣∣∣ < 1
4γ ||Lj||, otherwise by induction we can find another copy of H′

with a vertex w ∈Vj −V(1) playing a role of v′, contradicting the definition of V(1). Note, that for
each v ∈V(1), there could be several copies of H′ with v playing a role of v′. We choose one such
copy arbitrarily and denote it H′

v. Let

V(2) =
{
y ∈V(1) : dG(y)≥ γ

2
||Lj||
|Vj|

}
.

The total number of edges of G not incident to V(2) is at most 1
4γ ||Lj|| + 1

2 ||G|| = 3
4γ ||Lj||.

Thus,
∣∣∣∣G[

V(2) ∪Vj−1
]∣∣∣∣ ≥ γ

4 ||Lj||. Since all vertices from Vj in Lj have the same degree,

|V(2)| ≥ γ

4
|Vj|.

Let for each v ∈V(2),Av ⊆Vj and Bv ⊆Vj−1 be sets of vertices such thatV(H′
v)=Av ∪ Bv ∪ {v},

v �∈Av. Randomly colour each vertex inV(2) with red or blue independently with equal probability
and colour the vertices in Vj −V(2) blue. We say that a vertex v ∈V(2) is good if v is red and each
vertex inAv is blue. Then, the expected number of good v’s is at least |V(2)|2−t , where |Av| = t − 1.
Thus, there is a set V(3) ⊆V(2), corresponding to a set of good v’s, with |V(3)| ≥ |V(2)|2−t , such
that for each v ∈V(3), Av ∩V(3) = ∅.

We see that
∣∣∣∣G[

V(3) ∪Vj−1
]∣∣∣∣ ≥ γ

2
||Lj||
|Vj| |V(3)| ≥ γ

2
||Lj||
|Vj|

|V(2)|
2t

≥ γ 22−t−3||Lj||.

Consider the graph F defined above. By Lemma 3, F has a partite representation. Then by
Lemma 4, there is a copy F∗ of F in G

[
V(3) ∪Vj−1

]
with a vertex v ∈V(3) corresponding to v′.

Here, we assume that n0 > n1
(
γ 22−t−3, F

)
. Let F∗

i be a respective copy of Fi, for each i ∈ [q]. By
construction ofV(3), there is a copyH∗ ofH′ inGwith all vertices except for v not inV(3). Let Bv be
the set of vertices of H∗ in Vj−1. We see that V(F∗)∩V(H∗)∩Vj = {v}. Since q> |V(H′)| > |Bv|,
there is i ∈ [q], such that V(F∗

i )∩ Bv ∩Vj−1 = ∅. Then H∗ ∪ F∗
i is a copy of H in G.

The case when v′ is not an odd vertex is treated similarly by first finding many copies ofH′ with
a vertex corresponding to v′ in Vj−1. �
Proof of Theorem 1. Let G′ be a subgraph of Qn such that ||G′|| = 2γ ||Qn||, for some constant
γ > 0 and sufficiently large n. By a standard argument, see for example Lemma 1 [4],

∑
i:|i−n/2|>n2/3

(
n
i

)
= o(2n).

Since the degree of each vertex in Qn is n, the total number of edges in G′, incident to vertices in
Vi’s, for i< n/2− n2/3 or i> n/2+ n2/3 is o(n2n)= o(||Qn||)= o(||G||). Then there is j ∈ {

n/2−
n2/3, n/2+ n2/3

}
such that Lj contains at least γ ||Li|| edges of G′. Lemma 5 applied to G=G′ ∩ Lj

concludes the proof. �
Proof of Theorem 2. Let H =H(q) be a union of two copies �1 and �2 of �(q) sharing exactly
one vertex that is a main pole of �2 and a subdivision vertex of �1.

First, we need to check thatH(q) is cubical. Marquardt [15] gave an explicit embedding ofH(3)
in a hypercube. We show that H(q) is cubical by constructing its nice colouring by taking nice
colourings of �1 and �2 using disjoint sets of colours. These colourings were given in [14] and
we show one in Fig. 1.
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Next, we shall show that H(q) has no partite representation. The Hamming distance between
two binary vectors u and v, denoted dH(u, v) is the number of positions where the vectors differ.
In [2], it is shown that if q≥ 3 and v, v′ are the main poles of a copy of �(q) embedded in a layer
of a hypercube, then dH(v, v′)= 2. Let the main poles of �1 and �2 be denoted vi, v′

i, respectively,
i= 1, 2. Assume thatH has a k-partite representation for some k, that is, V(H)⊆ ([n]

k
) ∪ ( [n]

k−1
)
, for

some n and V(H)∩ ([n]
k
)
corresponds to the edges of a k-partite hypergraph, denote it by H. We

have that dH(vi, v′
i)= 2, i= 1, 2. Since a main pole of �1 and a main pole of �2 are adjacent, the

main poles of �1 are in one vertex layer and the main poles of �2 are in another vertex layer,
without loss of generality, v1, v′

1 ∈ ([n]
k
)
and v2, v′

2 ∈ ( [n]
k−1

)
. Assume further that v1 and v′

1 equal
to 10 and 01 in the first two positions of their binary representation and coincide on all other
positions. Consider neighbours of v1 in �1. At least one of these neighbours, say w differs from v1
in a position that is not one of the first two ones, say in the third position. Then, restricted to the
first three position v1 is 101, w is 100, and v′

1 is 011. Thus, the remaining two vertices on the v1, v′
1

path, that contains w, must be equal to 110 and 010 in these three position. All vertices of this
leg are the same in positions 4, . . . , n, say they are equal to 1 on a set of positions A⊆ {4, . . . , n},
|A| = k− 2. Thus, we have thatH′ contains hyperedges {1, 2} ∪A, {2, 3} ∪A, and {1, 3} ∪A. IfH
were to be k-partite, 1, 2, 3 and each element of A would belong to distinct parts, that is, to k+ 1
parts, a contradiction. This shows that H(q) has no partite representation.

Finally, we shall show that H(q) has zero Turán density in a hypercube. Using Theorem 1 it
is sufficient to show that �(q) has partite representation. Note that �(q)=K2,q(1), a subdivision
of K2,q. We claim that H=K2,q gives a 2-partite representation of �(q). Indeed, let n= q+ 2
and let H be a hypergraph on a vertex set [n] with the edge set {ij : i ∈ [2], j ∈ [n] \ [2]}. So, H
is a bipartite graph, that is, 2-partite 2-uniform hypergraph. Let the edges of H correspond to
subdivision vertices of K2,q(1). Let vertices v and v′ correspond to the main poles of �(q) and
vertices 1, . . . , q correspond to other vertices. Then, the two parts of H are {v, v′} and {1, . . . , q}.
This concludes the proof of Theorem 2. �

Conclusions
We showed that there are cubical graphs that have no partite representation and have zero Turán
density in a hypercube. On the other hand, we proved that any graph whose every block has a
partite representation has zero Turán density in a hypercube. This leads to a followup question:

Open question
Is it true that each cubical graph that is 2-connected and has zero Turán density in a hypercube
has a partite representation?
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