BULL. AUSTRAL. MATH. SOC. Vol. 53 (1996) [135-142]

ABSTRACT DANIELL-LOOMIS SPACES

M. DÍAZ CARRILLO AND H. GÜNZLER

In [3] for general integral metric q an integral extension of Lebesgue power was discussed. In this paper we introduce the abstract Daniell-Loomis spaces R_p , p real, 0 , of <math>q-measurable functions with finite "p-norm", and study their basic properties.

1. INTRODUCTION

Recently in [3] an integral extension proceduce was given which works for general integral metric q. The basic ideas can be traced back to Loomis [9] and Schäfke [10]. One defines the extended functions of class B^q of real-valued functions on a set X with respect to a B^q type seminorm. Using an appropriate local mean convergence we proved convergence theorems; and we introduced q-measurability, which is defined by the property that truncation by integrable functions leads to integrable functions. It allowed us to treat abstract Riemann, that is finitely additive, integration theory, as a fundamental example and applied simultaneously to Loomis's abstract Riemann integration, as well as to the Daniell and Bourbaki integration theories.

In this paper, using the method announced in [3] we shall give a presentation of the abstract Daniell-Loomis spaces R_p , p real, 0 .

For nonnegative extended real-valued functions f on X, if $p \ge 1$, $q_p(f) = [q(f^p)]^{1/p}$ satisfies the requirement of an integral metric, and essentially all the results discussed in [3] are true.

The relevant convergence properties with respect to q or q_p are developed. With weak continuity assumptions on the integral metric q, we prove as a fundamental result that the concepts of q- and q_p -measurability are equivalent (Theorem 1).

This leads us to define the abstract Danniell-Loomis spaces R_p as the class of q-measurable functions with finite $q_p(|.|)$. The simple functions B play the usual role in R_p : $R_p = B^{q_p}$ vector lattice (Theorem 2).

Finally, examples are presented which show that these results make it possible to study R_p -spaces for abstract Riemann or finitely additive, integration theory.

Received 4 April 1995

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 \$A2.00+0.00.

1. NOTATION AND ASSUMPTIONS.

In what follows we adhere to the notation and results of [3], and will be explained whenever necessary in order to make the paper self contained.

We extended the usual + to $\overline{\mathbb{R}} \times \overline{\mathbb{R}}$ by r + s := 0 if $r = -s \in \{\infty, -\infty\}$, r - s := r + (-s). $\overline{\mathbb{R}}_+ := [0, \infty]$, $\overline{\mathbb{R}} := \{-\infty\} \cup \mathbb{R} \cup \{\infty\}$.

We denote $a \lor b := \max(a, b)$, $a \land b := \min(a, b)$ and $a \cap t := (a \land t) \lor (-t)$ if $a, b \in \overline{\mathbb{R}}, t \in \overline{\mathbb{R}}_+$.

For an arbitrary nonempty set X let $\overline{\mathbb{R}}^X$ consists of all functions $f: X \to \overline{\mathbb{R}}$. All operations and relations between functions are defined pointwise, with $\inf \phi := \infty$.

A functional $q: \overline{\mathbb{R}}_+^X \to \overline{\mathbb{R}}_+$ is called an *integral metric on* X if q(0) = 0 and $q(f) \leq q(g) + q(k)$ if $f \leq g + k$, $f, g, k \in \overline{\mathbb{R}}_+^X$.

If $B \subset \overline{\mathbb{R}}^X$, a function $f \in \overline{\mathbb{R}}^X$ is said to be *q*-integrable if it belongs to the closure of B in $\overline{\mathbb{R}}^X$ with respect to q, that is there exists $(h_n) \subset B$ with $q(|f - h_n|) \to 0$ as $n \to \infty$.

 B^q denotes the set of all the q-integrable functions.

If additionally an $I: B \to \mathbb{R}$ is given which is uniformly continuous on B with respect to q, the unique q-continuous extension of I to B^q will be denoted I^q .

In all of the following, B will be a function vector lattice in \mathbb{R}^X , that is a real linear space of functions under pointwise $=, +, \alpha$, such that $h \in B$ implies $|h| \in B$; then $k \wedge h$, $k \vee h \in B$ for $k, h \in B$. I: $B \to \mathbb{R}$ will be assumed linear with $I(h) \ge 0$ if $0 \le h \in B$. Then, q-continuity of I in 0 implies uniform q-continuity of I on B.

We collect these assumption in

(1) *I*, *B* as above, *q* is an integral metric on *X* and *I* is *q*-continuous in 0. With (1), B^q is closed with respect to +, α ., \lor , \land , |.| and $I^q: B^q \to \overline{\mathbb{R}}$ is monotone, linear and *q*-continuous, (Theorem 1, [3]).

A function $f \in \overline{\mathbb{R}}^X$ is said to be *q*-measurable if $f \cap h \in B^q$ for all $0 \leq h \in B$. $M_n(q, B)$ denotes the set of all the *q*-measurable functions.

For convergence theorems we need a suitable local convergence in the mean of [3, p.414].

- (2) For $f, f_n \in \overline{\mathbb{R}}^X$, $n \in \mathbb{N}$, $f_n \to f(q, B)$ means that for each $\varepsilon > 0$ and $0 \leq h \in B$ there exists $n_0 = n(\varepsilon, h) \in \mathbb{N}$ such that $q(|f f_n| \wedge h) < \varepsilon$ if $n \geq n_0$, (q-local convergence).
- (3) Lebesgue's convergence theorem, (see Corollary VII, [3]): If (1) holds, f_n , $g \in B^q$, $f \in \overline{\mathbb{R}}^X$ is such that $f_n \to f(q, B)$ and $|f_n - f| \leq g$, $n \in \mathbb{N}$, then $f \in B^q$ and $q(|f_n - f|) \to 0$.
- (4) For any integral metric q and $M \subset \overline{\mathbb{R}}^X$ the corresponding local integral

metric of Schäfke [10] (see also [3, p.416]) is defined by

$$q_{\ell}(f) := \sup\{q(f \wedge h); \ 0 \leq h \in M\}$$
 for all $f \in \mathbb{R}^{n}_{+}$.

With (1), q_{ℓ} is again an integral metric such that $q_{\ell} \leq q$ and $q_{\ell}(f) = q(f)$ if $0 \leq f \leq g$ for some $g \in B^q$. One has $B \subset B^q \subset B^{q_{\ell}}$ and $I^q = I^{q_{\ell}}$ on B^q .

For further properties of B^q and B^{q_ℓ} see [3].

2. R_p -SPACES

For $q: \overline{\mathbb{R}}_+^X \to \overline{\mathbb{R}}_+$, p real, $0 , with <math>f^p(t) := (f(t))^p$, $0^p := 0$, $\infty^p := \infty$, we define for all $f \in \overline{\mathbb{R}}_+^X$

(5)

$$q_p(f) := \begin{cases} [q(f^p)]^{1/p} & \text{if } p \ge 1, \\ q(f^p) & \text{if } 0$$

Note that the case p = 1 was studied in [3], and the natural question to consider is to what extent those results can be extended to values of p other than 1.

LEMMA 1. (See Lemma 12, [3].) If $q := \overline{\mathbb{R}}_+^X \to \overline{\mathbb{R}}_+$ is an integral metric with $q(2f) = 2q(f), 0 , then <math>q_p$ is also an integral metric on X, positive-homogeneous if $p \ge 1$.

PROOF: Observe that $2q(f) \leq q(2f)$ implies q(tf) = tq(f), $0 < t < \infty$; also $|f+g|^p \leq f^p + g^p$ if 0 .

If p > 1, q_p satisfies Minkowski's inequality for finitely-valued f, g, by Bourbaki [2, p.12].

Now, we denote $f_e(x) := f(x)$ if $f(x) \in \mathbb{R}$, $f_e(x) := 0$ else, $f_u(x) := f(x) - f_e(x)$, $f_{\infty} := f_u \vee 0$.

If $f, g \in \overline{\mathbb{R}}^X_+$ with $q_p(f), q_p(g) < \infty$, we have $[q_p(f+g)]^p \leq q[2^p(f^p+g^p)] < \infty$, and $\alpha q_p(f_\infty) = q_p(\alpha f_\infty) \leq q_p(f) < \infty$, so that $q_p(f_\infty) = 0$.

Therefore $q_p(f+g) \leq [q_p(f+g)_e^p + 0 + 0]^{1/p} \leq q_p(f_e + g_e) \leq q_p(f_e) + q_p(g_e) \leq q_p(f) + q_p(g)$.

For positive-homogeneous integral metric q, Hölder's inequality holds:

(6) Let $1 < r, s < \infty$ be a pair of conjugate exponents, for functions $f, g \in \overline{\mathbb{R}}^R_+$ then $q(fg) \leq q_r(f)q_s(g)$.

(See for example [8, p.64-65], (6) follows with the aid of the expression $uv = \inf\{(1/p)t^r u^r + (1/s)t^{-s}v^s; t > 0\}$ for real $u, v \ge 0$.)

For positive-homogeneous integral metrics q, Sections 1, 2 of [3] hold for B^{q_p} and $B^{(q_p)}\iota$, and using the q-local convergence of (2) one gets convergence theorems in a form analoguous to the classical ones.

In order to obtain the full results one has to impose certain conditions upon B and q.

(7) Let q be a positive-homogeneous integral metric on $\overline{\mathbb{R}}_{+}^{R}$, and 0 .We assume

$$\begin{aligned} |B|^{p} &= |B| \text{ with } |B| := \{h; \ 0 \leq h \in B\}.\\ C_{0}(q, B): q(h \wedge t) \to 0 \text{ if } 0 < t \to 0, \ 0 \leq h \in B, \ (q \text{ continuous at } 0).\\ C_{\infty}(q, B): q(h - h \wedge t) \to 0 \text{ if } t \to \infty, \ 0 \leq h \in B, \ (q \text{ continuous at } \infty). \end{aligned}$$

The above basic assumptions (1) and (7) will be retained in all that follows. Observe that, with $|B|^{p} = |B|$, $C_{0}(q, B)$ implied $C_{0}(q_{p}, B)$.

LEMMA 2. Let q be a positive-homogeneous integral metric, then $C_{\infty}(q_p, B)$ holds, that is, $q_p(h-h \wedge t) \rightarrow 0$ if $t \rightarrow 0, 0 \leq h \in B$.

PROOF: Case $1 \leq p < \infty$: Observe that $a^p + b^p \leq (a+b)^p$ if $a, b \in \overline{\mathbb{R}}_+$. Thus, $(t-t\wedge s)^p \leq t^p \wedge s^p$, $t, s \in \overline{\mathbb{R}}_+$. Therefore $[q_p(h-h\wedge t)]^p := q(h-h\wedge t)^p \leq q(h^p - h^p \wedge s^p) \to 0$ if $s \to \infty$.

Case $0 : We have <math>(h - h \wedge t)^p = ((h - h \wedge t)/\varepsilon)^p \varepsilon^p \leq \varepsilon^p ((h - h \wedge t)/\varepsilon)$ if $h \geq t + \varepsilon$ and $\leq \varepsilon \wedge h$ if $h < t + \varepsilon$. So that $(h - h \wedge t)^p \leq \varepsilon^{p-1} (h - h \wedge t) + \varepsilon \wedge h$.

Now, if $\varepsilon \to 0$, $\eta > 0$, by $C_0(q, B)$, $q(h \wedge \varepsilon) < \eta/2$, and if $t \to \infty$, to $\eta > 0$, by $C_{\infty}(q, B)$, $\varepsilon^p q(h - h \wedge t) < \eta/2$. Hence, one has $q_p(h - h \wedge t) = q[(h - h \wedge t)^p] \leq q[\varepsilon^{p-1}(h - h \wedge t)] + q(h \wedge \varepsilon) < \eta/2 + \eta/2$, and the proof is complete.

The equivalence between q-convergence and q_p -convergence is made explicit in the following lemmas.

LEMMA 3. Let $f, f_n \in \overline{\mathbb{R}}^X$, then $f_n \to f(q, B)$ implies $f_n \to f(q_p, B)$.

PROOF: One can assume f = 0 and $f_n \ge 0$. So, by (2) it suffices to show that given any $0 \le h \in B$ if $q(f_n \land h) \to 0$ then $q_p(f_n \land h) \to 0$.

Case $1 \leq p < \infty$: Choose $0 \leq h \in B$, $l_n := f_n \wedge h$; by assumption $q(f_n \wedge h) \to 0$. Now, if $0 < t \in \mathbb{R}$, $[q_p(l_n)]^p := [(q(l_n^p))^{1/p}]^p = q(l_n^p) = q(f_n^p \wedge h^p) \leq q[f_n^p \wedge (h^p \wedge t^p)] + q[(f_n^p \wedge h^p) - f_n^p \wedge (h^p \wedge t^p)] \leq q[f_n^p \wedge (h^p \wedge t^p)] + q(h^p - h^p \wedge t^p) \leq q(f_n^p \wedge (h^p \wedge t^p)) + \varepsilon$, if $t > t_{\varepsilon,h}$, by $C_{\infty}(q, B)$.

One has, $l_n^p \wedge t^p = (l_n \wedge t)^p = t^p((l_n \wedge t)/t)^p \leq t^p((l_n \wedge t)/t)$, since $p \geq 1$, $0 \leq (l_n \wedge t)/t \leq 1$.

Thus, if $t = t_{\epsilon,h}$, $[q_p(l_n)]^p \leq q(l_n^p \wedge t^p) + \epsilon \leq q(t^p((l_n \wedge t)/t)) + \epsilon = \epsilon + t^p(1/t)q(l_n \wedge t) = \epsilon + t^{p-1}q(l_n) = \epsilon + t^pq(f_n \wedge h) \leq 2\epsilon$, if $n \geq n_\epsilon$.

Hence, $q_p(f_n \wedge h) \to 0$ as $n \to \infty$, for each $0 \leq h \in B$, that is $f_n \to 0(q_p, B)$.

Case $0 : We choose <math>0 \leq h \in B$, $t_{\varepsilon,h} > 0$ as above, and one has

$$q_p(f_n \wedge h) := q[(f_n \wedge h)^p] = q(f_n^p \wedge h^p) \leq q(f_n^p \wedge h^p \wedge t)$$

+ q(h^p - h^p \wedge t) \leq q(f_n^p \wedge h^p \wedge t) + \varepsilon/2,

if $t \ge t_{\varepsilon,h}$, by $C_{\infty}(q, B)$.

Hence, $q_p(f_n \wedge h) \leq q_p[(f_n \wedge s) \wedge h \wedge s] + \varepsilon/2$, if $s = t^{1/p} \geq t_{\varepsilon,h}$. One can assume $f_n \leq s$, $h \leq s$, s fixed, $s = t_{\varepsilon,h}$.

If $A_{n,\delta} := \{x \in X; f_n(x) \ge \delta\}$, one gets $q_p(f_n \wedge h) = q(f_n^p \wedge h^p) \le q\Big[\Big(s^p \chi_{A_{n,\delta}}\Big) \wedge h^p\Big] + q(\delta^p \wedge h^p).$

Since $0 \leq h^p \in B$, $C_0(q, B)$ gives $q(\delta^p \wedge h^p) < \varepsilon/2$ if $\delta^p \leq \eta$, $0 < \eta < 1$; hence, $q_p(f_n \wedge h) \leq s^p q \left(\chi_{A_{n,\delta}} \wedge (1/s^p) h^p \right) + \varepsilon/2.$

Furthermore, $\delta q \left(\chi_{A_{n,\delta}} \wedge (1/s^p) h^p \right) = q \left(\delta \chi_{A_{n,\delta}} \wedge (\delta/s^p) h^p \right) \leq q [\delta \chi_{A_{n,\delta}} \wedge (h/s)^p],$ with δ fixed, $0 < \delta < \min(1, \delta^{1/p}).$

Since $0 \leq (h/s)^p = (1/s)^p h^p \in B$, there exists $n_0 = n_0(\varepsilon, h, p, s, \delta)$ with $q[f_n \wedge (h/s)^p] < \delta \varepsilon / 2 s^{-p}$ if $n \geq n_0$.

Hence, $q_p(f_n \wedge h) \leq \varepsilon/2 + \varepsilon/2 = \varepsilon$, hence $f_n \to 0(q_p, B)$. The proof is complete. We recall that in Lemma 3, if $1 \leq p < \infty$ only $C_{\infty}(q, |B|^p)$ is needed. Also $q(kf) = k^{\delta}q(f)$ with $0 < \delta < \infty$, δ fixed, independent of $f \in \mathbb{R}^X_+$, instead of q positive-homogeneous, is sufficient.

LEMMA 4. Let $f, f_n \in \overline{\mathbb{R}}^X$, then $f_n \to f(q_p, B)$ implies $f_n \to f(q, B)$.

PROOF: Case $1 \leq p < \infty$: Use Lemma 3 for $1/p \geq 1$, since $(q_p)_{1/p}(f) = [q(f)]^{1/p}$, then q_p is again positive-homogeneous and the assumptions for 1/p are fulfilled.

Case $0 : <math>q_p$ is not positive-homogeneous, one has only $q_p(sf) = s^p q_p(f)$, and the proof of the first part of Lemma 3 works also (with 1/p instead of p), only in the last line one has, with $\overline{q} = q_p$ instead q, $t = t_{\epsilon,h}$ fixed, $\overline{q}_{1/p}(l_n) = q_p(l_n^{1/p}) =$ $q(l_n) \leq \epsilon + \overline{q}(t^{1/p}(l_n \wedge t)/t) = (t^{1/p-1})^p \overline{q}(l_n \wedge t) + \epsilon \leq \epsilon + t^{1-1/p} \overline{q}(l_n) \leq 2\epsilon$, if $n \geq n_{\epsilon,t}$, or $q_p(l_n^{1/p}) = \overline{q}(l_n) \leq 2\epsilon$, and thus the assertion holds.

Observe that $|B|^{p} = |B|$ implies $|B|^{1/p} = |B|$, so, this condition is also true in Lemma 2 for 1/p.

The above results together with the Lebesgue convergence Theorem (3), is the key to proving that the concepts of q- and q_p -measurability are equivalent.

THEOREM 1.

$$M_{\cap}(q, B) = M_{\cap}(q_p, B)$$

PROOF: If $f \in M_{\cap}(q, B)$, by definition, for $0 \leq h \in B$, $f \cap h \in B^{q}$, so there are $h_{n} \in B$ with $h_{n} \to f \cap h(q, B)$; then also $h_{n} \cap h \to f \cap h(q, B)$. By Lemma 3, $h_{n} \cap h \to f \cap h(q_{p}, B)$. Since $|h \cap h - h_{n} \cap h| \leq 2h$, the Lebesgue convergence theorem for $B^{q_{p}}$ (3), gives $f \cap h \in B^{q_{p}}$, for all $h \in B$, so that $f \in M_{\cap}(q_{p}, B)$.

On the other hand, if $f \in M_{\cap}(q_p, B)$, for all $0 \leq h \in B$ then $f \cap h \in B^{q_p}$, there are $h_n \in B$ with $h_n \to f \cap h(q_p, B)$. As above $h_n \cap h \to f \cap h(q, B)$, and the Lebesgue convergence theorem for B^q yields $f \cap h \in B^q$, so $f \in M_{\cap}(q, B)$.

The class $R_p(B, I)$, or simply R_p , is defined as

$$R_p(B, I) := \{f \in \overline{\mathbb{R}}^X; \ f ext{ is } q ext{ measurable and } q_p(|f|) < \infty \}.$$

Our immediate goal is to show that, with additional weak assumptions on q, R_p is a vector lattice aspace, and the "simple functions" $f \in B$ are dense in the metric $q_p(|.|)$.

For this we need Definition 7 of [3] and the following result concerning the q_{ℓ} -integrability of q-measurable functions f with $q_{\ell}(|f|) < \infty$.

An integral metric q is called *B*-semiadditive if one has

$$0 \leq h_n \in B, \sup \left\{ q\left(\sum_{i=1}^n h_i\right); \ n \in \mathbb{N} \right\} < \infty \Rightarrow q(h_n) \to 0 \text{ as } n \to \infty,$$

and q is called B-additive if $0 \leq h$, $k \in B$ imply q(h+k) = q(h) + q(k).

Obviously, q B-additive implies q B-semiadditive.

(8) If q is B-semiadditive and f is q-measurable such that $q_{\ell}(|f|) < \infty$, then $f \in B^{q_{\ell}}$ [3, Theorem 5].

We recall that by Lemma 1, q_p is an integral metric and $(q_p)_{\ell} \leq q_p$ on $\overline{\mathbb{R}}^X_+$.

THEOREM 2. Let q be B-semiadditive and $1 \leq p < \infty$ or q B-additive and $0 . Then <math>R_p := \{f \in M_{\cap}(q, B); q_p(|f|) < \infty\} = B^{q_p}$.

PROOF: By Theorem 1, $f \in M_{\cap}(q, B)$ implies $f \in M_{\cap}(q_p, B)$, and if $q_p(|f|) < \infty$, $q_p B$ -semiadditive, by (8), $f \in B^{q_p}$.

Hence, it is enough to show that q_p is B-semiadditive.

Case $1 \leq p < \infty$: If q is B-semiadditive, then $q\left(\sum_{i=1}^{n} h_{i}^{p}\right) \leq \left[q\left(\sum_{i=1}^{n} h_{i}\right)^{p}\right] = q_{p}\left(\sum_{i=1}^{n} h_{i}\right)^{p} < k^{p}$ for all n. Hence, $q(h_{n}^{p}) = [q_{p}(h_{n})]^{p} \to 0$, so that, $q_{p}(h_{n}) \to 0$, as $n \to \infty$.

Case 0 : <math>q is *B*-additive by assumption. Suppose that q_p is not *B*-semiadditive, there exist h_n with $q_p(h_n) \ge \varepsilon_0$ and $q_p\left(\sum_{1}^{m} h_n\right) \le k$, for all $m \in \mathbb{N}$. By Hölder's inequality, with r = 1/p > 1, 1/r + 1/s = 1, $m\varepsilon_0 \le \sum_{1}^{m} q_p(h_n) = q\left(\sum_{1}^{m} h_n^p \cdot 1\right) \le q\left[\left(\sum h_n^{pr}\right)^{1/r} \cdot \left(\sum_{1}^{m} 1^s\right)^{1/s}\right] = q_p\left(\sum_{1}^{m} h_n\right)m^{1/s} \le k m^{1/r} \text{ or } m^{1-1/s} \le k/\varepsilon_0$ a contradiction.

Finally, observe that if $|B|^p = |B|$, $f \in B^{q_p}$ implies $q_p(|f|) < \infty$. One has the above equality if $q(h) < \infty$ for each $0 \le h \in B$, and the proof is completed.

Note that q-semiadditive is not needed in Theorem 1. Let $N_p = N_p(B, I) := \{f \in \overline{\mathbb{R}}^X; q_p(|f|) = 0\}$ (q-nulfunctions). One has $B \cup N_p \subset R_p$, N_p is closed with respect to $+, -, \alpha, |.|$. For all $f, g \in \overline{\mathbb{R}}^X$, $f = g(q_p)$ means that $f - g \in N_p$, (see [3, p.412-413]). Since $q_p(|f - g|) = 0$ implies $f = g(q_p)$, strictly speaking, the elements of R_p are

Since $q_p(|f - g|) = 0$ implies $f = g(q_p)$, strictly speaking, the elements of R_p ar equivalence class of functions defined on X.

With Theorem 2 the theory of integration presented in [3] is available.

3. APPLICATIONS AND EXAMPLES (See Section 3 of [3].)

1. With $q(f) = I^-(f) := \inf\{I(g); f \leq g \in B\}$ for all $f \in \mathbb{R}^X_+$, one has $B^q = R_{\text{prop}}(B, I)$ (proper Riemann-*I*-integrable functions or the "two-sided completion" of Loomis [9, p.170]).

If $q_{\ell}(f) = I_{\ell}^{-}(f)$ (of Definition (4)), one gets $R_1(B, I) := B^q = \text{closure of } B \text{ in } \overline{\mathbb{R}}^X$ with respect to the distance $d(f, g) := (I_{\ell}^{-})(|f - g|)$ (abstract Riemann-*I*-integrable functions of [4]), containing the "one-sided completion" of Loomis [9, p.178]).

 I^- and I_{ℓ}^- are positive-homogeneous integral metrics on $\overline{\mathbb{R}}^X_+$, also they are *B*-additive. Here, $R_p(B, I) = B^{(I_{\ell}^-)p}$.

We recall that I_{ℓ}^{-} is the "essential upper functional" associated with I^{-} in the sense of Agner and Portenier [1], so that, $R_1(B, I)$ is the set of all the essentially integrable functions (with respect to I^{-}). Also, in Gould [6], Stone's axiom $B \wedge 1 \subset B$ is assumed, so by [7] his results are already subsumed by the R_1 -space.

2. We consider now B, I arising from finitely-additive set functions μ , with arbitrary set X.

 Ω is a semiring of sets from X, $\mu: \Omega \to \mathbb{R}_+$ is finitely additive on Ω , $B = B_{\Omega} =$ real-valued step functions on Ω , and $I = I_{\mu} = \int d_{\mu}$ on B_{Ω} .

With $q = I_{\mu}^{-}$, $q_{\ell} = (I_{\mu}^{-})_{\ell}$ one has $B_{\Omega}^{q} = R_{\text{prop}}(\mu, \Omega)$ (abstract proper Riemann-

[8]

142

 μ -integrable functions) and $B_{\Omega}^{q_{\ell}} = R_1(\mu, \Omega)$ (Riemann- μ -integrable functions of [7]), which contains $L(X, \Omega, \mu, \mathbb{R})$ of Dunford-Schwartz [5].

In this situation, I_{μ}^{-} is B_{Ω} -additive and a positive-homogeneous integral metric on X. Also, B_{Ω} is Stonian, $C_{\infty}(I_{\mu}^{-}, B_{\Omega})$ and $C_{0}(I_{\mu}^{-}, B_{\Omega})$ of (7) hold.

With (1), if I satisfies Daniell's condition (or I is σ -continuous), that is, $I(h_n) \to 0$ whenever $0 \leq h_n \in B$, $h_n \geq h_{n+1} \to 0$ pointwise on X, one has that $q = I^{\sigma}(f) :=$ $\inf \left\{ \sum_{n=1}^{\infty} I(h_n); h_n \in B, f \leq \sum_{n=1}^{\infty} h_n \right\}$ for all $f \in \mathbb{R}^X_+$, is the induced B-additive integral norm with Daniell's $L^1 = B^q$.

Finally, if Ω is a σ -ring and μ is σ -additive, then $R_q(\mu, \Omega) = L^1(\mu, \Omega)$ modulo nulfunctions by [7, p.265].

References

- [1] B. Anger and C. Portenier, Randon integral (Birkhäuser, Basel, 1992).
- [2] N. Bourbaki, Intégration. Elements de Mathematique XIII, Livre VI (Hermann, Paris, 1952).
- [3] M. Díaz Carrillo and H. Günzler, 'Local integral metrics and Daniell-Loomis integrals', Bull. Austral. Math. Soc. 48 (1993), 411-426.
- [4] M. Díaz Carrillo and P. Muñoz Rivas, 'Positive linear functionals and improper integration', Ann. Sci. Math. Québec 18 (1994), 149-157.
- [5] N. Dunford and J.T. Schwartz, *Linear operators I* (Interscience, New York, 1957).
- [6] G.G. Gould, 'The Daniell-Bourbaki integral for finitely additive measures', Proc. London Math. Soc. 16 (1966), 297-230.
- [7] H. Günzler, Integration (Bibliogr. Institut, Mannheim, 1985).
- [8] H. König, 'Daniell-Stone integration without the lattice condition and its application to uniform algebras', Ann. Univ. Sarav. Ser. Math. 4 (1992).
- [9] L.H. Loomis, 'Linear functionals and content', Amer. J. Math. 76 (1956), 168-182.
- [10] F.W. Schäfke, 'Integrationstheorie I', J. Reine Angew. Math. 244 (1970), 154-176.

Departamento de Análisis Matemático Universidad de Granada Granada 18071 Spain Mathematisches Seminar Universität Kiel D 24098 Kiel Germany