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We study the spreading of Newtonian viscous (aqueous glycerin solution) and viscoelastic
(aqueous polymer solution) drops on solid substrates with different wettabilities. For drops
of the same zero-shear viscosity, we find in the early stages of spreading that viscoelastic
drops (i) spread faster and (ii) their contact radius shows a different power law vs time
than Newtonian drops. We argue that the effect of viscoelasticity is only observable for
experimental time scales of the order of or larger than the internal relaxation time of the
viscoelastic polymer solution. We attribute this behaviour to the shear thinning of the
viscoelastic polymer solution. When approaching the contact line, the shear rate increases
and the steady-state viscosity of the viscoelastic drop is lower than that of the Newtonian
drop. We support our experimental findings with a simple (first-order) perturbation model
that qualitatively agrees with our findings.
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1. Introduction

For at least the last two centuries, the interaction of droplets with surfaces has been studied
quantitatively. By way of a retrospective, outstanding work was done by Young for static
wetting (Young 1805) and Worthington for drop impact (Worthington Arthur & Reynolds
1883) and drop spreading over different surfaces (Hardy 1919; Shuttleworth & Bailey 1948;
Fox & Zisman 1950). Drop spreading and its dynamics play an essential role in many
industrial applications, from printing to coating (Sankaran & Rothstein 2012; Hoath 2016;
Glasser et al. 2019). The spreading of Newtonian drops has been the subject of extensive
research over the last two decades (de Gennes 1985; Biance, Clanet & Quéré 2004; Bird,
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Mandre & Stone 2008; Bonn et al. 2009; Muralidhar et al. 2011; Snoeijer & Andreotti
2013). For low-viscosity drops, the key finding is that the spreading dynamics consists of
two regimes; an inertial and a viscous dominated regime (Biance et al. 2004).

The boundary condition has an important influence on the calculation of the flow field
close to the contact line and thus on the viscous dissipation. By assuming a no-slip
condition, the contact line motion is solved by Moffatt (1964). The assumption of the
no-slip condition leads to a logarithmic divergence of the viscous stress due to the
hydrodynamic singularity at the moving contact line (Huh & Scriven 1971; Huh & Mason
1977; Tanner 1979; Fricke, Köhne & Bothe 2019; Fricke & Bothe 2020). Various solutions
have been proposed to this problem in molecular-scale (Blake & Haynes 1969; Cherry &
Holmes 1969; Ruckenstein & Dunn 1977), hydrodynamic models by Cox (1986), Voinov
(1976) and Shikhmurzaev (1997, 2020) and by including evaporation and condensation
(Wayner 1994; Shanahan 2001; Rednikov & Colinet 2012). For the fast processes, the
dynamics can be modelled by a hydrodynamic model with a slip length that generates a
lower cutoff length below which the liquid and solid velocities are allowed to differ in the
vicinity of the contact line and/or the substrate.

Consider a drop of initial radius R (when hanging at the needle), volume V , density
ρ, viscosity η and surface tension σ which gently touches a solid substrate; it starts
spreading with velocity of u. In the early stage of spreading, inertia is assumed to be
dominant (Biance et al. 2004). By writing a force balance between inertial (d/dt)((ρV)u)

and capillary forces ∼ σ r, one can derive the spreading rate, (1.1), where the radius of the
wetted on the substrate area is r

( r
R

)2 = t

√
σR3

ρ
. (1.1)

In a second regime, the viscous dissipation near the contact line is the rate-limiting
process when the drop shape is close to a spherical cap. For the viscous dominated regime
(Tanner regime) of drop spreading, the Cox–Voinov relation for the dynamic contact angle
in the case of perfect wetting is θ3 ∼ η(u/σ), and the conservation of volume, r3θ ∼ V ,
results in the spreading dynamics being in the viscous regime. This relation is known as
Tanner’s law (Tanner 1979)

r ∼ R
(

σ t
ηR

)1/10

. (1.2)

In general, drop spreading often follows a power law r ∼ tα with spreading exponent α

that depends on various parameters. It should be noted that the Cox–Voinov relation was
originally developed for a final contact angle θ = 0, but was later shown to be valid for
higher contact angles of up to 100 ◦ (Fermigier & Jenffer 1991; Petrov et al. 2003). By
equating the radius from the inertial and viscous regimes, the transition between these two
regimes can be calculated: τiv ∼ (ρσR/η2)1/8

√
ρR3/σ (Biance et al. 2004). The above

models work reasonably well for low-viscosity drops (e.g. water). For the early stages
of high-viscosity drop spreading, there are several conflicting results (Carlson, Bellani &
Amberg 2011, 2012; Eddi, Winkels & Snoeijer 2013). Carlson et al. (2012) stated that
the drop-spreading dynamics still follows the power-law type of spreading with the same
exponent but with a friction factor (μf ) as a correction factor for the prefactor of the
power law, r/R ∼ (σ t/Rμf )

1/2. Eddi et al. (2013) argue that, for highly viscous liquids,
the inviscid solution is not valid anymore, so they solve for Stokes flow in this case. An
important approach is to use the assumed analogy between the merging of identical drops
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Spreading of a viscoelastic drop on a solid substrate

(Eggers, Lister & Stone 1999) and the spreading of drops on a substrate. Eddi et al. (2013)
used a logarithmic model to scale their experimental data r � −(1/4π)(σ/η)t ln(r/R) .

Viscoelastic materials combine an elastic component and a viscous component in their
properties. When a polymer solution is sheared, at very short times only the elastic part
contributes to the dynamics and after a characteristic time the viscous part becomes
relevant (Costanzo et al. 2016). To observe the effect of viscoelasticity, the experimental
time scale should be of the order of the viscoelastic time scale, i.e. polymer relaxation
time. In a simple approach, the viscosity of polymer solutions can be described by the
Cross model (Cross 1965; Subbaraman, Mashelkar & Ulbrecht 1971; Gastone, Tosco &
Sethi 2014). When shear is applied to a viscoelastic material, it takes several times the
relaxation time of the sub-chain to reach a steady state. The relaxation time depends on
the polymer concentration or/and molar mass (number of entanglements) (Costanzo et al.
2016; Vereroudakis et al. 2023)

η = η0 − η∞
1 + (τveγ̇ )m + η∞. (1.3)

Here, γ̇ is the shear rate, τve and m are fluid parameters (polymer relaxation time and
rheological exponent) and η0 and η∞ are the zero and infinite shear rate viscosities,
respectively. By increasing the polymer concentration and/or polymer molar mass, the
polymer relaxation time τve increases and the rheological exponent m decreases (see
supplementary material available at https://doi.org/10.1017/jfm.2024.450).

Despite many industrial applications (e.g. printing), the early drop spreading of
viscoelastic fluids has not been extensively studied. Some studies focus on the impact
of viscoelasticity of the soft substrates underneath spreading macroscopic (Chen,
Auernhammer & Bonaccurso 2011; Chen, Bonaccurso & Shanahan 2013a) and static
nanoscopic drops (Zhao et al. 2021). In the case of wetting and dewetting on a viscoelastic
substrate, it is shown that the wetting and dewetting dynamics depends directly on
the mechanical properties of the substrate (Carré, Gastel & Shanahan 1996; Carré &
Shanahan 2001). In most of the studies regarding viscoelastic drop spreading, the viscous
dominated regime (late stage of drop spreading) is studied experimentally, theoretically
and numerically (Carré & Eustache 2000; Betelu & Fontelos 2003; Liang et al. 2009;
Iwamatsu 2017; Jalaal, Stoeber & Balmforth 2021). The viscous spreading exponent (α)
is correlated with the rheological exponent n in these models. Only very recently has
the early stage of drop spreading of shear thinning fluids been studied by two groups
(Bouillant et al. 2022; Yada et al. 2023). Both groups reported that the early stage of drop
spreading (regardless of polymer concentration and molar mass) shows the same spreading
exponent as low-viscosity drop spreading (e.g. water drops). The considered time scales
of experiments in both cases are below the inertia–capillary time (τic =

√
ρR3/σ ), which

is of the order of a few milliseconds for millimetric drops.
In this contribution, we follow the hypothesis that three time scales should be

considered; the inertia–viscous (τiv) cross-over time, the inertia–capillary cross-over time
(τic) and the polymer relaxation time (τve). To illustrate these time scales, we calculate
them for water and an aqueous polyethylene oxide (PEO) solution (4 %(w/w)) with a molar
mass of (6 × 105(g mol−1)). For a millimetric water drop we get τiv ∼ 15 ms, τic ∼ 3.7 ms
and τve ∼ 0, and for the polymer solution τiv ∼ 2.8 ms, τic ∼ 4 ms and τve ∼ 22 ms. The
polymer relaxation time can be larger or smaller than the time scales of drop spreading. In
this contribution, we study some effects of changes of the order of these time scales and
provide a simple model to rationalize our findings.
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t = 0.1 2.1
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Figure 1. (a) Sketch of the drop-spreading set-up, with a high-speed camera (1), cold light source and diffuser
sheet (4), drop and needle (2) and the adjustable solid substrate (3). Different stages of spreading are illustrated
over time, (I) before contact between substrate and the drop (II) the substrate is gently coming up and the drop
touches the substrate (the initial point of contact). (III) After contact and spreading of the drop on the substrate
with contact line velocity of ucl. (b) The spreading dynamics of a millimetric drop over a hydrophilic substrate
for different times; the spreading radius r is shown.

2. Experimental method

The droplet dispenser is set up so that the drop hangs from a dull needle (outer diameter
2.1 mm) and the substrate is lifted up gently until it touches the drop. After contact, the
drop spreads immediately. The drop spreading is recorded in side view by a high-speed
camera (FASTCAM Mini AX 200, Photron) equipped with a Navitar objective (12X). The
test section is illuminated by an LED cold light source (SCHOTT KL 2500) through a
diffuser sheet, giving a homogeneous back illumination (figure 1). All drop-spreading
experiments were performed in a laboratory with controlled environmental conditions
(temperature 23 ◦C, relative humidity 48 %).

Water (MicroPure UV/UF, Thermo Scientific Co.), glycerin (Sigma Aldrich co. 99 %)
and mixtures thereof as well as water–PEO (Sigma Aldrich co.) solutions of various
molar masses and concentrations are used as Newtonian and viscoelastic operating fluids,
respectively. For the aqueous PEO solutions, from now on, the weight concentrations are
shown as per cent (%) and the molar masses of polymers are mentioned as k, which is
103 g mol−1 . The sample names and viscosities at zero shear rate (zero shear viscosity)
for each liquid are given in table 1. The surface tension σ of all samples is in the range of
63 ≤ σ ≤ 72 mN m−1. To measure the flow curves, a commercial rheometer (MCR 502,
Anton-Paar GmbH) is used. For all measurements a cone–plate geometry is used with
a diameter of 50 (mm) and cone angle of 1◦ and the gap of 100 μm (CP50-1). In the
rheological experiments the temperature of the sample was kept constant at 23 ◦C. The
rheological properties of each sample are given in the supplementary material (figure S2).
As substrates we used glass substrates, with two different types of surface preparations.
Cleaned glass substrates as hydrophilic substrates (contact angle of water drop around
15◦) and silanized glass substrates as hydrophobic substrates (contact angle of water drop
around 90◦) are used. Details of substrate preparation are given in the supplementary
material and previous work (Rostami et al. 2023). When preparing polymer solutions,
it is crucial to wait long enough for the polymer to dissolve homogeneously in the
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Spreading of a viscoelastic drop on a solid substrate

Molar mass
Sample (103 g mol−1) η0 (mPa s) Sample η0 (mPa s)

Water + PEO (2 %, 300k) 300 35 ± 0.5 Water + Glycerin (0 %) 0.93 ± 0.01
Water + PEO (3 %, 300k) 300 101 ± 0.5 Water + Glycerin (72 %) 35 ± 0.5
Water + PEO (4 %, 300k) 300 254 ± 0.5 Water + Glycerin (85 %) 98 ± 0.5
Water + PEO (2 %, 600k) 600 103 ± 0.5 Water + Glycerin (91.5 %) 293 ± 0.5
Water + PEO (3 %, 600k) 600 537 ± 0.5 Water + Glycerin (93.5 %) 389 ± 0.5
Water + PEO (4 %, 600k) 600 1324 ± 0.5 Water + Glycerin (100 %) 1078 ± 0.5

Table 1. Composition of operating fluids and the zero-shear viscosity η0 (at 23 ◦C). The rheological
properties of each sample are given in the supplementary material.

solution. This is illustrated by our rheology experiments. For high molar masses, we
measured changes in the flow curves within the first month after preparing the sample
(see supplementary material).

3. Spreading of viscoelastic and viscous Newtonian drops

3.1. Hydrophilic substrates
In figure 2(a), we plot the time dependence of the radius of the wetted area (r)
normalized to the initial drop radius (R) for viscous Newtonian (water–glycerol mixture)
and viscoelastic drops on a hydrophilic substrate. One of the challenges of plotting the
spreading radius over time is to determine the time of the first contact. Three options
have been suggested to overcome this problem. The simplest solution to add a bottom
view camera and capture the contact areas from the bottom (Eddi et al. 2013) and to
record at very high frame rates. Plotting the contact line velocity against the dimensionless
spreading radius (r/R) is another possible approach (Hartmann et al. 2021). The advantage
of the latter method is that it does not need a definition of zero time (see supplementary
material). The third option is to define a fitting parameter as t0; this parameter can pop
up in the fitting function r = B(t − t0)α . In all our experiments, this parameter is of the
order of a few frames t0 ∼ 0.0001 s. In all plots data points for times below t ≈ 0.5 ms are
omitted to be sure that the definition of the first contact time has no influence on the fit.
Consequently, we fitted the drop-spreading results from the fifth data point to t = 20 ms;
this time range in our study is defined as the ‘early stage’ of drop spreading. This time
scale is of the order of the cross-over time scale (from the inertial regime to the viscous
regime) defined by Biance et al. (2004) and 7 times higher than the characteristic time
scale defined by Bouillant et al. (2022) (t = 3 ms).

As expected from (1.1), a viscous Newtonian drop spreads in a manner proportional to
square root of time, r ∼ √

t. However, viscoelastic drops (aqueous PEO solutions) spread
with different spreading exponents (r = Btα with α < 0.5). To illustrate this difference,
two samples, here ‘Water + PEO(3 %, 300k)′ and ‘Water + Glycerin (85 %)’ (η0 ≈
100 mPa s), with the same zero-shear viscosity and the same initial drop size ( defined
by the image processing method and double checked with the drop volume, D ≈ 4 mm),
density and surface tension (σ ≈ 65 mN m−1) have clearly different spreading exponents
α (figure 2a). This does not match the existing models if we assume that the viscosity of the
viscoelastic liquid is equal to its zero-shear viscosity at all times. Under this assumption,
the Newtonian and viscoelastic liquids should spread with an identical dynamics. For the
same prefactor in the power law, see figure 2(d), a smaller spreading exponent (α) (for
t ≤ 0.02 s) results in higher spreading rates.
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Figure 2. (a) Radius of the wetted area (r) normalized by the initial radius of the drop (R) as a function of
time, for water and PEO (3 %, 300k and 3 %, 600k) and water and glycerin (85 %) on hydrophilic substrates.
(b) Flow curve of an aqueous PEO (3 %, 300k) solution and a water–glycerin mixture (85 %). (c,d) Spreading
exponent (α) and spreading prefactor as a function of the zero-shear viscosity η0 for all viscous Newtonian and
viscoelastic liquids mentioned in table 1.

To illustrate the effect of viscoelasticity, we use a typical flow curve of PEO solutions.
The viscosity at low shear rates remains constant. Above a certain critical shear rate, the
viscosity decays with increasing shear rate. Such a behaviour can be described by the
Cross-fluid model (1.3). In contrast, water–glycerin mixtures show no evidence of shear
thinning in our data; see figure 2(b). However, this may occur at even higher shear rates
(Dontula, Macosko & Scriven 1999). The shear rate at which the viscosity differs from its
zero shear value defines an internal relaxation time of the polymer solution, τve in (1.3).

Our hypothesis is that the spreading dynamics depends on the rheological properties of
the operating fluid. The velocity of the contact line in this early regime of drop spreading
is of the order of ucl ∼ 1 m s−1. In the case of a no-slip boundary condition the stress
and viscous dissipation at the three phase contact point diverges (this is known as the
‘Huh–Scriven paradox’ Huh & Scriven 1971). Although the viscous dissipation is expected
to be effective up to the capillary length (Snoeijer et al. 2005; Pelosse, Guazzelli & Roché
2023), it is shown that the density of viscous dissipation is much higher in the vicinity
of the three phase contact point than the rest of the drop (Bodziony, Wörner & Marschall
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Spreading of a viscoelastic drop on a solid substrate

2023; Li et al. 2023). If we consider a distance d in the range of 1 μm to 1 mm from the
contact line, the shear rate γ̇ = ucl/d can be estimated to be of the order of 103–106 s−1.

Thus, for the early stage of drop spreading, two effects have to be taken into account:
the shear-rate dependence of the steady-state viscosity and the time dependence of the
viscosity (Costanzo et al. 2016; Vereroudakis et al. 2023). In the supporting information,
figure S5, we show the cross-over between a phase in which viscoelasticity is not yet
contributing to drop spreading and a phase in which viscoelasticity contributes to the
spreading dynamics. For the moment, we focus on the phase in which viscoelasticity
contributes to drop spreading. For a more detailed discussion of this cross-over see § 4. At
the high shear rates in the vicinity of the moving contact line, the viscosity of the polymer
solutions decreases significantly, figure 2 and S2. However, the viscosity of a Newtonian
liquid remains more or less constant. This implies that, in the Newtonian case, the effective
viscosity near the contact line is higher. Following earlier works that see an influence of
viscosity on the early stage of drop spreading (Carlson et al. 2011, 2012; Eddi et al. 2013),
we come to the following qualitative picture: the dissipation close to the contact line is
higher in the Newtonian case than the viscoelastic case, leading to a lower contact line
velocity, which is in good agreement with our experimental results.

To test our hypothesis, we measure the spreading exponent and the spreading prefactor
over a wide range of zero-shear viscosities and rheological properties for viscous
Newtonian and viscoelastic drops spreading on hydrophilic substrates, (figures 2c and
2d). The initial observations are verified by this systematic variation of the material
parameters. For viscous Newtonian fluids, the spreading exponent is slightly decreasing
with increasing zero-shear viscosity, α ≈ 0.5 on the hydrophilic substrates. In contrast,
for viscoelastic fluids, the spreading exponent is a strongly decreasing function of the
zero-shear viscosity, (figure 2c). This difference is an indication of the dependence of the
spreading exponent (α) on the rheological properties. The trend of the spreading prefactor
seems to depend only on the zero-shear viscosity but not on the rheological exponent
(figure 2d). The spreading prefactor (for Newtonian and viscoelastic cases) roughly follows
B ∼ η0

−0.5, figure 2(d), which was also observed previously (Carlson et al. 2011; Eddi
et al. 2013).

3.2. Effect of substrate’s wettability
Repeating the spreading experiments for Newtonian and viscoelastic liquids on
hydrophobic substrates (i.e. θ0 � 90◦) reveals a number of important observations; see
figure 3. (i) On average, the spreading exponent (α) decreases as the contact angle
increases. (ii) The spreading exponent remains almost independent of the zero-shear
viscosity for Newtonian drops. (iii) Increasing the zero-shear viscosity of viscoelastic
liquids (i.e. increasing the concentration and/or molar mass of the polymer) reduces the
exponent. The difference between the spreading of Newtonian and viscoelastic drops
shows the same trend regardless of the hydrophobicity of the substrate. To summarize
our experimental results, the spreading exponent is dependent on the viscoelasticity of the
drop and the prefactor is a function of viscosity. All of the developed models up to now
cannot predict the effect of viscoelasticity. In the next sections we first discuss this in more
detail and then present a simplistic model to predict this behaviour.

4. Transition from the viscoelastic to the elastic case

The results presented so far show a clear dependency of drop spreading on the
viscoelasticity of the drop liquid. An important point here is the apparent contradiction
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Figure 3. Experimental spreading exponent (α) as a function of the zero-shear viscosity η0 for viscous
Newtonian (‘Water and glycerin’) and viscoelastic liquids (‘Water and PEO’) on hydrophobic and hydrophilic
substrates.

between our results and previous published works by two other groups (Bouillant et al.
2022; Yada et al. 2023). These groups stated that the concentration of polymer solutions
does not change the dynamic of the drop spreading compared with water as the drop liquid
and the exponent remains constant at α = 0.5. Both groups used PEO (4 × 106 g mol−1)
up to 2 % in weight concentration. So far we have considered intermediate polymer molar
masses (300 × 103 g mol−1 and 600 × 103 g mol−1) and concentrations. In the following
part of this section we discuss the differences between the present work and the works by
Bouillant et al. (2022) and Yada et al. (2023) in detail.

In the early stage of the viscoelastic drop spreading, capillary and inertia forces are
very similar for all used liquid (Newtonian and non-Newtonian). However, as a function
of time (or alternatively frequency), there is an interplay between the viscous and elastic
contributions in the non-Newtonian polymer solutions. Especially for short times (t 

τve), the elastic contributions dominate and only for long enough times (t � τve) do the
viscous contributions take over. The characteristic time of this cross-over is influenced by
the polymer molar mass and concentration. The non-dimensional number which takes
into account this interplay in our wetting situation is the elastocapillary number (Ec).
Previously, Ec was used for the liquid breakup of polymer solutions (Anna & McKinley
2001). The elastocapillary number Ec is the ratio of the polymer relaxation time (τve) to the
viscous–capillary time scale tvc = ηd/σ (McKinley 2005), where d is the characteristic
length. If we consider the characteristic length as the initial drop radius (R0) and the
viscosity as the zero-shear-rate viscosity (η0), we can rewrite the elastocapillary number
as (4.1)

Ec = στve

η0R0
. (4.1)

The critical value for this number is unity (Ec = 1). For very small Ec 
 1, the liquid is
purely viscous. By increasing Ec, the elasticity is increasingly important. In the limit Ec �
1, the flow is elastically dominated (McKinley 2005). For the intermediate polymer masses
we have used so far, the elastocapillary number ranges between Ec = 0.05 and Ec = 0.5
(table 2). An effective way to increase Ec is to increase the molar masses of polymer.
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Spreading of a viscoelastic drop on a solid substrate

Sample Molar mass (103 g mol−1) η0 (mPa s) τve (s) Ec

Water + PEO (3 %, 300k) 300 101 ± 0.5 0.0002186 0.07
Water + PEO (3 %, 600k) 600 537 ± 0.5 0.004355 0.26
Water + PEO (4 %, 600k) 600 1324 ± 0.5 0.02218 0.54
Water + PEO (1 %, 1000k) 1000 54 ± 0.5 0.002646 1.59
Water + PEO (2 %, 1000k) 1000 495 ± 0.5 0.0162 1.06
Water + PEO (3 %, 1000k) 1000 3340 ± 0.5 0.0942 0.92
Water + PEO (0.25 %, 8000k) 8000 210 ± 0.5 0.288 44.5
Water + PEO (0.5 %, 8000k) 8000 2450 ± 0.5 2.31 30.5

Table 2. Composition of operating fluids, the zero-shear viscosity η0 (at 23 ◦C), the polymer relaxation time
τve (s) based on a fit to the Cross model (1.3) and the respective elastocapillary number Ec (4.1).

We prepared two other set of liquids with higher molar masses of (1 × 106 g mol−1 and
8 × 106 g mol−1), the zero-shear-rate viscosities (η0), polymer relaxation time (τve) and
respective elastocapillary numbers (Ec) are listed in the table 2.

For the high molar masses, the drop spreading consists of two regimes. At short times
(t < 2 ms) the drop spreads with an exponent close to 0.5. Later, at longer times, the
exponent decreases (see supplementary material figure S5). All data shown so for the
lower molar masses were in this second regime.

Plotting the spreading exponent as a function of elastocapillary number Ec reveals
that, for Ec < 1, the exponent decreases with increasing Ec (increasing the elasticity of
liquid). By increasing the elastocapillary number, Ec > 1, the exponent increases with
increasing Ec and reaches a plateau region for Ec � 2. Since the elastocapillary number
is the ratio of the polymer relaxation time to the wetting time scale (the viscous capillary
time scale), the higher value of the elastocapillary number implies that the relaxation time
scale of the polymer is longer than the wetting time scale. In other words: to observe the
effects of the viscosity of the polymer solution, the experimental time scale must be of
the order of the polymer relaxation time. So for high values of the elastocapillary number,
Ec � 2, the elasticity dominates. It can be anticipated that this regime behaves close to
the inviscid case. The dependency on Ec is the same for hydrophilic and hydrophobic
substrates (figure 4).

In the previous studies (Bouillant et al. 2022; Yada et al. 2023), the elastocapillary
numbers were not reported. However, based on their measurements for low concentration
(c = 0.1wt%), Ec is probably very low (Ec 
 1). In contrast, for higher concentrations,
the Ec was probably above the threshold (Ec � 2). In both extremes, Bouillant et al. (2022)
and Yada et al. (2023) could hardly observe the effect of viscoelasticity.

5. A first-order model

5.1. Inviscid case
For low-viscosity drops, increasing the hydrophobicity of the substrate (by suitable surface
modification of the substrate) results in a decreasing spreading rate and exponent (Bird
et al. 2008; Chen et al. 2013b; Du et al. 2021). This was explained in terms of a simple
energy balance. This balance assumes that no energy is dissipated (de/dt = 0). In this
approximation, the kinetic energy (left-hand side of (5.1)) is balanced by a combination of
free surface energy and wetting energy (right-hand side of (5.1), Bird et al. 2008).
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Figure 4. (a) The early stage of drop spreading exponent (α) as a function of elastocapillary number (Ec) for
intermediate molar masses (300 × 103 and 600 × 103(g mol−1), black squares) and high molar masses (1000 ×
103 and 8000 × 103(g mol−1), red circles) on a hydrophilic substrate and (b) on a hydrophobic substrate. The
black dashed lines show the exponent for water on the substrate and red dash lines illustrate the elastocapillary
number Ec = 1.

This model makes a couple of assumptions that allow us to adapt it for our first-order
approach

(i) The change in surface area of the drop scales with r(t)2: A(0) − A(t) ≈ πF(θ0)r(t)2.
(ii) The flow field is assumed to be self-similar with a characteristic length scale that

scales as l(ci) ∼ (γ t2/ρ)(1/3).∫
V

1
2
ρu2 dV = σ [A(0) − A(t) + πr(t)2 cos(θ0)]. (5.1)

Here, u is the velocity field inside the drop, ρ is the liquid density, A(t) and A(0) are the
surface area of the liquid–vapour interface during the spreading and at the time zero and
θ0 is the contact angle at which the drop spreading would stop, i.e. the static advancing
contact angle. Bird et al. (2008) solved the balance equation (by modelling the kinetic
energy integral) and showed that the spreading is a function of the substrate’s wettability
(5.2)

r(t) = c1tα. (5.2)

In this solution, the spreading exponent is α = c2
√

F(θ0) + cos(θ0), where the unknown
function F depends weakly on θ0 (see Bird et al. 2008). As the contact angle increases, the
spreading exponent decreases. Our experiments show the same behaviour (figure 3).

5.2. Including viscous dissipation
Above a certain viscosity of the drops, viscous dissipation cannot be neglected.
Hydrodynamic models like the Moffatt (1964) solution suggest that the viscous dissipation
is of the order of ∼ 2πηru2. The dissipation rate ( jDe ) is balanced by the rate of change of
the total energy (de/dt = jDe ). We add the dissipation term to the left-hand side of the time
derivative of (5.1). In doing so, we keep the assumptions (i) and (ii) as mentioned in the
previous section. Additionally, we assume that (iii) the scaling of the characteristic length
scale does not change due to viscous effects.
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Approximation (iii) actually is a consequence of the first-order character of our model and
will limit our model to not too high viscosities. To solve the resulting equation (5.3), we
assume the viscous term to be small (η → εη∗) and to act as a perturbation term (the
first-order perturbation model). From now on we drop all explicit mention of time as an
argument

2πσ {1
2 tṙ2 + 1

2 t2r̈ − rṙ[F(θ0) + cos(θ0)]} = −2πεη∗rṙ2. (5.3)

We rewrite equation (5.3) in dimensionless units (t = τvet̂, r = r∗r̂). After simplification
(5.3) can be rewritten as (5.4). Here, the elastocapillary number pops up again, which
confirms that this non-dimensional number is relevant, Ec = στve/ηr. In our perturbation
approach, it is convenient to have Ec on the right side. We actually use the inverse of
Ec, as Ec∗ = η∗r∗/στve = 1/Ec. Taking typical values for the viscosity of the liquids
(η∗ ∼ 100 mPa s), the length scale as the initial drop radius (r∗ ∼ 2 mm) and the time
scale as the typical experimental time scale (τve ≈ 20 ms), we get Ec∗ ≈ 0.15

{1
2 tṙ2 + 1

2 t2r̈ − rṙ[F(θ0) + cos(θ0)]} = −εEc∗rṙ2. (5.4)

To address the viscoelastic case, we express the viscosity (in the high-shear-rate region)
in (5.3) as η(γ̇ ) ≈ η0/(τveγ̇ )m = εη∗

0/γ̇
m. Note that we let η∗

0 carry all the units and
remaining numerical factors. Since mainly the high shear region close to the contact
line contributes to the viscous dissipation (Huh & Scriven 1971; Li et al. 2023), only the
high-shear-rate viscosity is considered here. By estimating the shear rate as a function of
the contact line velocity as γ̇ � ucl/d∗ (d∗ is the distance to the contact line), the viscous
dissipation can be written as jDe � η∗ru2−m. With this assumption, the force balance
equation (5.3) can be rewritten

{1
2 tṙ2 + 1

2 t2r̈ − rṙ[F(θ0) + cos(θ0)]} = −εEc∗
0rṙ2−m. (5.5)

We use Mathematica (Wolfram Alpha Co. Version 10) to solve (5.4) and (5.5)
numerically; see supplementary material for details. We start exploring the effect of the
Newtonian and viscoelastic viscosity from the inviscid case discussed in Bird et al. (2008).
For example, we consider the case in which the drop spreading follows r(t) = 0.02t0.4 and
r(t) = 0.02t0.5, in our dimensionless units. The obtained solution is not exactly a power
law, but close to it. We fitted the numerical results by a simple power law (B

′
tα

′
), where B

′

and α′ are the effective prefactor and exponent, respectively, for the case of r(t) = 0.02t0.4

(figure 5a). These theoretical exponents are plotted in figure 5(b) as a function of the
small parameter ε and the rheological exponent m. We consider that the elastocapillary
numbers are equal in both cases, since in the experimental part we compare the drops
with the same zero-shear viscosity. These results show that, in the viscoelastic case, the
exponent decreases more strongly than in the Newtonian case, by increasing the m value
(i.e. increasing the viscoelasticity of the samples). This agrees with the experimental
observation (figure 3). For the second case (r(t) = 0.02t0.5), the theoretical exponent
is plotted vs the different values of m in (1.3), which is an indicator for the level of
viscoelasticity (figure 6a). Also shown is the theoretical prefactor as a function of the
effective viscosity εEc∗, which shows that, by increasing the zero-shear-rate viscosity, the
prefactor decreases. This observation is also in line with our experimental observation.

It is worth mentioning that the first-order perturbation method is only valid for a small
correction term. The prefactor of the perturbed term (εEc∗) is between zero and 0.01,
which results in the zero-shear-rate viscosity being in the range of 0 to 7 mPa s. This means
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Figure 5. (a) Fitting of the numerical solution for different viscoelasticity levels (m = 0 and m = 0.5) for the
case of r(t) = 0.02t0.4. (b) The theoretical exponent (α′) as a function of εEc∗ values, for viscous Newtonian
and viscoelastic fluids (m = 0.25 and m = 0.5), for the same case.

α′
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Figure 6. (a) The effect of viscoelasticity level (m) on the effective spreading exponent α′ for a fixed value of
εEc∗ = 0.01 for r(t) = 0.02t0.5. (b) The theoretically predicted effective prefactor (B

′
) vs the different effective

viscosity εEc∗ values.

that our model is only valid for very limited cases but represents the first steps toward
the explanation of the experimental data. In summary, this simple perturbation analysis
agrees with the main trends observed in the experiments (compare figure 4): (i) adding
viscoelasticity to the system in terms of a shear-rate-dependent viscosity, the effective
exponent (α′) decreases; (ii) increasing the viscous dissipation (i.e. the perturbation
term), the prefactor decreases. This simple proposed model shows the key features of the
experimental tendencies.

6. Conclusion

The early stage spreading of Newtonian and viscoelastic fluids on hydrophilic and
hydrophobic substrates has been studied. Generally speaking, viscoelastic drops spread
faster compared with Newtonian drops with the same physical properties (zero-shear-rate

988 A51-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

45
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.450


Spreading of a viscoelastic drop on a solid substrate

viscosity and surface tension). This difference can be justified by the fact that, near the
contact line, the shear rate is extremely high. This leads to a decrease of the effective
viscosity which is not the case for Newtonian liquids. To be able to observe the viscoelastic
effect, the experimental time scale should be of the order of the internal relaxation time of
the used polymer solution or longer. Therefore, for higher molar masses of the polymer,
which corresponds to higher elastocapillary numbers, the time evolution of drop spreading
in the experimental time scale (≈20 ms) is independent of polymer concentration and
molar mass and the spreading exponent is very close to the water case, i.e. the inviscid
case. The influence of the viscoelasticity on drop spreading is especially pronounced when
the polymer relaxation time (τve) and the viscous–capillary time scale tvc are similar, i.e.
Ec ≈ 1. These experimental observations can be supported by a simple first-order model
for non-negligible but not too high viscosities. Future steps should include successively
dropping the approximations made in our first-order model e.g. compare with a broader
range of material parameters and experimental conditions. Since the presented first model
is limited to the first few experimental data points, future steps should successively drop the
approximations or include higher-order terms in the modelling. The results also confirm
the dependency of the spreading exponent on the wettability of the substrate.

Supplementary material. Supplementary material are available at https://doi.org/10.1017/jfm.2024.450.
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