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COMMENTS ON A DISCRETENESS CONDITION FOR
SUBGROUPS OF SL(2, C)

TROELS J@RGENSEN

1. Introduction. SL(2, C) is the group of all complex unimodular 2 X 2
matrices. A subgroup of SL(2, Q) is said to be discrete if it does not contain
any convergent sequence of distinct elements. A subgroup is said to be elemen-
tary if the commutator of any two elements of infinite order has trace 2.

The discreteness condition which this note relates to is the following:

PRrorosITION 1. If two complex, unimodular 2 X 2 matrices X and Y generate
a non-elementary, discrete group, then

| trace X? — 2| + | trace X YX1V-1 — 2| > 1.

This was proved in [1]. There are many examples in which equality holds
(see [2]), so in some sense the condition is best possible. However, in connec-
tion with this result, I have often been asked whether already the commutator-
trace is uniformly bounded away from 2. In other words: Does there exist a
positive real number K, such that the inequality |trace X VX1V~ — 2| 2 K
holds whenever X and Y generate a non-elementary, discrete group? Another
question has been whether the condition as stated is a consequence of stronger
inequalities such as

[trace X2 + trace X VX1V — 4] = 1
or
|trace X2 — trace X YX 1V~ = 1

by means of ‘“‘unnecessary’’ use of the triangle-inequality. The answer to each
of these questions is in the negative.

ProrosiTiON 2. Each of the three functions |trace X YX'V-1 — 2|,
[trace X2 + trace X YX—1V-1 — 4| und |trace X* — trace X YX~1Y~!| has the
infinum O over the set of all pairs (X, V') of generators of non-elementary, discrete
subgroups of SL(2, C).

The proof to be given is by means of explicit examples. The discreteness of
these groups will be established by a method which goes back to F. Schottky,
F. Klein and H. Poincaré: One views X and ¥ as Mdbius transformations and
shows that the group they generate acts discontinuously somewhere in the
extended complex plane (in fact, by exhibiting a fundamental polygon).
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The third function spoken of in Proposition 2 is the same as
|trace X YX V-1 — 2|.

The following will be proved, using Proposition 1 and some simple observa-
tions (mentioned in [3]) about Lie-products of 2 X 2 matrices:

ProrosiTION 3. If X and Y generate a non-elementary discrete group, then
|trace X? — 2| + [trace X VX V-1 — 2| = 1.

A more symmetric inequality, namely,
[trace (XV)? — 2| + |trace X2V?2 — 2| = 1

can be used as well. [t is easily obtained, using X ¥ and V instead of X and V.

It is possible to prove many similar discreteness conditions. IFor the applica-
tions which [ am aware of (see for instance [1; 4; and 5]), it is enough to know
just one of these. Ilowever, there may be still other conditions which could
lead to new results.

2. Examples. Let us denote by 7 the function which to an element of
SL(2,C) assigns its trace. It satisfies the identitites 7(4AB) = 7(BA) and
1(A)7(B) = 7(AB) + 7(AB-1). The unit element has trace 2. Using these
properties, which can be said to characterize 7, it is easy to derive the formula

T(ABA=BY) + 2 = 72(4) 4 2(B) + 12(AB) — 7(A)r(B)r(1B).

I't goes back to R. Fricke and will be referred to as “Fricke's formula’ in the
following.

Example 1. Let N be a real number, strictly greater than 1. Consider the

madtrices
A 0
X=v —1[0 —r‘]
p 2ot AT —2
e e Y |y

Clearly, both determinants are equal to 1. The traces of X, ¥V and XV are
easily seen to be
F(X) = (= AT
(YY) =20
TXY) = —(n — N)"L(N? 4 A2).

Il

Using Fricke’s formula, one obtains

r(XVX'V1) — 2 =400 — N2
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In particular, we have 7(X YX~'V—1) 5 2. Since
XVX1V1' = X(VYX) X Y(VYX)!

and both X and VX have infinite order (namely traces not equal to 2 cos =
for any rational number ), the group generated by X and ¥ is non-elementary.
It remains to show that it is discrete.

The Mébius transformation corresponding to (plus and minus) X amounts
to multiplication by —AZ% The Mobius transformation determined by Y is the
elliptic element (rotation) of order 2 with fixed points A\? and N2,

By X, the disk with centre 3(A=2 — 1) and radius 3 (A=% 4+ 1) is mapped
onto the disk with centre $(A\? — 1) and radius £(\? + 1), and ¥ interchanges
the interior and the exterior (including o) of the disk with centre 3(\2 4+ A~2)
and radius 3 (\? — \72).

Consider the open set P lying between the three circles (which two and two
are tangent as shown on Figure 1). [t is easy to see that every element different
from the identity in the group generated by X and ¥ maps P onto a set which is
disjoint from P. Therefore, no sequence chosen among these mappings can
converge to the identity (or, in fact, converge at all) without eventually being
constant. It follows at once that the matrix-group generated by X and ¥V
is discrete.

FIGURE 1.
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Example 2. Whenever three non-zero numbers ¢, b and ¢ have their product
equal to the sum of their squares, there exist unimodular matrices X and V¥
such that @, b and ¢ are the traces of X, Y and X V. Fricke's formula shows that
the commutator of X and Y has trace —2. One possible choice of matrices is:

{ia — bt ac_z]
X = —1
a be

-1 —2
V= [b — ac —b_c_1 ]
—b ac

_ 1
c —c
XY = lc 0 _
Then one has
_ 1
_ c C —1y—1 _ —1 —2]
YX—__C 0 and XVXV —[0 E

Two elements X and YV of SL(2, R) which have non-zero traces and whose
commutator has trace —2 always generate a discrete (and free) group. Clearly
such a group is non-elementary, too.

To prove the discreteness, consider the corresponding Mébius transforma-
tions. It is easy to see that the fixed points of the parabolic elements
XVYX1V-1 VX-1V-1X, X-1V-1XV and V7' X VX! lie in the given cyclic
order on the extended real axis. Hence, in succession, they are the points of
tangency of four circles, a, 8, v and § (see Figure 2) which are perpendicular to
the real axis and paired in the sense that X maps vy onto @ and ¥ maps § onto
B. Clearly, the open region P lying between these circles cannot be mapped
onto a set intersecting P by any transformation (other than the identity) in
the group generated by X and Y. This implies that the group of matrices is
discrete.

3. Proof of Propositions 2 and 3.

Let X and ¥ be two elements of SL(2, G). One can show by careful, but
not difficult, computations that X and Y have a common fixed point in the
extended complex plane 1f and only if their commutator has trace 2.

The determinant of XV — VX is equal to 2 — 7(X YX—1V~1). Therefore, if
X and Y have no common fixed points, as we shall assume, then their Lie-
product determines a Mobius transformation ¢ which is elliptic of order 2
(since it has trace 0). An important property of ¢ is that it transforms X into
X~tand Y into Y= [3]. Consequently, the group generated by X and YV is a
subgroup of index at most 2 in its extension by ¢. Thus, if X and V generate
a discrete group, then so do X, ¥ and ¢ together and, in particular, so do X
and Y. In this case, we know from [1] that

[rX? = 2| + |r(X VX1V =2 2 1,
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F1GURE 2.

except in certain cases of elementary groups where, in fact, the set of points
fixed under X is mapped onto itself by V. Applying this to X and V¢, we obtain

[7X?2 = 2| 4+ |7(XVYXY"!) — 2] =2 1.
This is true because
X(Y)XHW(Yo) ! = XYVoX 1o 'V = XYXVL

To conclude the proof of Proposition 3, we remark that if ¥¢ maps the set of
fixed points for X onto itself, then so does ¥V (since ¢ does) and thus, the group
generated by X and Y is elementary.

To prove Proposition 2, first we refer to Example 1 and observe that
(X YX~1V') becomes arbitrarily close to 2 if X is chosen sufficiently large.
Secondly, we have

(X)) — r(X VX7V = (X V) — 7(XVX1V1) — 2
= (V= N 4 A — A — N — 4
= (A — A1),

It is clear that (XV, V) and (X, V) generate the same group and have the
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same commutator. Therefore, letting N approach 1, we see that the last function
spoken of in the proposition becomes arbitrarily small.

Finally, if in Example 2 we choose 7(X) = r(V) = 2+/2 and +(XY) = 4,
then 7(X2?) 4+ 7(X YX-1V-1) — 4 = 0. This completes the proof.
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