THEORETICAL PEARL Applications of Plotkin-terms: partitions and morphisms for closed terms

RICHARD STATMAN
Department of Mathematics, Carnegie-Mellon University,
Pittsburgh, Pennsylvania 15213, USA.
(e-mail: Rick.Statman@andrew.cmu.edu)

HENK BARENDREGT
Department of Computer Science, Catholic University, Box 9102, 6500 HC Nijmegen, The Netherlands.
(e-mail: henk@cs.kun.nl)

Abstract

This theoretical pearl is about the closed term model of pure untyped lambda-terms modulo β-convertibility. A consequence of one of the results is that for arbitrary distinct combinators (closed lambda terms) $M, M^{\prime}, N, N^{\prime}$ there is a combinator H such that $$
H M=H M^{\prime} \neq H N=H N^{\prime} .
$$

The general result, which comes from Statman (1998), is that uniformly r.e. partitions of the combinators, such that each 'block' is closed under β-conversion, are of the form $\left\{H^{-1}\{M\}\right\}_{M \in \Lambda}{ }^{\Phi}$. This is proved by making use of the idea behind the so-called Plotkin-terms, originally devised to exhibit some global but non-uniform applicative behaviour. For expository reasons we present the proof below. The following consequences are derived: a characterization of morphisms and a counter-example to the perpendicular lines lemma for β-conversion.

1 Introduction

We use notations from recursion theory and lambda calculus (see Rogers (1987) and Barendregt (1984)).

Notation.

(i) φ_{e} is the e-th partial recursive function of one argument.
(ii) $W_{e}=\operatorname{dom}\left(\varphi_{e}\right) \subseteq \mathbb{N}$ is the r.e. set with index e.
(iii) Λ is the set of lambda-terms and Λ^{Φ} is the set of closed-lambda terms (combinators).
(iv) $\mathscr{W}_{e}=\left\{M \in \Lambda^{\Phi} \mid \# M \in W_{e}\right\} \subseteq \Lambda^{\Phi}$; here $\# M$ is the code of the term M.

Definition 1.1

(i) Inspired by Visser (1980), we define a Visser-partition (V-partition) of Λ^{Φ} to be a family $\left\{\mathscr{W}_{e}\right\}_{e \in S}$ such that
(1) $S \subseteq \mathbb{N}$ is an r.e. set.
(2) $\forall e \in S \forall M, N\left(M \in \mathscr{W}_{e} \& N=M\right) \Rightarrow N \in \mathscr{W}_{e}$.
(3) $\mathscr{W}_{e} \cap \mathscr{W}_{e^{\prime}} \neq 0 \Rightarrow \mathscr{W}_{e}=\mathscr{W}^{\prime}$.
(ii) A family $\left\{\mathscr{W}_{e}\right\}_{e \in S}$ is a pseudo-V-partition if it satisfies just (1) and (2).

Definition 1.2

Let $\{W e\} e \in s$ be a V-partition:

1. The partition is said to be covering if $\bigcup_{e \in S} \mathscr{W}_{e}=\Lambda^{\Phi}$.
2. The partition is said to be inhabited if $\forall e \in S \mathscr{W}_{e} \neq 0$.
3. A V-partition $\left\{\mathscr{W}_{e}\right\}_{e \in S^{\prime}}$ is said to be (extensionally) equivalent with $\left\{\mathscr{W}_{e}\right\}$ if these families define the same collection of non-empty sets, i.e. if

$$
\left\{\mathscr{W}_{e} \mid e \in S \& \mathscr{W}_{e} \neq 0\right\}=\left\{\mathscr{W}_{e} \mid e \in S^{\prime} \& \mathscr{W}_{e} \neq 0\right\}
$$

Example 1.3

Let H be some given combinator. Define

$$
\mathscr{W}_{e(M, H)}=\left\{N \in \Lambda^{\Phi} \mid H N=H M\right\} .
$$

Then $\left\{\mathscr{W}_{e}\right\}_{e \in S_{H}}$, with $S_{H}=\left\{e(M, H) \mid M \in \Lambda^{\Phi}\right\}$, is an example of a covering and inhabited V-partition. We denote this V-partition by $\left\{\mathscr{W}_{e(M, H)}\right\}_{M \in \Lambda^{\Phi}}$.

Proposition 1.4
(i) Every V-partition is effectively equivalent to an inhabited one.
(ii) Every V-partition can effectively be extended to a covering one.

Proof

(i) Given $\left\{\mathscr{W}_{e}\right\}_{e \in S}$, define $S^{\prime}=\left\{e \in S \mid \mathscr{W}_{e} \neq 0\right\}$. Then $\left\{\mathscr{W}_{e}\right\}_{e \in S^{\prime}}$ is the required modified partition.
(ii) Given $\left\{\mathscr{W}_{e}\right\}_{e \in S}$, define

$$
\mathscr{W}_{e(M)}=\left\{N \mid N=M \vee \exists e \in S M, N \in \mathscr{W}_{e}\right\} .
$$

Then $\left\{\mathscr{W}_{e(M)}\right\}_{M \in \Lambda^{\Phi}}$ is the required V-partition.
The main theorem comes in two versions. The second, more sharp version is needed for the construction of so-called inevitably consistent equations, see Statman (1999).

Theorem 1.5 (Main theorem)
(i) Let $\left\{\mathscr{W}_{e}\right\}_{e \in S}$ be a V-partition. Then one can construct effectively a combinator H such that for all $M, N \in \Lambda^{\Phi}$

$$
\begin{equation*}
H M=H N \Leftrightarrow M=N \vee \exists e \in S M, N \in \mathscr{W}_{e} . \tag{*}
\end{equation*}
$$

The construction of H is effective in the code of the underlying r.e. set S.
(ii) Let $\left\{\mathscr{W}_{e}\right\}_{e \in S}$ be a pseudo-V-partition. Then one can construct effectively a combinator H such that if $\left\{W_{e}\right\}_{e \in S}$ is an actual V-partition, then (*) holds.

The theorem will be proved in section 2. It has several consequences. To state these we have to formulate the notion of morphism on Λ^{Φ} and the so-called perpendicular lines lemma.

Definition 1.6

Let $\varphi: \Lambda^{\Phi} \rightarrow \Lambda^{\Phi}$ be a map. Then φ is a morphism if 1. $\varphi(M)=\mathrm{Ec}_{f(\# M)}$, for some recursive function f.
2. $M=N \Rightarrow \varphi(M)=\varphi(N)$.

Lemma 1.7

(i) Let F be a combinator and define $\varphi_{H}(M) \equiv H M$. Then φ_{H} is a morphism.
(ii) Let F, G be combinators such that for all $M \in \Lambda^{\Phi}$ there exists a unique $N \in \Lambda^{\Phi}$ with $F M=G N$. Then there is a map $\varphi_{F, G}$ such that $F M=G_{\varphi F, G}(M)$, for all M, which is a morphism.

Proof
(i) For the coding \# let app be the recursive function such that $\#(P Q)=\operatorname{app}(\# P$, $\# Q)$. Define $f(m)=\operatorname{app}(\# H, m)$. Then $\varphi_{H}(M)=\mathrm{Ec}_{f(\# M)}$. It is obvious that φ_{H} preserves β-equality.
(ii) Let $R(m, n)$ be an r.e. relation. Then we have $R(m, n) \Leftrightarrow \exists z T(m, n, z)$, for some recursive T. Let $\langle n, z\rangle$ be a recursive pairing with recursive inverses $\langle n, z\rangle .0=n$, $\langle n, z\rangle .1=z$. Define (μ is the least number operator)

$$
\mathbf{1}_{n} \cdot R(m, n)=(\mu p . T(m, p \cdot 0, p .1)) \cdot 0
$$

Then $\exists n \in \mathbb{N} R(m, n) \Rightarrow R\left(m, \mathrm{1}_{n} . R(m, n)\right)$. To construct the morphism $\varphi_{F, G}$, define

$$
f(m)=\mathbf{v}_{n} . F\left(\mathrm{Ec}_{m}\right)=G\left(\mathrm{Ec}_{n}\right)
$$

By the assumption (existence) f is total. Define $\varphi_{F, G}(M)=\mathrm{Ec}_{f(\# M)}$. Now

$$
f(\# M)=n \Rightarrow F\left(\mathrm{Ec}_{c}\right)=G\left(\mathrm{Ec}_{n}\right)
$$

Therefore, $F M=G \varphi_{F, G}(M)$, for all M. The condition

$$
M=M^{\prime} \Rightarrow \varphi_{F, G}(M)=\varphi_{F, G}\left(M^{\prime}\right)
$$

holds by the assumption (unicity).
One may wonder if by dropping the unicity condition in Lemma 1.7(ii) one may obtain a morphism by making a right uniformization. This is not the case.

Proposition 1.8

There exist combinators F, G such that $\forall M \exists N F M=G N$ but without any morphism satisfying $\forall M F M=G \varphi(N)$.

Proof
Let $\Delta=\mathrm{Y} \Omega$ and define $F=\lambda x .\langle x, \Delta, \mathrm{I}\rangle$ and $G=\lambda y \cdot\langle\mathrm{E} y, y \Omega \Delta, y \mathrm{I}\rangle$. Then (see Statman, 1986)

$$
\begin{equation*}
F M={ }_{\beta} G N \Leftrightarrow\left(N={ }_{\beta} c_{n} \vee N={ }_{\beta} \mathrm{I}\right) \& \mathrm{E} N={ }_{\beta} M . \tag{1}
\end{equation*}
$$

Any morphism φ such that $F M=G \varphi(M)$ would solve the convertibility problem recursively: one has by (1)

$$
\begin{equation*}
M=M^{\prime} \Leftrightarrow \varphi(M)=\varphi\left(M^{\prime}\right) \tag{2}
\end{equation*}
$$

and since $\varphi(M), \varphi\left(M^{\prime}\right)$ we have nf's by (1), the RHS of (2) is decidable.

Proposition 1.9

Not every morphism is of the form φ_{H}.
Proof
Let $F, G \in \Lambda^{\Phi}$ be such that $F \circ G=\mathrm{I}$. Then F, G determine a so-called inner model $\llbracket \rrbracket=\llbracket \rrbracket^{F, G}$ as follows:

$$
\begin{aligned}
\llbracket x \rrbracket & =x ; \\
\llbracket P Q \rrbracket & =F \llbracket P \rrbracket \llbracket Q \rrbracket \\
\llbracket \lambda x, P \rrbracket & =G(\lambda x . \llbracket P \rrbracket) .
\end{aligned}
$$

Using the condition on F, G it can be proved that

$$
M={ }_{\beta} N \Rightarrow \llbracket M \rrbracket=\llbracket N \rrbracket .
$$

Therefore, defining $\varphi(M)=\llbracket M \rrbracket$ we obtain a morphism.
Now take $F \equiv \lambda y . u \mathrm{I}, \Gamma \equiv \lambda x y . y x$. Then, indeed, $F \circ G=\mathrm{I}$, and for the resulting inner model one has $\llbracket I \rrbracket=\lambda y \cdot y \mid$ and $\llbracket \Omega \rrbracket=(\lambda y \cdot y(\lambda z . z \mid z)) \mid(\lambda y \cdot y(\lambda z . z \mid z))$.

Suppose towards a contradiction that the resulting φ is of the form φ_{H}. Then $H \mathrm{I}=\lambda y . \lambda \mathrm{I}$, so H is solvable, and hence has a $\operatorname{hnf} \lambda x_{1} \ldots x_{n} \cdot{ }_{i} M_{1} \ldots M_{m}$. However, $H \Omega=(\lambda y \cdot y(\lambda z . z \mathrm{I} z)) \mid(\lambda y . y(\lambda z . z \mathrm{Iz}))$, which is unsolvable. Therefore, the headvariable x_{i} is x_{1}, but then $H \Omega=\lambda x_{2} \ldots x_{n} \cdot \Omega M_{1}^{*} \ldots M_{m}^{*}$, which is not of the correct form.

The following is a corollary to the main theorem.

Corollary 1.10

Every morphism φ is of the form $\varphi_{F, G}$.

Proof

Let φ be a given morphism. Define

$$
\mathscr{W}_{e(N)}=\left\{Z \mid \exists M \in \Lambda^{\Phi}\left[\varphi(M)=N \&\left[Z=\left\langle\mathbf{c}_{0}, M\right\rangle \vee Z=\left\langle\mathbf{c}_{1}, N\right\rangle\right)\right)\right\}
$$

Then $\left\{\mathscr{W}_{e(N)}\right\}$ is a V-partition. By the main theorem, there exists an H such that

$$
\begin{aligned}
H\left\langle\mathbf{c}_{0}, M\right\rangle=H\left\langle\mathbf{c}_{1}, N\right\rangle & \Leftrightarrow\left\langle\mathbf{c}_{0}, M\right\rangle=\left\langle\mathbf{c}_{1}, N\right\rangle \vee N=\varphi(M) \\
& \Leftrightarrow N=\varphi(M)
\end{aligned}
$$

Define

$$
\begin{aligned}
& F=\lambda m . H\left\langle\mathbf{c}_{0}, m\right\rangle \\
& G=\lambda n . H\left\langle\mathbf{c}_{1}, n\right\rangle .
\end{aligned}
$$

Then $F M=G N \Leftrightarrow N=\varphi(M)$. Therefore, $\varphi=\varphi_{F, G}$

Note that for a given morphism φ, one can define

$$
\mathscr{W}_{e(M, \varphi)}=\left\{N \in \Lambda^{\Phi} \mid \varphi(M)=\varphi(N)\right\} .
$$

This is an inhabited V-partition. It is not difficult to show that each V-partition is equivalent to one of the form $\left\{\mathscr{W}_{e(M, \varphi)}\right\}$. Note that $\left\{\mathscr{W}_{e(M, H)}\right\}=\left\{\mathscr{W}_{e\left(M, \varphi_{H}\right)}\right\}$, see Lemma 1.7. The following result shows that covering V-partitions are always of this more restricted form.

Corollary 1.11
If $\left\{\mathscr{W}_{e}\right\}$ is a covering V-partition, then $\left\{\mathscr{W}_{e}\right\}$ is equivalent to $\left\{\mathscr{W}_{e(M, H)}\right\}_{M \in \Lambda^{\Phi}}$ for some H, effectively found from $\left\{\mathscr{W}_{e}\right\}$.

Proof

Let H be the combinator constructed effectively from $\left\{\mathscr{W}_{e}\right\}$. We will show that $\mathscr{W}_{e(M, H)}$ $=\{N \mid H N=H M\}$ is equivalent to $\left\{\mathscr{W}_{e}\right\}$.

Claim. For $N \in \mathscr{W}_{e}$ one has $\mathscr{W}_{e}=\mathscr{W}_{e(M, H)}$. Indeed,

$$
\begin{aligned}
N \in \mathscr{W}_{e} & \Leftrightarrow M=N \vee M, N \in \mathscr{W}_{e} \\
& \Leftrightarrow H N=H M \\
& \Leftrightarrow N \in \mathscr{W}_{e(M, H)}
\end{aligned}
$$

Therefore, noting that $M \in \mathscr{W}_{e(M, H)}$,

$$
\left\{\mathscr{W}_{e} \mid M \in \Lambda^{\Phi}, \mathscr{W}_{e} \neq 0\right\} \subseteq\left\{\mathscr{W}_{e(M, H)} \mid \mathscr{W}_{e(M, H)} \neq \theta, M \in \Lambda^{\Phi}\right\} .
$$

The converse inclusion also holds, since every M belongs to some \mathscr{W}_{e}, and hence $\mathscr{W}_{e(M, H)}=\mathscr{W}_{e}$ for this e.

The following theorem states that if a combinator, seen as function of n arguments, is constant-modulo Böhm-tree equality - on n perpendicular lines, then it is constant everywhere.

Theorem 1.12 (Perpendicular lines lemma)
Let F be a combinator. Suppose that for $n \in \mathbb{N}$ there are combinators $M_{i j}, 1 \leqslant i \neq$ $j \leqslant n$, and N_{1}, \ldots, N_{n} such that for all terms $Z \in \Lambda$ one has (\cong denotes Böhm-tree equality, i.e. $M \cong N \Leftrightarrow B T(M)=B T(N))$

Then for all $P_{1} \ldots, P_{n} \in \Lambda^{\Phi}$ one has

$$
F P_{1} \ldots P_{n} \cong N_{1}\left(\cong N_{2} \cong \ldots \cong N_{n}\right)
$$

Proof
This is proved in Barendregt (1984, Theorem 14.4.12).

Proposition 1.13

If the perpendicular lines lemma is restricted to closed terms and if \cong is replaced by $={ }_{\beta}$, then the perpendicular lines lemma is false for $n>1$.

Proof

(For $n=1$ the perpendicular lines lemma is trivially true for $=_{\beta}$.) Assume $n>1$. For notational simplicity we assume $n=2$, and give a counter example. Define

$$
\begin{aligned}
& \mathscr{W}_{e_{1}}=\left\{N \in \Lambda^{\Phi} \mid N=\langle\mathrm{S}, \mathrm{~S}\rangle\right\} \\
& \mathscr{W}_{e_{2}}=\left\{N \in \Lambda^{\Phi} \mid \exists Z \in \Lambda^{\Phi}[N=\langle\mathrm{I}, Z\rangle \vee N=\langle Z, \mathrm{I}\rangle]\right\} .
\end{aligned}
$$

Then $\left\{\mathscr{W}_{e}\right\}_{e \in\left\{e_{1}, e_{2}\right\}}$ is a V-partition. Let H be the combinator obtained from this partition by the main theorem. Then for all $Z \in \Lambda^{\Phi}$

$$
H\langle\mathrm{~S}, \mathrm{~S}\rangle \neq H\langle\mathrm{I}, Z\rangle=H\langle Z, \mathrm{I}\rangle
$$

Now define $F \equiv \lambda x y . H\langle x, y\rangle$. Then for all $Z \in \Lambda^{\Phi}$

$$
F \mathrm{SS} \neq F \mathrm{I} Z=F Z \mathrm{I}
$$

This is indeed a counter-example.
We conjecture that the perpendicular lines lemma does hold for closed terms. We formulate this for $n=3$.

Conjecture 1.14

Let $F, M_{12}, M_{13}, M_{21}, M_{23}, M_{31}, M_{32}, N_{1}, N_{2}, N_{3} \in \Lambda^{\Phi}$ and suppose that for all $Z \in \Lambda^{\Phi}$ one has

$$
\begin{array}{cccccc}
F & Z & M_{12} & M_{13} & \cong & N_{1} \\
F & M_{21} & Z & M_{23} & \cong & N_{2} \\
F & M_{31} & M_{32} & Z & \cong & N_{3}
\end{array}
$$

Then for all $X, Y, Z \in \Lambda^{\Phi}$ one has $F X Y Z \cong N_{1}\left(\cong N_{2} \cong N_{3}\right)$.
We also believe the conjecture in Barendregt (1984), stating that the perpendicular line lemma with \cong replaced by $={ }_{\beta}$ is correct for open terms.

2 Proof of the main theorem

To prove the main Theorem 1.5, let a V-partition determined by S be fixed in this section. By Proposition 1.4 it may be assumed that the partition is inhabited.

Lemma 2.1

Let $\left\{\mathscr{W}_{e}\right\}_{e \in S}$ be an inhabited V-partition.
(i) There exists a total recursive function $f=f_{S}$ such that

$$
\forall e \in S W_{e}=\left\{f\left((2 e+1) 2^{n}\right) \mid n \in \mathbb{N}\right\} .
$$

(ii) There exists a combinator E^{S} such that

$$
\forall e \in S \mathscr{W}_{e}=\left\{\mathbb{E}^{S} \mathbf{c}_{(2 e+1) 2^{n}} \mid n \in \mathbb{N}\right\}
$$

Proof

(i) By elementary recursion theory there exists a recursive function h such that $W_{e}=\operatorname{Range}\left(\varphi_{h(e)}\right)$ and $\varphi_{h(e)}$ is total, for all $e \in S$. Observing that e, n are uniquely determined by $k=(2 e+1) 2^{n}$, define f by $f(0)=0, f\left((2 e+1) 2^{n}\right)=\varphi_{h(e)}(n)$.
(ii) Take $\mathrm{E}^{S}=\mathrm{E} \circ F_{S}$, where F_{S} lambda defines f_{S} and $\mathrm{E} \mathbf{c}_{\#_{M}}=M$ for all $M \in \Lambda^{\Phi}$.

Definition 2.2

(i) Define

$$
\begin{gathered}
\operatorname{odd}(0)=0 \\
\operatorname{odd}\left((2 e+1) 2^{n}\right)=2 e+1
\end{gathered}
$$

(ii) Define $\quad M \sim N$ iff $M=N \vee M=\mathrm{E}_{m}, \quad N=\mathrm{E}_{n} \quad$ and $\quad \operatorname{odd}(m)=\operatorname{odd}(n)$, for some m, n.

Notice that $M \sim N$ iff $M=N$ or $\exists e \in S M, N \in \mathscr{W}_{e}$. Therefore, we have to prove that there exists a combinator H such that

$$
H M=H N \Leftrightarrow M \sim N .
$$

The proof consists in constructing a combinator $H=H^{S}$ such that

1. $M \sim N \Rightarrow H M=H N$, Proposition 2.4;
2. $H M=H N \Rightarrow M \sim N$, Proposition 2.9.

The second part of the main theorem easily follows by inspecting the proof.

Definition 2.3

(i) Define

$$
\begin{aligned}
T & \equiv \lambda x y z \cdot x y(x y z) \\
A & \equiv \lambda f g x y z \cdot f x(a(\mathrm{E} x))\left[f\left(\mathrm{~S}^{+} x\right) y\left(g\left(\mathrm{~S}^{+} x\right)\right) z\right] \\
B & \equiv \lambda f g x \cdot f(\mathrm{~S} x)\left(a(\mathrm{E}(T x))\left(g\left(\mathrm{~S}^{+} x\right)\right)(g x) .\right.
\end{aligned}
$$

(ii) By the double fixed-point theorem there exists terms F, G such that

$$
\begin{aligned}
& F \rightarrow A F G \\
& G \rightarrow B F G
\end{aligned}
$$

To be explicit, write

$$
\begin{aligned}
D & \equiv(\lambda x y \cdot y(x x y)) \\
Y & \equiv D D \\
G & \equiv Y(\lambda u \cdot B(Y(\lambda v \cdot A u v)) u) \\
F & \equiv Y(\lambda u \cdot A u G)
\end{aligned}
$$

(iii) Finally, define

$$
H \equiv \lambda x a . F \mathbf{c}_{1}(a x)\left(G \mathbf{c}_{1}\right)
$$

Notation

Write

$$
\begin{aligned}
F_{k} & \equiv F \mathbf{c}_{k} ; \\
G_{k} & \equiv G \mathbf{c}_{k} ; \\
E_{k} & \equiv E \mathbf{c}_{k} ; \\
a_{k} & \equiv a \mathrm{E}_{k} ; \\
H_{k}[] & \equiv F_{k}[] G_{k} ; \\
C_{k}[] & \equiv F_{k} a_{k}\left[[] G_{k}\right) .
\end{aligned}
$$

Note that, by construction,

$$
\begin{aligned}
F_{k} M N & \rightarrow F_{k} a_{k}\left(F_{k+1} M G_{k+1} N\right) ; \\
G_{k} & \rightarrow F_{k+1} a_{2 k} G_{k+1} G_{k} .
\end{aligned}
$$

By reducing F, respectively G, it follows that

$$
\begin{align*}
H_{k}\left[a_{p}\right] & \equiv F_{k} a_{p} G_{k} \rightarrow C_{k}\left[H_{k+1}\left[a_{p}\right]\right] \tag{1}\\
H_{k}\left[a_{k}\right] & \equiv F_{k} a_{k} G_{k} \rightarrow C_{k k}\left[H_{k+1}\left[a_{2 k}\right]\right] . \tag{2}
\end{align*}
$$

Proposition 2.4

$$
M \sim N \Rightarrow H M=H N .
$$

Proof
By Lemma 2.1, it suffices to show $H \mathrm{E}_{k}=H \mathrm{E}_{2 k}$ for all k :

$$
\begin{array}{rlrl}
H \mathrm{E}_{k} & =\lambda a \cdot H_{1}\left[a_{k}\right] & \\
& =\lambda a \cdot C_{1}\left[C_{2}\left[\ldots C_{k-1}\left[H_{k}\left[a_{k}\right]\right] \ldots\right],\right. & & \text { by (1), } \\
& =\lambda a \cdot C_{1}\left[C_{2}\left[\ldots C_{k-1}\left[C_{k}\left[H_{k}\left[a_{2 k}\right]\right]\right]\right]\right], . & & \text { by (2), } \\
H \mathrm{E}_{2 k} & =\lambda a \cdot H_{1}\left[a_{2 k}\right] & & \\
& \left.=\lambda a \cdot C_{1}\left[C_{2}\left[\ldots C_{k-1}\left[C_{k}\left[H_{k}\left[a_{2 k}\right]\right]\right]\right]\right]\right], & \text { by (1). }
\end{array}
$$

As a piece of art we exhibit in more detail the reduction flow (contracted redexes are underlined).

$$
\begin{aligned}
& \frac{H \mathrm{E}_{k}}{\lambda a \cdot F_{1} a_{k} G_{1}} \\
& \lambda a \cdot F_{1} a_{1}\left(F_{2} a_{2} G_{2} G_{1}\right) \\
& \lambda a \cdot F_{1} a_{1}\left(F_{2} a_{2}\left(\underline{F_{3}} a_{k} G_{3} G_{2}\right) G_{1}\right) \\
& \ldots \\
& \left.\lambda a \cdot F_{1} a_{1}\left(F_{2} a_{2}\left(F_{3} a_{3} \ldots\left(F_{k} a_{k} G_{k} G_{k-1}\right) \ldots\right) G_{2}\right) G_{1}\right) \equiv \\
& \lambda a \cdot F_{1} a_{1}\left(F _ { 2 } a _ { 2 } \left(F _ { 3 } a _ { 3 } \ldots \left(F_{k} a_{k} \quad \underline{G_{k}} r\right.\right.\right. \\
& \left.\left.\left.\lambda a \cdot F_{1} a_{1}\left(F_{2} a_{2}\left(F_{3} a_{3} \ldots\left(F_{k} a_{k}\left(F_{k+1} a\right) a_{2 k} G_{k+1}\right) G_{k}\right) G_{k-1}\right) \ldots\right) G_{2}\right) G_{1}\right),
\end{aligned}
$$

and also

$$
\begin{aligned}
& H \mathrm{E}_{2 k} \rightarrow \ldots \rightarrow \\
& \lambda a \cdot F_{1} a_{1}\left(F_{2} a_{2}\left(F_{3} a_{3}\left(\ldots\left(F_{k} a_{k}\left(F_{k+1} a_{2 k} G_{k+1} G_{k}\right) G_{k-1}\right) \ldots\right) G_{2}\right) G_{1}\right) .
\end{aligned}
$$

For the converse implication we need the fine structure of the reduction.

Definition 2.5

Define

$$
\begin{aligned}
D_{k}^{0}[M] & \equiv F_{x}(a M) \equiv Y(\lambda u \cdot A u G) \mathbf{c}_{k}(a M) \\
D_{k}^{1}[M] & \equiv(\lambda y \cdot y(D D y))(\lambda u \cdot A u G) \mathbf{c}_{k}(a M) \\
D_{k}^{2}[M] & \equiv(\lambda u \cdot A u G) F_{k}(a M) \\
D_{k}^{3}[M] & \equiv A F G \mathbf{c}_{k}(a M) \\
D_{k}^{4}[M] & \equiv\left(\lambda g x y z \cdot F_{x}\left(a \mathrm{E}_{x}\right)\left(F_{\mathrm{S}^{+} x} y\left(g\left(\mathrm{~S}^{+} x\right)\right) z\right)\right) G \mathbf{c}_{k}(a M) \\
D_{k}^{5}[M] & \equiv\left(\lambda x y z \cdot F_{x}\left(a \mathrm{E}_{x}\right)\left(F_{\mathrm{S}^{+} x} y G G_{\mathrm{S}^{+} x} z\right)\right) \mathbf{c}_{k}(a M) \\
D_{k}^{6}[M] & \equiv\left(\lambda y z \cdot F_{k}\left(a \mathrm{E}_{k}\right)\left(F_{\mathrm{S}^{+} \mathbf{c}_{k}} y G_{\mathrm{S}^{+} \mathbf{c}_{k}} z\right)\right)(a M) \\
D_{k}^{7}[M] & \equiv\left(\lambda z \cdot F_{k}\left(a \mathrm{E}_{k}\right)\left(F_{\mathrm{S}^{+} \mathbf{c}_{k}}(a M) G_{\mathrm{S}^{+} \mathbf{c}_{k}} z\right)\right) .
\end{aligned}
$$

Lemma 2.6
Let $F_{k}(a M) N$ head-reduce in $8 p+q$ steps to W. Then

$$
\begin{aligned}
W & \equiv D_{k}^{q}[M] N, & & \text { if } p=0 ; \\
& \equiv D_{k}^{q}\left[\mathrm{E}_{k}\right]\left(\left(H_{k+1}\left[\mathrm{E}_{k}\right]\right)^{p-1}\left(H_{k+1}[M] N\right)\right), & & \text { else. }
\end{aligned}
$$

Proof
Note that $F_{k}(a M) N \equiv D_{k}^{0}[M] N$. Moreover,

$$
\begin{array}{ll}
D_{k}^{q}[M] N \rightarrow_{h} D_{k}^{q+1}[M] N, & \text { for } q<7 \\
D_{k}^{7}[M] N \rightarrow_{h} D_{k}^{0}\left[\mathrm{E}_{k}\right]\left(H_{k+1}[M] N\right) &
\end{array}
$$

The rest is clear. At steps 16, 24 we obtain, for example,

$$
D_{k}^{7}\left[\mathrm{E}_{k}\right]\left(H_{k+1}[M] N\right) \rightarrow_{h} D_{k}^{0}\left[\mathrm{E}_{k}\right]\left(\left(H_{k+1}\left[\mathrm{E}_{k}\right]\right)\left(H_{k+1}[M] G_{k}\right)\right)
$$

$D_{k}^{7}\left[\mathrm{E}_{k}\right]\left(\left(H_{k+1}\left[\mathrm{E}_{k}\right]\right)\left(H_{k+1}[M] G_{k}\right)\right) D_{k}^{0}\left[\mathrm{E}_{k}\right]\left(\left(H_{k+1}\left[\mathrm{E}_{k}\right]\right)^{2}\left(H_{k+1}[M] G_{k}\right)\right)$.
Remember that a standard reduction $\sigma: M \rightarrow{ }_{s} N$ always consists of a head reduction followed by an internal reduction:

$$
\sigma: M \rightarrow_{h} W \rightarrow_{i} N .
$$

Notation

Write $M={ }_{s \leqslant n} N$ if there are standard reductions of length $\leqslant n$ from M (respectively N) to a common reduct Z. Similarly, $M={ }_{i \leqslant n} N$ for internal standard reductions. Also, the notations $=_{s<n}$ and $=_{i<n}$ will be used.

Lemma 2.7
(i) $D_{k}^{q}[M] N={ }_{i \leqslant n} D_{k}^{q^{\prime}}\left[M^{\prime}\right] N^{\prime} \Rightarrow q=q^{\prime} \& N={ }_{s \leqslant n} N^{\prime}$.
(ii) $D_{k}^{q}[M] N={ }_{i \leqslant n} D_{k}^{q}\left[M^{\prime}\right] N^{\prime} \& q \leqslant 7 \Rightarrow M={ }_{s \leqslant n} M^{\prime}$.
(iii) $D_{k}^{7}[M] N={ }_{i \leqslant n} D_{k}^{7}\left[M^{\prime}\right] N^{\prime} \Rightarrow H_{k+1}[M]={ }_{s \leqslant n} H_{k+1}\left[M^{\prime}\right]$.

Proof

(i) Suppose $D_{k k}^{q}[M] N={ }_{i \leqslant n} D_{k}^{q^{\prime}}\left[M^{\prime}\right] N^{\prime}$. Then by observing where the free variable a occurs, one can conclude that $q=q^{\prime}$. Since the reductions to a common reduct are internal, the positions of N, N^{\prime} are not changed, and hence $N={ }_{s \leqslant n} N^{\prime}$.
(ii) Obvious from the definition of D_{k}^{q}.
(iii) In this case it follows that

$$
D_{k}^{0}\left[\mathrm{E}_{k}\right]\left(H_{k+1}[M] z\right)={ }_{i \leqslant n} D_{k}^{0}\left[\mathrm{E}_{k}\right]\left(H_{k+1}\left[M^{\prime}\right] z\right)
$$

The conclusion $H_{k+1}[M]={ }_{s \leqslant n} H_{k+1}\left[M^{\prime}\right]$ depends upon the fact that there are the free variables z to mark the residuals.

Lemma 2.8
Suppose $G_{k}={ }_{s \leqslant n}\left(H_{k+1}\left[\mathrm{E}_{k}\right]\right)^{d}\left(H_{k+1}[M] G_{k}\right)$. Then

$$
H_{k+1}\left[\mathrm{E}\left(T \mathbf{c}_{k}\right)\right]=_{s<n} H_{k+1}[M] .
$$

Proof
By induction on d. If $d=0$, then we have $G_{k}={ }_{s \leqslant n} H_{k+1}[M] G_{k}$. So there are standard reductions of these two terms to a common reduct. Observe that the head-reduction starting with G_{k} begins as follows:

$$
\begin{aligned}
& G_{k} \equiv Y(\lambda u \cdot B(Y(\lambda v \cdot A v u)) u) \mathbf{c}_{k} \\
& \quad \rightarrow_{h}(\lambda x \cdot x(Y x))(\lambda u \cdot B(Y(\lambda v \cdot A v u)) u) \mathbf{c}_{k} \\
& \quad \rightarrow_{h}(\lambda u \cdot B(Y(\lambda v \cdot A v u)) u) G \mathbf{c}_{k} \\
& \quad \rightarrow_{h} B F G \mathbf{c}_{k} \\
& \rightarrow_{h}\left(\lambda g x \cdot F\left(\mathrm{~S}^{+} k\right)\left(a\left(\mathrm{E}^{S}(T x)\right)\right)\left(g\left(\mathrm{~S}^{+} k\right)\right)(g x) G \mathbf{c}_{k}\right. \\
& \rightarrow_{h}\left(\lambda x \cdot F\left(\mathrm{~S}^{+} k\right)\left(a\left(\mathrm{E}^{S}(T x)\right)\right)\left(G\left(\mathrm{~S}^{+} k\right)\right)(G x)\right) \mathbf{c}_{k} \\
& \rightarrow_{h} F\left(\mathrm{~S}^{+} k\right)\left(a\left(\mathrm{E}^{S}\left(T \mathbf{c}_{k}\right)\right)\right)\left(G\left(\mathrm{~S}^{+} k\right)\right)\left(G \mathbf{c}_{k}\right) .
\end{aligned}
$$

The hands of these terms are not of order 0 except the last one, but $H_{k+1}[X]$ is always of order 0 . Therefore, the mentioned standard reduction of G_{k} goes at least to this last term $H_{k+1}\left[\mathrm{E}^{S}\left(T \mathbf{c}_{k}\right)\right] G_{k}$, but then $H_{k+1}\left[\mathrm{E}^{S}\left(T \mathbf{c}_{k}\right)\right]-_{s<n} H_{k+1}[M]$.

If $d>0$, then start the same argument as above, but at the intermediate conclusion

$$
H_{k+1}\left[\mathrm{E}^{S}\left(T \mathbf{c}_{k}\right)\right] G_{k}={ }_{s<n}\left(H_{k+1}\left[\mathrm{E}_{k}\right]\right)^{d}\left(H_{k+1}[M] G_{k}\right),
$$

one proceeds by concluding that

$$
G_{k}={ }_{s<n} H_{k+1}\left[\mathrm{E}_{k}\right]^{d-1}\left(H_{k+1}[M] G_{k}\right)
$$

and uses the induction hypotheses.
Proposition 2.9

$$
H_{k}[M]=H_{k}[N] \Rightarrow M \sim N .
$$

Proof
By the standardization theorem, it suffices to show for all n that

$$
\forall k \in \mathbb{N}\left[H_{k}[M]=_{s \leqslant n} H_{k}[N] \Rightarrow M \sim N\right] .
$$

This will be done by induction on n. From $H_{k}[M]={ }_{s \leqslant n} H_{k}[N]$, it follows that

$$
\begin{array}{r}
H_{k}[M] \rightarrow{ }_{h} W_{M} \rightarrow_{i} Z \\
H_{k}[N] \rightarrow{ }_{h} W_{N} \rightarrow_{i} Z
\end{array}
$$

for some W_{M}, W_{N}, Z.

Case 1. W_{M}, W_{N} are both reached after <8 steps. Then by Lemma 2.6, $W_{M} \equiv$ $D_{k}^{q}[M] G_{k}, W_{N} \equiv D_{k}^{q^{\prime}}[N] G_{k}$. By Lemma 2.7(i), it follows that $q=q^{\prime}$. If $q<7$, then by Lemma 2.7(ii) one has $M=N$, so $M \sim N$. If $q=7$, then by Lemma 2.7(iii) one has $H_{k+1}[M]={ }_{s<n} H_{k+1}[N]$, and by the induction hypothesis one has $M \sim N$.

Case 2. W_{M} is reached after $p \geqslant 8$ steps and W_{N} after $q<8$ steps. Then $p=8 d+q$ and, keeping in mind Lemma 2.7(i), it follows that $W_{M} \equiv D_{k}^{q}[M] G_{k}, W_{N} \equiv D_{k}^{q}\left[E_{k}\right] R$, $G_{k}={ }_{s<n} R$, where $R \equiv\left(H_{k+1}\left[\mathrm{E}_{k}\right]\right)^{d-1}\left(H_{k+1}[N] G_{k}\right)$. Then as in case 1, it follows that $M \sim \mathrm{E}_{k}$. Moreover, by Lemma $2.8 H_{k+1}\left[\mathrm{E}_{2 k}\right]={ }_{s<n} H_{k+1}[N]$, so by the induction hypothesis $\mathrm{E}_{2 k} \sim N$. So $M \sim \mathrm{E}_{k} \sim \mathrm{E}_{2 k} \sim N$.

Case 3. Both W_{M}, W_{N} are reached after $\geqslant 8$ steps. Then

$$
\begin{aligned}
W_{M} & \equiv D_{k}^{j}\left[\mathrm{E}_{k}\right]\left(\left(H_{k+1}\left[\mathrm{E}_{k}\right]\right)^{d}\left(H_{k+1}[M] G_{k}\right)\right) \\
W_{N} & \equiv D_{k}^{j}\left[\mathrm{E}_{k}\right]\left(\left(H_{k+1}\left[\mathrm{E}_{k}\right]\right)^{d}\left(H_{k+1}[N] G_{k}\right)\right) .
\end{aligned}
$$

If $d=d^{\prime}$, then by Lemma 2.7

$$
\left(H_{k+1}\left[\mathrm{E}_{k}\right]\right)^{d}\left(H_{k+1}[M] G_{k}\right)={ }_{s<n}\left(H_{k+1}\left[\mathrm{E}_{k}\right]\right)^{d}\left(H_{k+1}[N] G_{k}\right),
$$

so

$$
H_{k+1}[M]={ }_{s<n} H_{k+1}[N],
$$

since $H_{k+1}[X]$ is always of order 0 . Therefore, by the induction hypothesis $M \sim N$.
If, on the other hand, say, $d<d^{\prime}$, then (writing $d^{\prime}=d+e$)

$$
\begin{aligned}
W_{M} & \equiv D_{k}^{j}\left[\mathrm{E}_{k}\right]\left(\left(H_{k+1}\left[\mathrm{E}_{k}\right]\right)^{d}\left(H_{k+1}[M]\right)\right. \\
W_{N} & \equiv D_{k}^{k}\left[\mathrm{E}_{k}\right]\left(\left(H_{k+1}\left[\mathrm{E}_{k}\right]\right)^{d}\left(H_{k+1}\left[\mathrm{E}_{k}\right] \underline{\left(\left(H_{k+1}\left[\mathrm{E}_{k}\right]\right)^{e-1}\left(H_{k+1}[N] G_{k}\right)\right)}\right)\right)
\end{aligned}
$$

so

$$
\begin{aligned}
H_{k+1}[M] & ={ }_{s<n} H_{k+1}\left[\mathrm{E}_{k}\right] \\
G_{k} & ={ }_{s<n}\left(H_{k+1}\left(\mathrm{E}_{k}\right]\right)^{e-1}\left(H_{k+1}[N] G_{k}\right),
\end{aligned}
$$

since $H_{k+1}[X]$ is always of order 0 . Therefore, by Lemma 2.8

$$
H_{k+1}\left[\mathrm{E}_{2 k}\right]={ }_{s<n} H_{k+1}[N] .
$$

Therefore, by the induction hypothesis, twice we obtain $M \sim \mathrm{E}_{k} \sim \mathrm{E}_{2 k} \sim N$.

References

Barendregt, H. P. (1984) The Lambda Calculus: Its syntax and semantics, revised edition, North-Holland.
Rogers Jr, H. (1987) Theory of Recursive Functions and Effective Computability, 2nd edition. MIT Press.
Statman, R. (1986) Every countable poset is embeddable in the poset of unsolvable terms. Theor. Comput. Sci. 48(1), 95-100.
Statman, R. (1998) Morphisms and partitions of V-sets. CSL'98: Lecture Notes in Computer Science. Springer-Verlag. To appear.
Statman, R. (1999) Consequences of a theorem of Jacopini: consistent equalities and equations. TLCA'99: Lecture Notes in Computer Science 1581. Springer-Verlag, pp. 355-364.
Visser, A. (1980) Numerations, λ-calculus \& arithmetic. To H. B. Curry : essays on combinatory logic, lambda calculus and formalism. Academic Press, pp. 259-284.

