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Abstract

This theoretical pearl is about the closed term model of pure untyped lambda-terms modulo

β-convertibility. A consequence of one of the results is that for arbitrary distinct combinators

(closed lambda terms) M, M «, N, N « there is a combinator H such that

HM¯HM «1HN¯HN «.

The general result, which comes from Statman (1998), is that uniformly r.e. partitions of the

combinators, such that each ‘block’ is closed under β-conversion, are of the form ²H−"²M ´´
M`Λ

Φ.

This is proved by making use of the idea behind the so-called Plotkin-terms, originally devised

to exhibit some global but non-uniform applicative behaviour. For expository reasons we

present the proof below. The following consequences are derived: a characterization of

morphisms and a counter-example to the perpendicular lines lemma for β-conversion.

1 Introduction

We use notations from recursion theory and lambda calculus (see Rogers (1987) and

Barendregt (1984)).

Notation.

(i) }
e
is the e-th partial recursive function of one argument.

(ii) W
e
¯dom(}

e
)X. is the r.e. set with index e.

(iii) Λ is the set of lambda-terms and ΛΦ is the set of closed-lambda terms

(combinators).

(iv) 7
e
¯²M `ΛΦ r gM `W

e
´XΛΦ ; here gM is the code of the term M.
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Definition 1.1

(i) Inspired by Visser (1980), we define a Visser-partition (V-partition) of ΛΦ to be a

family ²7
e
´
e`S

such that

(1) SX. is an r.e. set.

(2) ce `ScM,N (M `7
e
& N¯M )3N `7

e
.

(3) 7
e
f7

e«
1 J37

e
¯7e«.

(ii) A family ²7
e
´
e`S

is a pseudo-V-partition if it satisfies just (1) and (2).

Definition 1.2

Let ²We´e`s be a V-partition:

1. The partition is said to be co�ering if 5
e`S

7
e
¯ΛΦ.

2. The partition is said to be inhabited if ce `S7
e
1 J.

3. A V-partition ²7
e
´
e`S « is said to be (extensionally) equi�alent with ²7

e
´ if these

families define the same collection of non-empty sets, i.e. if

²7
e
r e `S & 7

e
1 J´¯ ²7

e
r e `S « & 7

e
1 J´.

Example 1.3

Let H be some given combinator. Define

7
e(M,H)

¯²N `ΛΦ rHN¯HM ´.

Then ²7
e
´
e`SH

, with S
H

¯²e(M,H ) rM `ΛΦ´, is an example of a covering and

inhabited V-partition. We denote this V-partition by ²7
e(M,H)

´
M`ΛΦ.

Proposition 1.4

(i) Every V-partition is effectively equivalent to an inhabited one.

(ii) Every V-partition can effectively be extended to a covering one.

Proof

(i) Given ²7
e
´
e`S

, define S «¯ ²e `S r7
e
1 J´. Then ²7

e
´
e`S « is the required modified

partition.

(ii) Given ²7?´ e`S
, define

7
e(M)

¯²N rN¯Mhde `SM,N `7
e
´.

Then ²7
e(M)

´
M`ΛΦ is the required V-partition. *

The main theorem comes in two versions. The second, more sharp version is needed

for the construction of so-called inevitably consistent equations, see Statman (1999).

Theorem 1.5 (Main theorem)

(i) Let ²7
e
´
e`S

be a V-partition. Then one can construct effectively a combinator H

such that for all M, N `ΛΦ

HM¯HN5M¯Nhde `SM,N `7
e
. (n)

The construction of H is effective in the code of the underlying r.e. set S.
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(ii) Let ²7
e
´
e`S

be a pseudo-V-partition. Then one can construct effectively a

combinator H such that if ²W
e
´
e`S

is an actual V-partition, then (n) holds.

The theorem will be proved in section 2. It has several consequences. To state these

we have to formulate the notion of morphism on ΛΦ and the so-called perpendicular

lines lemma.

Definition 1.6

Let } :ΛΦ UΛΦ be a map. Then } is a morphism if

1. }(M )¯Ec
f(gM)

, for some recursive function f.

2. M¯N3}(M )¯}(N ).

Lemma 1.7

(i) Let F be a combinator and define }
H
(M )3HM. Then }

H
is a morphism.

(ii) Let F,G be combinators such that for all M `ΛΦ there exists a unique N `ΛΦ

with FM¯GN. Then there is a map }
F,G

such that FM¯G}F,G
(M ), for all M, which

is a morphism.

Proof

(i) For the coding g let app be the recursive function such that g(PQ)¯ app(gP,

gQ). Define f(m)¯ app(gH,m). Then }
H
(M )¯Ec

f(gM)
. It is obvious that }

H

preserves β-equality.

(ii) Let R(m, n) be an r.e. relation. Then we have R(m, n)5 dzT(m, n, z), for some

recursive T. Let ©n, zª be a recursive pairing with recursive inverses ©n, zª\0¯ n,

©n, zª\1¯ z. Define (µ is the least number operator)

ι
n
\R(m, n)¯ (µp\T(m, p\0, p\1))\0.

Then dn `.R(m, n)3R(m, ι
n
\R(m, n)). To construct the morphism }

F,G
, define

f(m)¯ ι
n
\F(Ec

m
)¯G(Ec

n
).

By the assumption (existence) f is total. Define }
F,G

(M )¯Ec
f(gM)

. Now

f(gM )¯ n3F(Ec
c
)¯G(Ec

n
).

Therefore, FM¯G}
F,G

(M ), for all M. The condition

M¯M «3}
F,G

(M )¯}
F,G

(M «)
holds by the assumption (unicity). *

One may wonder if by dropping the unicity condition in Lemma 1.7(ii) one may

obtain a morphism by making a right uniformization. This is not the case.

Proposition 1.8

There exist combinators F,G such that cMdNFM¯GN but without any morphism

satisfying cMFM¯G}(N ).

Proof

Let ∆¯YΩ and define F¯λx\©x,∆, Iª and G¯λy\©Ey, yΩ∆, yIª. Then (see

Statman, 1986)
FM¯β GN5 (N¯β c

n
hN¯β I) & EN¯β M. (1)
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Any morphism } such that FM¯G}(M ) would solve the convertibility problem

recursively : one has by (1)

M¯M «5}(M )¯}(M «), (2)

and since }(M ),}(M «) we have nf ’s by (1), the RHS of (2) is decidable. *

Proposition 1.9

Not every morphism is of the form }
H
.

Proof

Let F,G `ΛΦ be such that FaG¯ I. Then F,G determine a so-called inner model

O P¯ O PF,G as follows:

OxP¯x ;

OPQP¯FOPP OQP ;

Oλx,PP¯G(λx\OPP).

Using the condition on F, G it can be proved that

M¯β N3 OM P¯ ON P.

Therefore, defining }(M )¯OM P we obtain a morphism.

Now take F3λy\uI, Γ3λxy\yx. Then, indeed, FaG¯ I, and for the resulting

inner model one has OI P¯λy\yI and OΩP¯ (λy\y(λz\zIz))I(λy\y(λz\zIz)).

Suppose towards a contradiction that the resulting } is of the form }
H
. Then

H I¯λy\λI, so H is solvable, and hence has a hnfλx
"
…x

n
.[

i
M

"
…M

m
. However,

HΩ¯ (λy\y(λz\zIz))I(λy\y(λz\zIz)), which is unsolvable. Therefore, the head-

variable x
i
is x

"
, but then HΩ¯λx

#
…x

n
\ΩM$

"
…M$

m
, which is not of the correct

form. *

The following is a corollary to the main theorem.

Corollary 1.10

Every morphism } is of the form }
F,G

.

Proof

Let } be a given morphism. Define

7
e(N)

¯²Z r dM `ΛΦ[}(M )¯N & [Z¯©c
!
,MªhZ¯©c

"
,Nª))´.

Then ²7
e(N)

´ is a V-partition. By the main theorem, there exists an H such that

H©c
!
,Mª¯H©c

"
,Nª5©c

!
,Mª¯©c

"
,NªhN¯}(M )

5N¯}(M ).

Define

F¯λm.H©c
!
,mª ;

G¯λn\H©c
"
, nª.

Then FM¯GN5N¯}(M ). Therefore, }¯}
F,G

*
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Note that for a given morphism }, one can define

7
e(M,})

¯²N `ΛΦ r}(M )¯}(N )´.

This is an inhabited V-partition. It is not difficult to show that each V-partition

is equivalent to one of the form ²7
e(M,})

´. Note that ²7
e(M,H)

´¯ ²7
e(M,}H)

´, see Lemma

1.7. The following result shows that covering V-partitions are always of this more

restricted form.

Corollary 1.11

If ²7
e
´ is a covering V-partition, then ²7

e
´ is equivalent to ²7

e(M,H)
´
M`ΛΦ for some H,

effectively found from ²7
e
´.

Proof

Let H be the combinator constructed effectively from ²7
e
´. We will show that 7

e(M,H)

¯²N rHN¯HM ´ is equivalent to ²7
e
´.

Claim. For N `7
e
one has 7

e
¯7

e(M,H)
. Indeed,

N `7
e
5M¯NhM,N `7

e

5HN¯HM

5N `7
e(M,H)

.

Therefore, noting that M `7
e(M,H)

,

²7
e
rM `ΛΦ,7

e
1 J´X ²7

e(M,H)
r7

e(M,H)
1 J,M `ΛΦ´.

The converse inclusion also holds, since every M belongs to some 7
e
, and hence

7
e(M,H)

¯7
e
for this e. *

The following theorem states that if a combinator, seen as function of n arguments,

is constant – modulo Bo$ hm-tree equality – on n perpendicular lines, then it is

constant everywhere.

Theorem 1.12 (Perpendicular lines lemma)

Let F be a combinator. Suppose that for n `. there are combinators M
ij
, 1% i1

j% n, and N
"
,…,N

n
such that for all terms Z `Λ one has (Fdenotes Bo$ hm-tree

equality, i.e. MFN5BT(M )¯BT(N ))

F

F

F

M
#"

Z

M
n"

Z

M
"#

M
n#

…

…

…

…

…

M
#n−"

M
"n−"

M
nn−"

M
#n

M
"n

Z

F
F

F

N
#
;

N
"
;

N
n
.

Then for all P
"
…,P

n
`ΛΦ one has

FP
"
…P

n
FN

"
(FN

#
F…FN

n
).

Proof

This is proved in Barendregt (1984, Theorem 14.4.12). *
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Proposition 1.13

If the perpendicular lines lemma is restricted to closed terms and if F is replaced by

¯β, then the perpendicular lines lemma is false for n" 1.

Proof

(For n¯ 1 the perpendicular lines lemma is trivially true for ¯β.) Assume n" 1. For

notational simplicity we assume n¯ 2, and give a counter example. Define

7
e
"

¯²N `ΛΦ rN¯©S,Sª´

7
e
#

¯²N `ΛΦ r dZ `ΛΦ[N¯©I,ZªhN¯©Z, Iª]´.

Then ²7
e
´
e`²e

"
,e

#
´ is a V-partition. Let H be the combinator obtained from this

partition by the main theorem. Then for all Z `ΛΦ

H©S,Sª1H©I,Zª¯H©Z, Iª.

Now define F3λxy\H©x, yª. Then for all Z `ΛΦ

FSS1F IZ¯FZI.

This is indeed a counter-example. *

We conjecture that the perpendicular lines lemma does hold for closed terms. We

formulate this for n¯ 3.

Conjecture 1.14

Let F, M
"#

, M
"$

, M
#"

, M
#$

, M
$"

, M
$#

, N
"
, N

#
, N

$
`ΛΦ and suppose that for all Z `ΛΦ

one has

F

F

F

M
#"

Z

M
$"

Z

M
"#

M
$#

M
#$

M
"$

Z

F
F

F
N

#
;

N
"
;

N
$
.

Then for all X, Y, Z `ΛΦ one has FXYZFN
"
(FN

#
FN

$
).

We also believe the conjecture in Barendregt (1984), stating that the perpendicular

line lemma with F replaced by ¯β is correct for open terms.

2 Proof of the main theorem

To prove the main Theorem 1.5, let a V-partition determined by S be fixed in this

section. By Proposition 1.4 it may be assumed that the partition is inhabited.

Lemma 2.1

Let ²7
e
´
e`S

be an inhabited V-partition.

(i) There exists a total recursive function f¯ f
S

such that

ce `SW
e
¯² f((2e1)2n) r n `.´.

(ii) There exists a combinator ES such that

ce `S7
e
¯²ESc

(#e+")#
n r n `.´.
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Proof

(i) By elementary recursion theory there exists a recursive function h such that

W
e
¯Range(}

h(e)
) and }

h(e)
is total, for all e `S. Observing that e, n are uniquely

determined by k¯ (2e1)2n, define f by f(0)¯ 0, f((2e1)2n)¯}
h(e)

(n).

(ii) Take ES ¯E aF
S
, where F

S
lambda defines f

S
and EcgM

¯M for all

M `ΛΦ. *

Definition 2.2

(i) Define

odd(0)¯ 0;

odd((2e1)2n)¯ 2e1.

(ii) Define MCN iffM¯NhM¯E
m
, N¯E

n
and odd(m)¯odd(n),

for some m, n.

Notice that MCN iffM¯N or de `SM,N `7
e
. Therefore, we have to prove

that there exists a combinator H such that

HM¯HN5MCN.

The proof consists in constructing a combinator H¯HS such that

1. MCN3HM¯HN, Proposition 2.4;

2. HM¯HN3MCN, Proposition 2.9.

The second part of the main theorem easily follows by inspecting the proof.

Definition 2.3

(i) Define

T3λxyz\xy(xyz) ;

A3λfgxyz\fx(a(Ex)) [ f(S+x)y(g(S+x))z] ;

B3λfgx\f(Sx) (a(E(Tx)) (g(S+x)) (gx).

(ii) By the double fixed-point theorem there exists terms F, G such that

FOAFG ;

GOBFG.

To be explicit, write

D3 (λxy\y(xxy)) ;

Y3DD ;

G3Y(λu\B(Y(λ�\Au�))u) ;

F3Y(λu\AuG).

(iii) Finally, define

H3λxa\Fc
"
(ax) (Gc

"
).
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Notation

Write
F
k
3Fc

k
;

G
k
3Gc

k
;

E
k
3Ec

k
;

a
k
3 aE

k
;

H
k
[ ]3F

k
[ ]G

k
;

C
k
[ ]3F

k
a
k
([ ]G

k
).

Note that, by construction,

F
k
MNOF

k
a
k
(F

k+"
MG

k+"
N ) ;

G
k
OF

k+"
a
#k

G
k+"

G
k
.

By reducing F, respectively G, it follows that

H
k
[a

p
]3F

k
a
p
G

k
OC

k
[H

k+"
[a

p
]] (1)

H
k
[a

k
]3F

k
a
k
G

k
OC

k
[H

k+"
[a

#k
]]. (2)

Proposition 2.4

MCN3HM¯HN.

Proof

By Lemma 2.1, it suffices to show HE
k
¯HE

#k
for all k :

HE
k
¯λa\H

"
[a

k
]

¯λa\C
"
[C

#
[…C

k−"
[H

k
[a

k
]] . . ]], by (1),

¯λa\C
"
[C

#
[…C

k−"
[C

k
[H

k
[a

#k
]]] . . ]], by (2),

HE
#k

¯λa\H
"
[a

#k
]

¯λa\C
"
[C

#
[…C

k−"
[C

k
[H

k
[a

#k
]]] . . ]], by (1). *

As a piece of art we exhibit in more detail the reduction flow (contracted redexes

are underlined).

HE
k

λa\F
"
a
k
G

"

λa\F
"
a
"
(F

#
a
#
G

#
G

"
)

λa\F
"
a
"
(F

#
a
#
(F

$
a
k
G

$
G

#
)G

"
)

…

λa\F
"
a
"
(F

#
a
#
(F

$
a
$
(… (F

k
a
k
G

k
G

k−"
)…)G

#
)G

"
)3

λa\F
"
a
"
(F

#
a
#
(F

$
a
$
(…(F

k
a
k

G
k

G
k−"

)…)G
#
)G

"
)

λa\F
"
a
"
(F

#
a
#
(F

$
a
$
(… (F

k
a
k
(F

k+"
a
#k

G
k+"

G
k
)G

k−"
)…)G

#
)G

"
),

and also
HE

#k
O…O

λa\F
"
a
"
(F

#
a
#
(F

$
a
$
(…(F

k
a
k
(F

k+"
a
#k

G
k+"

G
k
)G

k−"
)…)G

#
)G

"
).

For the converse implication we need the fine structure of the reduction.
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Definition 2.5

Define
D!

k
[M ]3F

x
(aM )3Y(λu\AuG )c

k
(aM )

D"
k
[M ]3 (λy\y(DDy)) (λu\AuG)c

k
(aM )

D#
k
[M ]3 (λu\AuG)F

k
(aM )

D$
k
[M ]3AFGc

k
(aM )

D%
k
[M ]3 (λgxyz\F

x
(aE

x
) (FS+

x
y(g(S+x))z))Gc

k
(aM )

D&
k
[M ]3 (λxyz\F

x
(aE

x
) (FS+

x
yGGS+

x
z))c

k
(aM )

D'
k
[M ]3 (λyz\F

k
(aE

k
) (FS+c

k

yGS+c
k

z)) (aM )

D(
k
[M ]3 (λz\F

k
(aE

k
) (FS+c

k

(aM )GS+c
k

z)).

Lemma 2.6

Let F
k
(aM )N head-reduce in 8pq steps to W. Then

W3Dq

k
[M ]N, if p¯ 0;

3Dq

k
[E

k
] ((H

k+"
[E

k
])p−"(H

k+"
[M ]N )), else.

Proof

Note that F
k
(aM )N3D!

k
[M ]N. Moreover,

Dq

k
[M ]NU

h
Dq+"

k
[M ]N, for q! 7;

D(
k
[M ]NU

h
D!

k
[E

k
] (H

k+"
[M ]N ).

The rest is clear. At steps 16, 24 we obtain, for example,

D(
k
[E

k
] (H

k+"
[M ]N )U

h
D!

k
[E

k
] ((H

k+"
[E

k
]) (H

k+"
[M ]G

k
)).

D(
k
[E

k
] ((H

k+"
[E

k
])(H

k+"
[M]G

k
))D!

k
[E

k
] ((H

k+"
[E

k
])#(H

k+"
[M ]G

k
)). *

Remember that a standard reduction σ :MO
s
N always consists of a head

reduction followed by an internal reduction:

σ :MO
h
WO

i
N.

Notation

Write M¯
s%n

N if there are standard reductions of length % n from M (respectively

N ) to a common reduct Z. Similarly, M¯
i%n

N for internal standard reductions.

Also, the notations ¯
s!n

and ¯
i!n

will be used.

Lemma 2.7

(i) Dq

k
[M ]N¯

i%n
Dq«

k
[M «]N «3 q¯ q« & N¯

s%n
N «.

(ii) Dq

k
[M ]N¯

i%n
Dq

k
[M «]N « & q% 73M¯

s%n
M «.

(iii) D(
k
[M ]N¯

i%n
D(

k
[M «]N «3H

k+"
[M ]¯

s%n
H

k+"
[M «].

Proof

(i) Suppose Dq

k
[M ]N¯

i%n
Dq«

k
[M «]N «. Then by observing where the free variable a

occurs, one can conclude that q¯ q«. Since the reductions to a common reduct are

internal, the positions of N,N « are not changed, and hence N¯
s%n

N «.
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(ii) Obvious from the definition of Dq

k
.

(iii) In this case it follows that

D!
k
[E

k
] (H

k+"
[M ]z)¯

i%n
D!

k
[E

k
] (H

k+"
[M «]z).

The conclusion H
k+"

[M ]¯
s%n

H
k+"

[M «] depends upon the fact that there are the free

variables z to mark the residuals. *

Lemma 2.8

Suppose G
k
¯

s%n
(H

k+"
[E

k
])d(H

k+"
[M ]G

k
). Then

H
k+"

[E(Tc
k
)]¯

s!n
H

k+"
[M ].

Proof

By induction on d. If d¯ 0, then we have G
k
¯

s%n
H

k+"
[M ]G

k
. So there are standard

reductions of these two terms to a common reduct. Observe that the head-reduction

starting with G
k

begins as follows:

G
k
3Y(λu\B(Y(λ�\A�u))u)c

k

U
h
(λx\x(Yx)) (λu\B(Y(λ�\A�u))u)c

k

U
h
(λu\B(Y(λ�\A�u))u)Gc

k

U
h
BFGc

k

U
h
(λgx\F(S+k) (a(ES(Tx)))(g(S+k)) (gx)Gc

k

U
h
(λx\F(S+k) (a(ES(Tx))) (G(S+k)) (Gx))c

k

U
h
F(S+k) (a(ES(Tc

k
))) (G(S+k)) (Gc

k
).

The hands of these terms are not of order 0 except the last one, but H
k+"

[X ] is always

of order 0. Therefore, the mentioned standard reduction of G
k
goes at least to this last

term H
k+"

[ES(Tc
k
)]G

k
, but then H

k+"
[ES(Tc

k
)]®

s!n
H

k+"
[M ].

If d" 0, then start the same argument as above, but at the intermediate conclusion

H
k+"

[ES(Tc
k
)]G

k
¯

s!n
(H

k+"
[E

k
])d(H

k+"
[M ]G

k
),

one proceeds by concluding that

G
k
¯

s!n
H

k+"
[E

k
]d−"(H

k+"
[M ]G

k
)

and uses the induction hypotheses. *

Proposition 2.9

H
k
[M ]¯H

k
[N]3MCN.

Proof

By the standardization theorem, it suffices to show for all n that

ck `.[H
k
[M ]¯

s%n
H

k
[N ]3MCN ].

This will be done by induction on n. From H
k
[M ]¯

s%n
H

k
[N ], it follows that

H
k
[M ]O

h
W

M
O

i
Z

H
k
[N ]O

h
W

N
O

i
Z

for some W
M
, W

N
, Z.
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Case 1. W
M
, W

N
are both reached after ! 8 steps. Then by Lemma 2.6, W

M
3

Dq

k
[M ]G

k
, W

N
3Dq«

k
[N ]G

k
. By Lemma 2.7(i), it follows that q¯ q«. If q! 7, then by

Lemma 2.7(ii) one has M¯N, so MCN. If q¯ 7, then by Lemma 2.7(iii) one has

H
k+"

[M ]¯
s!n

H
k+"

[N ], and by the induction hypothesis one has MCN.

Case 2. W
M

is reached after p& 8 steps and W
N

after q! 8 steps. Then p¯ 8dq

and, keeping in mind Lemma 2.7(i), it follows that W
M

3Dq

k
[M ]G

k
, W

N
3Dq

k
[E

k
]R,

G
k
¯

s!n
R, where R3 (H

k+"
[E

k
])d−"(H

k+"
[N ]G

k
). Then as in case 1, it follows that

MCE
k
. Moreover, by Lemma 2.8 H

k+"
[E

#k
]¯

s!n
H

k+"
[N ], so by the induction

hypothesis E
#k

CN. So MCE
k
CE

#k
CN.

Case 3. Both W
M
, W

N
are reached after & 8 steps. Then

W
M

3Dj

k
[E

k
] ((H

k+"
[E

k
])d(H

k+"
[M ]G

k
)) ;

W
N

3Dj

k
[E

k
] ((H

k+"
[E

k
])d «(H

k+"
[N ]G

k
)).

If d¯ d «, then by Lemma 2.7

(H
k+"

[E
k
])d(H

k+"
[M ]G

k
)¯

s!n
(H

k+"
[E

k
])d(H

k+"
[N ]G

k
),

so

H
k+"

[M ]¯
s!n

H
k+"

[N ],

since H
k+"

[X ] is always of order 0. Therefore, by the induction hypothesis MCN.

If, on the other hand, say, d! d «, then (writing d «¯ de)

W
M

3Dj

k
[E

k
] ((H

k+"
[E

k
])d(H

k+"
[M ] G

k
)) ;

W
N

3Dk

k
[E

k
] ((H

k+"
[E

k
])d(H

k+"
[E

k
] ((H

k+"
[E

k
])e−"(H

k+"
[N ]G

k
)) )) ;

so

H
k+"

[M ]¯
s!n

H
k+"

[E
k
]

G
k
¯

s!n
(H

k+"
(E

k
])e−"(H

k+"
[N ]G

k
),

since H
k+"

[X ] is always of order 0. Therefore, by Lemma 2.8

H
k+"

[E
#k

]¯
s!n

H
k+"

[N ].

Therefore, by the induction hypothesis, twice we obtain MCE
k
CE

#k
CN. *

References

Barendregt, H. P. (1984) The Lambda Calculus: Its syntax and semantics, revised edition,

North-Holland.

Rogers Jr, H. (1987) Theory of Recursi�e Functions and Effecti�e Computability, 2nd edition.

MIT Press.

Statman, R. (1986) Every countable poset is embeddable in the poset of unsolvable terms.

Theor. Comput. Sci. 48(1), 95–100.

Statman, R. (1998) Morphisms and partitions of V-sets. CSL’98: Lecture Notes in Computer

Science. Springer-Verlag. To appear.

Statman, R. (1999) Consequences of a theorem of Jacopini : consistent equalities and

equations. TLCA’99: Lecture Notes in Computer Science 1581. Springer-Verlag, pp.

355–364.

Visser, A. (1980) Numerations, λ-calculus & arithmetic. To H. B. Curry: essays on combinatory

logic, lambda calculus and formalism. Academic Press, pp. 259–284.

https://doi.org/10.1017/S0956796899003548 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003548

