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Abstract
Childhood is a critical period for muscle accumulation. Studies in elders have reported that antioxidant vitamins could improve muscle health.
However, limited studies have assessed such associations in children. This study included 243 boys and 183 girls. A seventy-nine-item FFQ was
used to investigate dietary nutrients intake. Plasma levels of retinol and α-tocopherol were measured using high-performance liquid
chromatography with MS. Dual X-ray absorptiometry was used to assess appendicular skeletal muscle mass (ASM) and total body fat. The ASM
index (ASMI) and ASMI Z-score were then calculated. Hand grip strength was measured using a Jamar® Plusþ Hand Dynamometer. Fully
adjusted multiple linear regression models showed that for each unit increase in plasma retinol content, ASM, ASMI, left HGS and ASMI Z-score
increased by 2·43 × 10−3 kg, 1·33 × 10−3 kg/m2, 3·72 × 10−3 kg and 2·45 × 10−3 in girls, respectively (P < 0·001–0·050). ANCOVA revealed a
dose–response relationship between tertiles of plasma retinol level andmuscle indicators (Ptrend: 0·001–0·007). The percentage differences
between the top and bottom tertiles were 8·38 %, 6·26 %, 13·2 %, 12·1 % and 116 % for ASM, ASMI, left HGS, right HGS and ASMI Z-score in
girls, respectively (Pdiff: 0·005–0·020). No such associations were observed in boys. Plasma α-tocopherol levels were not correlated with
muscle indicators in either sex. In conclusion, high circulating retinol levels are positively associated with muscle mass and strength in
school-age girls.
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Skeletal muscle is the largest organ in the body and significantly
affects locomotion and themaintenance of posture in both adults
and children(1). Skeletal muscle also plays a crucial role inwhole-
body protein metabolism and systemic glucose and energy
homeostasis, thus modulating the risks of certain diseases
like obesity, CVD, insulin resistance, diabetes, sarcopenia and
osteoporosis(2). Therefore, adequate skeletal muscle quantity
and quality are essential for maintaining optimal health
throughout life. Skeletal muscle mass increases throughout
childhood and adolescence before it starts to decrease over time
about mid-life(3). Muscle mass and strength in later life are a
reflection of both the rate of muscle loss and the peak muscle
mass attained earlier in life(4). Therefore, it is necessary to focus
on the determinants of peak muscle mass and strength attained
in early adulthood.

Skeletal muscle shows high plasticity in response to
environmental cues such as exercise and nutrition(5–7). There
has been significant interest in the role of protein in muscle

health(8). However, evidence concerning several mechanistic
pathways, including inflammation and oxidative stress(9), points
to the importance of micronutrients. The high level of metabolic
activity in skeletal muscle generates reactive oxygen species,
and the accumulation of excess reactive oxygen species results
in damage to biomolecules in muscle (DNA and proteins).
Through their effects on signalling pathways, reactive oxygen
species also play a role in inflammation(10,11). Previous studies
have shown that inflammatory markers such as plasma levels of
IL-6 and tumour necrosis factor-α are negatively correlated with
skeletal musclemass and strength(12–14). Reactive oxygen species
production is normally balanced by the actions of endogenous
antioxidant defense systems such as the enzymes superoxide
dismutase and glutathione peroxidase and by exogenous anti-
oxidants, which prevent excess accumulation(15). This has focused
attention on a range of dietary componentswith antioxidant effects,
namely dietary antioxidants such as vitamin A and vitamin E(16).
Vitamin A is a fat-soluble vitamin that involves retinol and retinol
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derivatives (retinoic acid, retinyl esters and retinaldehyde)(17).
Vitamin E is also known as tocopherol which includes α, β, γ, δ-l
tocopherol. α-Tocopherol is the most active form of vitamin E(18).
Cross-sectional studies have shown that good antioxidant status is
inversely associated with relevant lipid and oxidative stress
markers(19), muscle strength(20,21) and the risk of frailty(22,23).
Prospective cohort studies have shown that people with high
serum retinol or α-tocopherol concentrations at baseline
exhibit a lower rate of muscle decline and risk of frailty(24–28).
However, the participants included in the above studies were
middle-aged and elderly people. Few studies have focused on
the associations of retinol and α-tocopherol levels with skeletal
muscle health in children.

With the above in mind, we explored the associations of
plasma retinol and α-tocopherol with skeletal muscle mass and
strength in Chinese children aged 6–9 years.

Methods

Participants

This cross-sectional study was performed in Guangdong
province in the south of China in 2015–2017(29). The investigators
recruited healthy children aged 6–9 years from several kinder-
gartens and primary schools. The recruitment strategy involved
giving out leaflets to primary schools and contacting the mutual
acquaintances of parents through public WeChat accounts. A
total of 1600 children were invited to participate in the study, 521
of whom responded and agreed to participate in the study. We
excluded ninety-five children based on the following criteria:
The following exclusion criteria were applied: (1) twins and
preterm births; (2) incomplete general data or skeletal muscle
testing or hand grip strength testing data and (3) history of
serious disease or disability. Finally, 426 participants (243 boys
and 183 girls) were included. We obtained written informed
consent from the parents of all enrolled children.

The study was conducted in accordance with the Declaration
of Helsinki and approved by the Ethics Committee of the School
of Public Health at Sun Yat-sen University (No. 201549).

Anthropometric measurements

Weight and heightweremeasuredwith the participant’s barefoot
and wearing light clothing. BMI was then calculated. Whole-
body dual X-ray absorptiometry scans were using a Hologic
Discovery W System (Discovery W; Hologic Inc.) to determine
the appendicular skeletal muscle mass (ASM). Thirty-three
randomly selected subjects were replicating the measurements
on the same day after repositioning to evaluate the reproduc-
ibility and the in vivo reproducibility of the ASMwas 1·56 %. ASM
index (ASMI) was calculated as follows:

BMI=weight (kg))/height (m)2,
ASM index (ASMI)= ASM (kg)/height (m)2,

ASMI Z-scores were calculated with respect to the ASMI value
provided by Liu et al.(30). As such, children were classified
as having high muscle mass (Z-score ≥ 1, n 234), medium

muscle mass (Z-score 0–1, n 139) or low muscle mass
(Z-score < 0, n 53).

Hand grip strength measurement

HGS was measured using a Jamar® Plusþ Hand Dynamometer
(JAMAR® Hydraulic Hand Dynamometer, Sammons Preston) as
previously described(3). All participants sat in a straight-backed
chair with their feet flat on the floor. The participantswere placed
in a standardised position with their shoulders adducted and
neutrally rotated, elbows flexed at 90°, forearms in neutral
rotation and wrists between 0° and 30° of extension and
between 0° and 15° of ulnar deviation. The handle of the device
was set to the second knuckle. The children were instructed to
squeeze the handle of the dynamometer as hard as possible
during a 5-s period with both hands while exhaling. HGS was
recorded in kilograms (kg). The mean of the three trials was
calculated and used in subsequent analysis.

Laboratory examination

Venous blood samples were obtained from the children in the
morning after 10 h of fasting. More than 90 % of blood samples
are collected by investigators on the scene. The plasma was
separated from blood within 2–4 h and setted up parallel
samples to test the stability of the monitoring. Samples were
stored at −80°C unexposed to light until assayed in 2022.
Quantitative analysis of plasma retinol and α-tocopherol
concentrations was performed using a Qlife Lab 9000 triple
quadrupole mass spectrometer testing system under research
protocols including quality assurance measures(31). A pooled
serum sample was stored in separate EP tubes to prevent
repeated freeze–thaw and analysed alongside batches of study
samples to monitor analytic precision, with approximately
coefficient of variation values of 7·7 %.

Covariates

The interviewers collected data concerning mode of delivery,
household income and parental educational level through face-
to-face interviews. Parental education level was classified into
three categories: primary or lower, secondary and graduate or
above. Household income per month was classified into four
categories:≤ 8000 yuan, 8000–15 000 yuan,> 15 000 yuan and
no response. The delivery mode was defined as a binary
variable: cesarean or vaginal. Dietary intake over the prior
year was assessed using a seventy-nine-item FFQ. During the
interviews, the investigators checked the questionnaires for
potentially incorrect responses and made clarifications when
necessary. The reproducibility and validity of the FFQ were
described previously(32). Energy and nutrient intakes were
calculated based on the Chinese food composition tables
(2018)(33). Each nutrient intake value was adjusted using the
energy-residual method. Information on physical activity was
obtained using a 3-day physical activity questionnaire.
Physical activity was calculated by combining the metabolic
equivalent score for each type of physical activity after
multiplying it by its duration (hours) per day(34).
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Statistical analysis

Normally distributed continuous variables are expressed as
means ± standard deviations, while medians and interquartile
ranges are used to describe non-normal distributions.
Categorical variables are presented as percentages. Descriptive
statistics of sex differences in subject characteristics were tested
for significance using analysis of variance for continuous data,
while the χ2 test was used for categorical data. Multiple linear
regression and ANCOVA were applied to examine the
association of plasma retinol and α-tocopherol concentrations
with muscle mass indicators. We constructed three models with
minimum and maximum adjustments. In model 1, adjustments
were made for age; in model 2, we added delivery mode,
parental education, household income, physical activity, use of
Ca and multivitamin supplements and energy-adjusted dietary
intakes of total energy and protein. Whole-body fat was further
adjusted for in model 3. All analyses were conducted using R
version 4.1.2. The significance level was set at 0·05.

The sample size was estimated based on a similar study that
the relationship between protein and skeletal muscle. We
assumed that retinol and α-tocopherol have a similar or slightly
lower magnitude of association with skeletal muscle than
protein(35). Setting a two-tailed α of 0·05 and a power of 0·80,
the current study initially required a sample size of 173 to detect
the association between skeletal muscle status and the level of
plasma retinol and α-tocopherol as low as R2= 0·05 adjusting for
eleven covariates in multiple linear regression models. Power
analysis was performed using PASS software (version 15;
Jerry Hintze, Kayville, UT).

Results

Participant characteristics

A total of 243 boys and 183 girls were included in this study.
Table 1 shows the characteristics of caregivers and the
differences between boys and girls. The mean age of the study
population was 8·04 years (Q1–Q3:7·30–8·80). The boys tended
to be older and had higher body weight, BMI, physical activity
level, daily energy and protein intake, ASM, ASMI, left HGS and
right HGS than the girls (P< 0·001–0·016). However, there
was no significant difference in ASMI Z-score between the boys
and the girls (P= 0·210). The boys had similar plasma retinol
concentrations (312 ng/ml v. 326, ng/ml, P= 0·087) but lower
plasma α-tocopherol concentrations than the girls (5·42 μg/ml v.
5·75 μg/ml, P= 0·023).

Relationship between plasma retinol and muscle mass

As shown in Table 2, after adjustment for potential confounders,
multiple linear regression revealed that a per-unit increase in
the plasma concentration of retinol led to a 2·43 × 10−3 kg,
1·33 × 10−3 kg/m2, 3·72 × 10−3 kg and 2·45 × 10−3 increase in
ASM, ASMI, left HGS and ASMI Z-score in the girls (P < 0·001–
0·050). In the boys, no significant association was detected
between any of the muscle mass indicators and the plasma
retinol concentration.

Figure 1 shows the results of ANCOVA. For the boys, none of
the muscle mass indicators were associated with the plasma
retinol concentration. In the girls, most of the muscle mass
indices increased significantly with the tertile of the plasma
retinol concentration, and the adjusted percentage mean
differences for tertile 3 v. tertile 1 were 8·38 %, 6·26 %, 12·1 %,
13·2 %, and 116 % for ASM, ASMI, left HGS, right HGS and ASMI
Z-score, respectively (Ptrend: 0·001–0·007, P- diff: 0·005–0·020).

Relationship between plasma α-tocopherol and muscle mass

As shown in Table 2, no statistically significant associations
between the plasma concentrations of α-tocopherol and muscle
mass indicators were detected either in the boys or the girls using
the three multiple linear regression models. Similar results were
obtained using ANCOVA (Fig. 2).

Discussion

In this observational study, we demonstrated that girls with
higher circulating levels of retinol had higher skeletal muscle
mass and strength than girls with lower retinol levels, whereas no
such relationshipwas present in boys. Furthermore, we detected
no significant association between the circulating levels of
α-tocopherol and skeletal muscle status in either sex.

Many studies in adults have evaluated the impacts of dietary
antioxidants on skeletal muscle health. In the Invecchiare in
Chianti study, which included 986 men and women aged 63–73
years, higher antioxidant concentrations (e.g. vitamin C, vitamin
E, beta-carotene and retinol) were associated with greater knee
extension strength and better physical performancemetrics such
as walking speed, ability to stand from a chair and ability to
maintain balance in progressivelymore challenging positions(36).
Another study in elderly people aged 60–85 years confirmed that
the combined supplementation of whey protein, vitamin D and
vitamin E can significantly improve relative skeletal muscle
mass index (mean difference: 0·18 kg/m2, 95 % CI: 0·01, 0·35,
P= 0·040) and muscle strength (mean difference: 2·68 kg,
95 % CI: 0·71, 4·65, P= 0·009) in older adults when compared
against a placebo group(37). Pilleron et al. reported that a greater
prevalence of frailty was associatedwith lower concentrations of
either carotenoids, retinol, or α-tocopherol(38). However, the
findings obtained in the elderly have not always been confirmed
in other populations. In young athletes, Teixeira et al. reported
that antioxidant supplementation (e.g. α-tocopherol, vitamin C,
lutein, Se, Zn and Mg) did not offer protection against exercise-
induced lipid peroxidation and inflammation and might hinder
recovery from muscle damage(39). Importantly, some studies
have highlighted that prolonged antioxidant supplementation
can lead to undesirable effects, such as the disruption of
endogenous antioxidant levels leading to failure to counteract
exercise-induced oxidative stress(40,41). To date, most studies
have focused on adults and the elderly, and comparatively little
research has investigated how antioxidant vitamin status
correlates with skeletal muscle quality in children. In our study,
we measured the concentrations of retinol and α-tocopherol in
plasma and found that concentrations were significantly differ-
ent between the sexes. This result was in line with other studies
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in the literature(42–46). In addition, the findings of the present
study revealed that plasma retinol levels were positively
correlated with skeletal muscle health in girls but not in boys.
Furthermore, the plasma concentration of α-tocopherol was not
correlated with skeletal muscle mass and strength in either sex.

Increasing evidence has shown that aging-mediated oxida-
tive stress and inflammation are the main pathological character-
istics of skeletal muscle(47). Therefore, antioxidants derived from
food may have beneficial effects on skeletal muscle health. The
antioxidant and anti-inflammatory properties of vitamin A and
vitamin E have been demonstrated in a multitude of studies in

cells, animal models and humans(48,49). However, increasing
evidence suggests that the predominant effects of vitamin A
within the body stem not directly from its antioxidant action but
its metabolite all-trans retinoic acid, a potent transcriptional
regulator that affects the expression levels of hundreds of distinct
genes involved in responses to oxidative stress. In contrast,
vitamin E supposedly acts as a direct antioxidant. Very little
compelling evidence demonstrates that vitamin E has a direct
effect on gene expression as vitamin A does(50). Vitamin A also
plays a vital role in helping cells and tissues to grow and
develop(51). These differences may collectively contribute to

Table 1. Baseline characteristics of participants

Variables

Total n 426 Boys n 243 Girls n 183

PMean SD Mean SD Mean SD

Descriptives
Age (years)
Median 8·04 7·99 8·10 0·025
Q1–Q3 7·30–8·80 7·20–8·75 7·40–8·80

Height (cm) 128 8·07 128 8·16 128 7·93 0·922
Weight (kg) 26·29 7·02 27·10 7·86 25·21 5·52 0·006
BMI (kg/m2) 15·74 2·67 16·20 2·98 15·13 2·03 < 0·001
Physical activity (MET × h/d) 39·96 4·37 40·74 4·54 38·91 3·90 < 0·001
Daily energy intake (kcal/d) 1430 432 1501 444 1336 396 < 0·001
Daily protein intake (g/d) 64·71 22·8 67·01 23·7 61·65 21·3 0·016

n % n % n %
Delivery mode
Natural 211 49·6 111 45·9 100 54·6 0·074
Cesarean 215 50·4 132 54·1 83 45·4

Household income
< 8000 Yuan/month 77 18·1 45 18·6 32 17·5 0·990
8000–15 000 Yuan/month 130 30·6 75 31·0 55 30·1
> 15 000 Yuan/month 144 33·9 81 33·5 63 34·4
No response 74 17·4 41 16·9 33 18·0

Maternal educational level
Secondary or less 159 37·5 91 37·4 70 38·3 0·193
University 230 54·2 127 52·3 103 56·3
Postgraduate or above 35 8·3 25 10·3 10 5·4

Paternal educational level
Secondary or less 177 41·0 102 42·0 75 41·0 0·450
University 196 46·4 107 44·0 89 48·6
Postgraduate or above 53 12·6 34 14·0 19 10·4

Use of Ca supplement
No 143 33·4 72 29·6 71 38·8 0·060
Yes 283 66·6 171 70·4 112 61·2

Use of multivitamin supplement
No 246 57·4 137 56·4 109 59·6 0·576
Yes 180 42·4 106 43·6 74 40·4

ASM (kg)
Mean 7·43 7·79 6·95 < 0·001
SD 1·75 1·89 1·42

ASMI (kg/m2)
Mean 4·44 4·65 4·17 < 0·001
SD 0·62 0·64 0·47

ASMI-Z
Z > 1 53 12·4 32 13·2 21 11·5 0·210
0 < Z< 1 139 32·6 85 35·0 54 29·5
Z < 0 234 54·9 126 51·9 108 59·0

Mean SD Mean SD Mean SD

Left HGS (kg) 9·80 2·71 10·26 2·86 9·19 2·37 < 0·001
Right HGS (kg) 10·6 2·89 11·0 3·06 9·98 2·54 < 0·001
Blood biochemistry
Plasma retinol (ng/ml) 318 3·88 312 4·90 326 6·22 0·087
Plasma α-tocopherol (ug/ml) 5·56 0·07 5·42 0·09 5·75 0·11 0·023

Continuous variables are presented asmean (SD) or median (Q1–Q3); ASM, appendicular skeletal muscle mass; ASMI, the ratio of appendicular skeletal mass to height2; Left HGSm
left handgrip strength, Right HGSm right handgrip strength; ASMI-Zm the Z score of ASMI.
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Table 2. Multiplelinear regression between plasma retinol and α-tocopherol concentration and skeletal muscle indexes

Variables

Plasma retinol Plasma α-tocopherol

Boys (n 243) Girls (n 183) Boys (n 243) Girls (n 183)

β SE P β SE P β SE P β SE P

ASM (10−3kg)
Model 1 2·50 1·27 0·050 3·10 1·01 0·002 –2·13 7·32 0·771 –6·05 5·70 0·290
Model 2 1·88 1·29 0·148 3·22 1·04 0·002 –5·07 7·23 0·484 –7·83 5·87 0·184
Model 3 –0·30 0·90 0·736 2·43 0·91 0·008 –1·49 4·95 0·763 –8·64 5·04 0·088

ASMI (10−3kg/m2)
Model 1 0·83 0·50 0·097 1·34 0·39 0·001 –1·57 2·85 0·582 –2·24 2·22 0·314
Model 2 0·65 0·51 0·210 1·55 0·39 < 0·001 –2·36 2·86 0·410 –2·18 2·26 0·336
Model 3 –0·10 0·40 0·797 1·33 0·37 < 0·001 –1·14 2·22 0·610 –2·41 2·09 0·249

Left HGS (10−3kg)
Model 1 2·36 1·95 0·226 3·96 1·80 0·029 –6·36 11·1 0·568 –2·57 10·1 0·800
Model 2 1·85 2·02 0·360 4·41 1·94 0·024 –7·25 11·2 0·520 –6·77 10·8 0·532
Model 3 –0·13 1·85 0·943 3·72 1·90 0·050 –3·99 10·2 0·696 –7·50 10·5 0·475

Right HGS (10−3kg)
Model 1 2·65 2·04 0·195 4·65 1·90 0·015 –4·29 11·7 0·713 0·18 10·7 0·987
Model 2 2·12 2·12 0·319 4·70 2·08 0·025 –6·79 11·8 0·566 –5·12 11·6 0·659
Model 3 0·04 1·95 0·984 3·77 2·00 0·061 –3·37 10·7 0·754 –6·10 11·0 0·581

ASMI-Z (×10−3)
Model 1 1·16 0·84 0·166 2·49 0·77 0·001 –3·26 4·78 0·496 –5·51 4·34 0·206
Model 2 0·75 0·86 0·383 2·85 0·77 < 0·001 –4·75 4·80 0·323 –5·14 4·37 0·241
Model 3 –0·42 0·71 0·549 2·45 0·73 0·001 –2·84 3·89 0·466 –5·57 4·08 0·173

ASM, appendicular skeletal mass; ASMI, the ratio of appendicular skeletal mass to height2; AFM, appendicular fat mass; Left HGS, left handgrip strength, Right HGS, right handgrip
strength; ASMI-Z, the Z score of ASMI.
Model 1: adjustment for age, model 2: adjustment for age, delivery mode, parental education, physical activity, use of Ca and multivitamin supplements, energy adjusted dietary
intakes of total energy and protein and household income; model 3: adjustment for age, delivery mode, parental education, physical activity, use of Ca and multivitamin supplements,
energy adjusted dietary intakes of total energy and protein, household income and whole-body fat.
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Fig. 1. Analysis of covariances for the association between plasma retinol concentration tertiles and muscle mass and muscle strength. Results were adjusted for age,
delivery method, household income, parental education, physical activity, use of Ca and multivitamin supplements, energy adjusted dietary intakes of total energy and
protein and whole-body fat. ASM, appendicular skeletal mass; ASMI, the ratio of appendicular skeletal mass to height2; Left HGS, left handgrip strength, Right HGS, right
handgrip strength; ASMI-Z score, the Z score of ASMI.
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the different actions of vitamin A and vitamin E detected in the
present study.

The mechanisms that mediate the sex-specific differences
detected in the present study remain unclear. However, the
considerable number of animal studies performed to date
suggest ametabolic basis for the difference in response to changes
in vitamin A status between the sexes. During experimental
vitamin A depletion, male animals exhaust their liver stores more
rapidly than females(52), which may predispose males to earlier
developed severe manifestations of hypovitaminosis A(53,54). In
breast cancer cells, estrogen receptor status was proven to
sensitise the antiproliferative effects of retinoids(55). In males, on
the other hand, androgens retard RA function by repressing
RAR-α and RAR-γ(56). Previous researchers found that sex
hormone concentrations are significantly higher in girls
compared with boys in prepuberty, and the sex differences
in terms of those hormones were more robust for 17β-
estradiol(57). These studies suggest that a sex difference may
exist in vitamin A storage, utilisation, or function mediated by
sex hormones.

This research explored the association of retinol and
α-tocopherol with skeletal muscle mass and strength in a
relatively large sample of children, and all of the measure-
ments were under strict quality control. However, there are
some notable limitations. First, this study involved a cross-
sectional design. As such, the longitudinal changes in the
plasma concentrations of retinol and α-tocopherol were not
evaluated. Conventional observational studies cannot com-
pletely rule out reverse causality and residual confounding,

which makes it hard to infer causality. Future studies should
collect data from the study population over time to evaluate
longitudinal changes. Second, the plasma sample was assayed
for retinol and α-tocopherol levels six years after collection.
But at −70°C or colder, retinol and α-tocopherol are stable for
15 years(58). Third, this study focused on urban children from a
narrow age range, which limits the generalisability of the
findings. Finally, although the findings were adjusted for a
range of dietary and lifestyle confounders, residual or
unmeasured confounding factors inevitably remain unac-
counted for.

In conclusion, the present study revealed that plasma retinol
concentration is positively correlated with skeletal muscle mass
and strength in girls. An improved understanding of the effects
of increasing dietary intake of vitamin A may inform future
strategies to improve muscle quality.
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Fig. 2. Analysis of covariances for the association between plasma α-tocopherol concentration tertiles andmusclemass andmuscle strength. Results were adjusted for
age, delivery method, household income, parental education, physical activity, use of Ca and multivitamin supplements, energy adjusted dietary intakes of total energy
and protein and whole-body fat. ASM, appendicular skeletal mass; ASMI, the ratio of appendicular skeletal mass to height2; Left HGS, left handgrip strength, Right HGS,
right handgrip strength; ASMI-Z score, the Z score of ASMI.
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