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Millions or billions of sperm are deposited by artificial insemination or natural mating into the cow reproductive tract but only
a few arrive at the site of fertilization and only one fertilizes an oocyte. The remarkable journey that successful sperm take to
reach an oocyte is long and tortuous, and includes movement through viscous fluid, avoiding dead ends and hostile immune cells.
The privileged collection of sperm that complete this journey must pass selection steps in the vagina, cervix, uterus, utero-tubal
junction and oviduct. In many locations in the female reproductive tract, sperm interact with the epithelium and the luminal fluid,
which can affect sperm motility and function. Sperm must also be tolerated by the immune system of the female for an adequate
time to allow fertilization to occur. This review emphasizes literature about cattle but also includes work in other species that
emphasizes critical broad concepts. Although all parts of the female reproductive tract are reviewed, particular attention is given to
the sperm destination, the oviduct.
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Implications

Sperm interaction with the cow reproductive tract after
semen deposition has a profound influence on pregnancy
rates and provides perplexing fundamental questions that
are unresolved despite considerable study. The fertilizing
sperm are selected by the tract from the millions or billions
of sperm deposited at mating or artificial insemination (AI).
Successful sperm interact with luminal fluid and epithelia,
while evading destruction by the immune system. They
respond to rheotactic, chemical and adhesive stimuli to
undergo functional changes and arrive at the site of fertili-
zation. An understanding of how these processes are
coordinated can improve in vitro fertilization success,
contraception effectiveness, sperm lifespan in the oviduct,
improved semen storage and fertility.

Introduction

Normally only one sperm fertilizes an oocyte despite that
billions of sperm are deposited by natural mating into the
vagina, or millions are deposited by AI into the uterus of
a cow. The remarkable journey that successful sperm take
to reach the oocyte is long and tortuous, filled with
viscous fluid, dead ends and potentially hostile immune cells.

Rather than a simple race to get to the oocyte, there is much
evidence that complex mechanisms influence sperm trans-
port, immunological tolerance of sperm, sperm selection,
sperm storage and release, all before actual fertilization. At
steps along the way to the site of fertilization, sperm may
interact with the fluid in which they are suspended and the
epithelium lining the tract. The very dynamic process of
sperm transport helps ensure that there is an appropriate
number of fertile sperm at the site of fertilization so that the
oocyte can be fertilized by only one sperm. This review con-
siders sperm interaction with fluid in the reproductive tract as
well as sperm adhesion to the epithelium. It also reviews
how sperm, foreign cells in the female reproductive tract, are
tolerated by the immune system. Although it emphasizes
literature about cattle, concepts developed in other species
are included.

Sperm in the vagina and cervix

Sperm are transported through the vagina, cervix and uterus
to the oviduct where they can fertilize oocytes. In cattle and
many other mammals, estrus occurs before ovulation so
sperm are deposited in the female reproductive tract before
ovulation. At normal copulation in cattle, semen is deposited
in the cranial vagina. Vaginal fluid is the first luminal
medium to which sperm are exposed after semen deposition.† E-mail: djmille@illinois.edu

Animal (2018), 12:S1, pp s110–s120 © The Animal Consortium 2018
doi:10.1017/S1751731118000526

animal

s110

https://doi.org/10.1017/S1751731118000526 Published online by Cambridge University Press

mailto:djmille@illinois.edu
https://doi.org/10.1017/S1751731118000526
https://doi.org/10.1017/S1751731118000526


The acidic pH of the vagina makes it inhospitable for sperm,
although buffers found in semen neutralize the local pH. The
cow produces a large volume of vaginal fluid and up to
100ml can accumulate (reviewed by Rutllant et al., 2005).
The rheological properties of vaginal fluid appear to influ-
ence sperm motility characteristics, although fertilizing
sperm may spend only a short time in the vagina (Rutllant
et al., 2005).
It is likely that bovine sperm, like human sperm (Suarez

and Pacey, 2006), that are candidates to fertilize oocytes
enter the cervical canal quickly avoiding damage due to the
low vaginal pH. The cervix contains many folds and grooves
that are filled with mucus. The mucus within the canal is a
major barrier to sperm, particularly those that have abnormal
motility (Katz et al., 1997). The composition and structure of
cervical mucus changes near estrus, allowing sperm with
normal motility to advance, typically through what have
been called ‘privileged paths’ that are found in the grooves
produced by folds that extend through the cervical canal
(Mullins and Saacke, 1989). A microfluidic model has
confirmed that sperm migration through these privileged
paths is controlled by microgrooves and a gentle flow of
fluid (Tung et al., 2015b).
Sperm are foreign cells and can induce an immune

response in the cervix. In rabbits, neutrophil infiltration
was observed within 30min of mating (Tyler, 1977).
Immunoglobulins IgG and IgA (Kutteh et al., 1996) and
complement proteins have been detected in human cervical
mucus (Mathur et al., 1988). Therefore, sperm retained in the
cervix might be attacked by the immune system before
moving into the uterus.

Sperm in the uterus

After natural mating, sperm move from the cervical canal
into the uterus. In cattle, AI is used frequently. When
performing AI, the technician deposits semen directly into
the uterine body, so sperm do not enter the vagina and
cervix. Depositing sperm directly in the uterus reduces the
number of sperm needed for routine AI to 10-20 million
(Moore and Hasler, 2017). As few as two million sperm are
often inseminated when using sperm separated based on
their sex chromosome, a process used to bias the sex of
offspring (DeJarnette et al., 2009). Experiments in which the
uterotubal junction (UTJ) in heifers was ligated at various
times after mating revealed that it took 6-8 h for sperm to
move through the cervix and uterus to infiltrate the oviduct
in numbers sufficient for oocyte fertilization (Wilmut and
Hunter, 1984). Sperm are transported through the uterus
with the aid of uterine smooth muscle contractions in the
direction of the oviduct (Hawk, 1987). To measure fluid
movement and uterine contractions, technetium-labeled
albumin-macrospheres were deposited in the uterus of
women. These macrospheres (5-40 μm diameter) could be
detected by high-resolution ultrasound. They were trans-
ported from the uterus to the oviduct more rapidly in the late
follicular phase (Kunz et al., 1996) which, along with other

experiments, indicates that uterine contractions that trans-
port sperm are under endocrine control. Further, this result
demonstrates that materials in addition to sperm can move
through the UTJ.
Sperm in the uterus of cattle and other species are retained

in uterine glands in low numbers per gland (Hunter, 1995;
Rijsselaere et al., 2004). Retention, at least in swine, is
accomplished by sperm binding to uterine epithelial cells
(Rath et al., 2016). Sperm attachment to uterine cells
stimulates the production of both pro- and anti-inflammatory
cytokines (Lovell and Getty, 1968). There is evidence that
porcine sperm bind to sialic acid-containing glycans on the
surface of uterine epithelial cells (Rath et al., 2016). For
example, a sialic acid lectin that recognizes sialic acid binds
to uterine epithelial cells and blocks sperm binding, in vitro.
Although it is not clear whether many sperm in uterine
glands move into the oviduct, the fate of the majority of
sperm in the uterus is elimination.
Rapid removal of sperm may help reduce the acquired

immune response against sperm (Hansen, 2011). Little is
known about the immune response elicited by semen
deposition in cattle but it has been studied more in rodents
and horses (Katila, 2012; Bromfield, 2014; Christoffersen and
Troedsson, 2017). The primary function of the inflammatory
response is to clear excess sperm, seminal debris and bac-
teria from the uterus. Following semen deposition, there is
an infiltration of polymorphonuclear leukocytes (PMNs). In
addition to activation of innate immunity, adaptive immunity
is also involved. Several classes of antibodies have been
isolated from uterine fluid. In addition to cytokines released
from the uterine endometrium, seminal plasma itself contains
immune system modulators that affect uterine and oviduct
immune cells (Robertson, 2007; Schjenken and Robertson,
2014 and 2015). There is evidence that a seminal vesicle
protein may allow the uterus to tolerate sperm (Kawano et al.,
2014). Interestingly, the seminal fluid fraction of semen also
improves preimplantation development and has interesting
long-term effects on offspring (Bromfield et al., 2014). This
non-traditional role of seminal plasma has been studied
most in rodents; the amount of seminal plasma in cattle that
mate normally is low and even lower when AI is used.

Sperm entry into the oviduct through the
utero-tubal junction

In the bovine UTJ, sperm move through a slit-like lumen with
a mucosal pad and into the lower portion of the oviduct, the
isthmus, which contains four to eight primary grooves in
tubal segment (Wrobel et al., 1993). Compared with the
major part of the upper oviduct, the ampulla, the isthmus has
a narrower lumen with fewer folds but a thicker layer of
smooth muscle. Although macrospheres seem to have the
ability to pass through the UTJ (discussed above), there is
evidence that sperm, at least in mice, require a specific
protein to be recognized and to pass through the UTJ into the
isthmus. Mouse sperm deficient in ADAM3, due to mutation
of the ADAM3 gene or genes whose products affect ADAM3
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are not detected beyond the UTJ (Nakanishi et al., 2004;
Yamaguchi et al., 2006; Yamaguchi et al., 2009; Okabe,
2013). Even if sperm from a chimeric male derived from
a normal and a mutant embryo were deposited, only the
normal sperm moved into the oviduct (Nakanishi et al.,
2004). Thus, the presence of normal sperm does not aid in
opening the UTJ to allow ADAM3 mutant sperm to pass
into the oviduct.
In addition to ADAM3, there also appears to be a rheolo-

gical barrier in the porcine UTJ, perhaps the viscous mucus
present in the grooves of this structure (Hunter, 2002;
Tienthai, 2015). The rabbit and mouse UTJ and oviduct fluid
contain proteoglycans with sulfated glycosaminoglycan
chains and hyaluronan (Jansen, 1978; Suarez et al., 1997). In
addition to changing the viscosity and affecting sperm
motility, the abundance of hyaluronan in fluid and its
receptor, CD44 on the epithelial cells of the UTJ, suggest that
CD44 signal transduction might affect the function of the
UTJ and lower oviduct (Bergqvist et al., 2005a and 2005b).
In cattle and other species, there appears to be a valve at

the UTJ that can constrict the lumen, restricting sperm entry.
This valve is formed by a vascular plexus and surrounded
by a thick muscle layer that, in total, can contract the lumen
(Wrobel et al., 1993). The physical constriction, mucus
barrier and protein signature requirements emphasize how
stringently entrance to the oviduct is regulated.

Sperm in the oviduct

Once sperm enter the lower oviduct, the isthmus, they can
bind to the epithelial cell surface or remain in oviduct fluid.
Many studies of the intact oviduct have been performed in
mice because the uterus and oviduct can be transilluminated
so that sperm can be observed (Demott and Suarez, 1992).
Sperm from transgenic mice that have enhanced green
fluorescent protein in their acrosomes and red fluorescent
protein in their midpiece mitochondria have been followed in
the female tract after natural mating (La Spina et al., 2016).
The location of live sperm and their acrosomal status can be
followed using fluorescence microscopy.
When sperm in the lumen of the isthmus were observed,

groups of sperm were carried by fluid that was moved
alternately toward the uterus and then toward the ampulla
(back and forth) by contractions of oviduct smooth muscle
(Ishikawa et al., 2016). These contractions were not observed
in the ampulla. Most of the sperm in the isthmus were
acrosome-intact (La Spina et al., 2016). Relatively few sperm
were found in the ampulla and most were acrosome-reacted
(La Spina et al., 2016; Muro et al., 2016), consistent with the
recent evidence that the acrosome reaction of fertilizing
mouse sperm occurs before contact with the cumulus–oocyte
complex (Jin et al., 2011; La Spina et al., 2016).

Oviduct fluid affects sperm function
The fluid in the oviduct is highly viscous, unlike the culture
medium in which studies of mammalian fertilization are
usually performed. Fluid viscosity is often overlooked in

studies of sperm function within the oviduct. More viscous
fluid has more internal friction so the wake from a sperm
swimming in viscous medium is relatively small compared
with less viscous medium (Kirkman-Brown and Smith, 2011).
Studies of human sperm demonstrate that resistance of the
fluid to be moved results in a sperm tail with multiple bends
while beating (Kirkman-Brown and Smith, 2011; Hyakutake
et al., 2015). In contrast, in less viscous medium, the tail has
fewer bends and, instead, remains mostly straight while
simply swinging or flapping back and forth (Kirkman-Brown
and Smith, 2011; Hyakutake et al., 2015). Consequently,
in viscous fluid, a motile sperm will have less side-to-side
movement (yaw) than in a standard viscosity medium
(Kirkman-Brown and Smith, 2011). Sperm also tend to swim
near and against solid surfaces, for example, epithelial walls
or the corners of microchannels (Denissenko et al., 2012).
Sperm that are close to the channel wall swim faster than
those moving in the center of the channel (El-Sherry et al.,
2014). Viscoelastic medium induces bovine sperm to swim in
coordinated groups that may facilitate sperm migration
(Tung et al., 2017). The majority of sperm orient their
swimming so that they swim against the flow of medium
when the flow rate is intermediate (33-134 μm/s) (Miki and
Clapham, 2013; El-Sherry et al., 2014; Tung et al., 2015a).
This appears to guide sperm upstream in oviduct fluid (Miki
and Clapham, 2013). There is controversy about whether a
signaling process in sperm aids in orienting sperm in the
upstream direction or if sperm rheotaxis is a passive process
(Miki and Clapham, 2013; Hyakutake et al., 2015).
Interestingly, the viscosity of oviduct fluid varies during the

estrous cycle; tenacious mucus is found in the rabbit oviduct
lumen at estrus and disappears after ovulation (Jansen,
1978). Most studies of sperm–oviduct interaction or fertili-
zation have used standard culture medium and ignored its
low viscosity, compared with oviduct fluid. A few have tried
to recapitulate the viscosity of oviduct fluid by adding
components like methylcellulose or polyvinylpyrrolidone
to medium (Suarez and Dai, 1992; Alasmari et al., 2013;
Gonzalez-Abreu et al., 2017). In addition to effects on normal
motility, discussed above, physiological viscosity converts
the wild thrashing motion and high yaw of hyperactivated
sperm to motility with less yaw and a more forward move-
ment (Suarez and Dai, 1992).
In addition to the rheological properties of oviduct fluid,

specific components of oviduct fluid such as secreted pro-
teins, proteoglycans and lipids may influence fertilization by
affecting sperm function (Coy et al., 2010; Killian, 2011). This
complex fluid can affect sperm before encountering the
oocyte and during fertilization (Rodriguez-Martinez, 2007;
Killian, 2011). For example, bovine sperm take up phospho-
lipids that are abundant in oviduct fluid (Evans and Setchell,
1978; Killian et al., 1989). Oviduct fluid glutathione perox-
idase, superoxide dismutase and catalase can protect bovine
sperm from damage by reactive oxygen species that may
otherwise reduce sperm viability and motility (Lapointe
and Bilodeau, 2003). Proteoglycans found in oviduct
fluid promote capacitation of bovine sperm through their
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glycosaminoglycan side chains (Parrish et al., 1989;
Bergqvist et al., 2006).
Oviduct fluid components, for example, glycosamino-

glycans, can also cause proteolysis or loss of sperm
membrane proteins, including those that are implicated in
sperm binding to the oviduct epithelium. The best studied of
these proteins originate from accessory gland secretions and
bind to sperm at ejaculation. Some bovine Binder of Sperm
(BSPs) and porcine sperm adhesins are lost as sperm are
capacitated (Topfer-Petersen et al., 2008; Hung and Suarez,
2010). Although the significance of protein loss or proteo-
lysis is uncertain, in sperm bound to the oviduct epithelium,
it might contribute to their release before fertilization
(Topfer-Petersen et al., 2008; Hung and Suarez, 2010).
In addition to losing proteins, sperm also gain proteins

while they reside in the oviduct. The first of two examples is
oviduct-specific glycoprotein (OGP) or oviductin, also known
as OVGP1, found in oviducts of many mammals. Although it
has homology to the chitinase family of proteins, OGP does
not have enzymatic activity (Jaffe et al., 1996; Araki et al.,
2003). Bovine sperm incubated in OGP have improved
motility and viability (Abe et al., 1995). Hamster sperm
treated with recombinant OGP have increased phosphory-
lation of tyrosine residues on proteins, an indication that
capacitation was enhanced (Yang et al., 2015). There is also
evidence in mice and swine that OGP binds to the zona
pellucida to increase fertilization success by rendering the
zona matrix more permissive to penetration by sperm
(Lyng and Shur, 2009; Algarra et al., 2016).
A second example of an oviduct protein that affects sperm

is osteopontin. Although it is already bound to bovine sperm
before semen is deposited in females (Erikson et al., 2007),
addition of osteopontin during in vitro fertilization reduces
polyspermy (Goncalves et al., 2008). Neither osteopontin nor
OGP is necessary for fertility in mice because animals deficient
in each are fertile (Rittling et al., 1998; Araki et al., 2003).
In addition to oviduct fluid proteins being added as

peripheral membrane proteins, integral membrane proteins
could be added by fusion with sperm of oviductosomes
secreted by the oviduct. For example, a portion of the major
Ca2+ efflux pump is added to mouse sperm by oviduct
exosomes (Al-Dossary et al., 2015). The proteins secreted by
bovine oviduct cells and found in oviduct fluid have recently
been profiled and include growth factors, metabolic
regulators, immune modulators, enzymes and extracellular
matrix components (Lamy et al., 2016; Pillai et al., 2017).
They function in immune homeostasis, gamete maturation,
fertilization and early development (Pillai et al., 2017). The
abundance of some depend on the stage of the estrous cycle
and whether they were found in oviducts ipsilateral or
contralateral to the ovary that ovulated (Lamy et al., 2016).

The oviduct as a functional sperm reservoir
The oviduct, along with the UTJ in some species, appears to
be the major location in which sperm are stored before
fertilization. In contrast, although sperm are retained in
the cervix or uterus, it is not clear that they are eventually

released to move to the oviduct. So the UTJ and oviduct appear
to be the major sperm storage sites in many mammals. To be a
true ‘functional sperm reservoir’, as coined by Hunter et al.
(1980), in addition to retaining sperm, the oviduct must affect
sperm function and lengthen sperm lifespan beyond the
inherent longevity of sperm (Orr and Zuk, 2014). More than
simple adhesion occurs because binding to the oviduct epi-
thelium prolongs the lifespan of sperm and suppresses capa-
citation and motility (Pollard et al., 1991; Rodriguez-Martinez
et al., 2005; Rodriguez-Martinez, 2007; Hung and Suarez,
2010). Thus, the oviduct isthmus meets these requirements.
However, the ability of sperm reservoirs described in a variety
of species to prolong the lifespan of a highly differentiated and
transcriptionally inactive cell is enigmatic.
The reservoir also releases a finite number of stored sperm,

acting as a buffer for sperm number to prevent polyspermy
but still provide an appropriate number of fertile sperm to
the upper oviduct (Hunter and Leglise, 1971). The isthmic
epithelium binds and retains preferentially sperm that have
intact acrosomes and normal morphology (Teijeiro et al.,
2011; Teijeiro and Marini, 2012). All together, the isthmus
functions to increase the probability that a suitable number
of fertile sperm are present at the site of fertilization.

The oviduct epithelium retains sperm and modulates
sperm function
In mammals, the oviduct epithelium binds and retains sperm so
they accumulate to form the reservoir. Adhesion is very specific.
The sperm head binds to oviduct epithelial cells but not all cells
(Pacey et al., 1995; Kervancioglu et al., 2000). Moreover, the
ability of sperm binding to maintain viability is not a common
property of all cells (Boilard et al., 2002). The ability to maintain
viability requires direct contact between sperm and oviduct
epithelial cells (Dobrinski et al., 1997; Murray and Smith, 1997;
Smith and Nothnick, 1997). Adhesion to the oviduct regulates
sperm capacitation (Dobrinski et al., 1997; Boilard et al., 2002;
Fazeli et al., 2003) and suppresses the normal increase in sperm
intracellular free calcium that occurs during capacitation
(Dobrinski et al., 1996; Dobrinski et al., 1997).
Studies performed in several mammals have concluded that

glycans are the components in oviduct epithelial cells that bind
sperm (Lefebvre et al., 1997; Green et al., 2001; Suarez, 2001;
Cortes et al., 2004; Topfer-Petersen et al., 2008). The evidence
in most studies underpinning a role for oviduct glycans is
a competition assay in which different glycans are added to
sperm before challenging these sperm by allowing them
to bind oviduct epithelial cells in vitro. If few sperm bind to
oviduct cells, this result is interpreted as an indication that the
specific glycan is related to the authentic oviduct glycan that
binds sperm. A frequent problem with these studies is that
most test high concentrations of a small number of mono-
saccharides or small oligosaccharides.

Identification of glycans that bind porcine sperm using
a glycan array
The development of glycans immobilized on an array
provided an opportunity to test hundreds of glycans for their
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ability to bind sperm. Using such an array, nearly 400 glycans
were tested for their ability to bind porcine sperm (Kadirvel
et al., 2012). All the glycans that bound sperm contained one
of two glycan motifs, either a Lewis X trisaccharide (LeX) or a
structure with core mannose and two antennae terminating
in the sialylated lactosamine trisaccharide bi-SiaLN or in
simply lactosamine (Figure 1). There were several examples
demonstrating that sperm bound these two motifs with high
specificity. In all sialic acid-containing structures that bound
sperm, sialic acid was linked to the 6 position of galactose;
structures that were identical except that sialic acid was
attached to galactose at the 3 position did not bind sperm.
Furthermore, the branched structure on a mannose core was
required because single sialylated lactosamine trisaccharides
(Neu5Acα2-6Galβ1-4GlcNAc) did not bind sperm (Kadirvel
et al., 2012).
The LeX trisaccharide was found as a monomer, dimer or

trimer in the remaining glycans that bound sperm (Kadirvel
et al., 2012). This trisaccharide is composed of Gal and
Fuc linked to GlcNAc (Figure 1). The LeX trisaccharide also
bound sperm with high specificity; the closely related Lewis A
trisaccharide (LeA, a positional isomer; the carbons in GlcNAc
to which Gal and Fuc are linked are exchanged) did not bind
porcine sperm. Contrarily, bovine sperm bind LeA but not LeX

(Suarez et al., 1998). Binding specificity was further
supported because porcine sperm did not bind to Galβ1-
4GlcNAc; fucose substitution on LeX was necessary (Kadirvel
et al., 2012).
To confirm that the glycans on the array that bound sperm

were present in the oviduct isthmus and to determine the
complete structures of the oviduct glycans that bound sperm,
oviduct glycans and glycolipid structures were identified by
tandem MS (Kadirvel et al., 2012). The LeX and branched
sialylated motifs (bi-SiaLN) that bound sperm were found
on larger structures that were the most abundant of the
complex-type glycans on epithelial cells (Kadirvel et al.,
2012). Nearly all of the complex-type oligosaccharides linked

to proteins through asparagine residues were branched with
two antennae and several had a sialyl residue on at least one
terminus. Some biantennary glycans had both motifs, a sialyl
residue on one terminus and a Lewis structure on the second.
This kind of hybrid glycan was not present on the array but it
is possible that, because it includes both motifs, it might
bind sperm with even higher affinity than glycans with
a single motif.
As tandem MS did not distinguish between LeA and LeX

and between glycans with sialyl residues attached to the
6-carbon and the 3-carbon of Gal, an additional strategy was
used. An antibody and specific lectin, Sambucus nigra
agglutinin were used that recognize sialic acid attached to
galactose in an α-2,6 linkage preferentially and not sialic
acid attached to galactose in an α-2,3 linkage (Naito et al.,
2007; Song et al., 2011). Both reagents detected 6-sialylated
structures that were abundant on the epithelium throughout
the oviduct including on ciliated and non-ciliated cells
(Kadirvel et al., 2012).
Similarly, an antibody to LeX was also used to confirm the

identity of the oviduct Lewis trisaccharide structures identi-
fied by MS (Kadirvel et al., 2012). Interestingly, LeX was
found in a punctate pattern at the luminal surface of porcine
isthmic epithelial cells (Machado et al., 2014) but was not
found in the ampulla.

bi-SiaLN and LeX glycan motifs bind to the porcine
sperm head
The head is the portion of sperm that binds to the oviduct
epithelium and is where (Suarez et al., 1991) authentic
receptors for glycans with bi-SiaLN and/or LeX motifs should
be localized. Fluorescein-labeled LeX and bi-SiaLN bound
preferentially to the apical edge of the head in 60%-70%
sperm before capacitation (Kadirvel et al., 2012; Machado
et al., 2014). Binding of fluoresceinated glycans could be
displaced by an excess of the same glycan that did not have a
fluorescent tag. The binding specificity was confirmed by

6-Sialylated
N-acetyllactosamine (bi-SiaLN)

N-acetyllactosamine (bi-LN)

α3
β4

LewisX (LeX) 

α4
β3

LewisA (LeA) 

α6

β4

β2

α6
β4

β4

α6

β4

β2

α6

β4

β2

α6
β4

β4

β4

β2

α6

N-Acetylglusosamine (GlcNAc) Galactose (Gal)

Mannose (Man)N-Acetylneuraminic acid (Neu5Ac)

Fucose (Fuc)

β4

N-acetyllactosamine (LN)

Figure 1 Structures of glycans that bind bovine (LeA) and porcine sperm (bi-SiaLN, bi-LN, and LeX), and the related glycan that does not (LN). LeA is found
on the bovine oviduct epithelium. bi-SiaLN is abundant on the epithelium of the porcine ampulla and isthmus including ciliated and non-ciliated cells.
LeX is found in the porcine isthmus but not the ampulla.
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testing sperm binding to oviduct glycans attached to Sepharose
beads (Figure 2). Tethering a motile cell to a solid phase glycan
rather than a soluble glycan more closely mimics sperm binding
to the oviduct and requires a higher affinity.

Porcine sperm binding to oviduct cells requires glycans with
bi-SiaLN and LeX

Experiments using immobilized glycans (i.e. the glycan array
and glycans linked to Sepharose) showed that bi-SiaLN and
LeX were each sufficient to tether a motile sperm. Necessity
experiments were performed in which either the glycans or
putative receptors were blocked. The result of blocking
was assessed by sperm binding to aggregates of epithelial
cells stripped from the isthmus (Figure 2). Results of these
experiments indicated that each glycan or glycan receptor
was necessary for sperm to bind oviduct cells.

Receptors on sperm for oviduct glycans
The identity of the receptors that bind oviduct glycans are
controversial. Sperm from different species bind different
glycans and the receptors they use may also be unique. Using
bovine cells, one group provided evidence that two oviduct
proteins, the chaperones GRP78 and HSP60, bound to sperm,
although the glycans each bound were not determined
(Boilard et al., 2004). A second group completed more
detailed studies by and proposed that oviduct plasma
membrane annexins containing fucose bind sperm proteins
originating from accessory gland secretions added to sperm
at ejaculation (Ignotz et al., 2007). This result was a bit
surprising because annexins are usually considered cytosolic
proteins and they lack signal peptides that would direct them
through the secretory pathway to become fucosylated.
A proteomic study found that annexin A1 is the most
abundant protein in oviduct fluid (Lamy et al., 2016). Perhaps
it is released into fluid without passing through the secretory
pathway. However, in the fluid, it would be expected to
compete with annexin A1 located on oviduct epithelial cells
and decrease sperm binding to the oviduct.
Studies of porcine sperm also implicated accessory gland

secretions added to sperm (Ekhlasi-Hundrieser et al., 2005;
Topfer-Petersen et al., 2008). The spermadhesin AQN1
originating from accessory gland secretions is a glycan-binding

protein (Ekhlasi-Hundrieser et al., 2005; Topfer-Petersen et al.,
2008). Spermadhesins represent 90% of the total boar
seminal plasma protein and they become peripherally asso-
ciated with the sperm plasma membrane after ejaculation
(Sanz et al., 1993). Sperm AQN1 is reported to bind mannose
and galactose residues on oviduct cells, but not LeX or
bi-SiaLN structures (Ekhlasi-Hundrieser et al., 2005).
The observation that the accessory gland proteins do not

bind LeX and bi-SiaLN motifs (Ekhlasi-Hundrieser et al., 2005)
and sperm obtained from the cauda epididymis are still
able to bind oviduct cells, although in reduced number
(Petrunkina et al., 2001), suggested that other glycan
receptors were important. Indeed, in cattle there is no
evidence that the fertility of epididymal sperm, not exposed
to accessory gland proteins, is lower that normal ejaculated
semen that includes accessory gland secretions (Amann
and Griel, 1974). The fertility of cauda epididymal sperm
motivated the investigation of glycan receptors on porcine
sperm from the epididymis, which also avoided interference
from the very abundant accessory gland proteins (Silva
et al., 2014).
Membrane lysates from porcine cauda epididymal sperm

were separated chromatographically and each fraction was
subjected to SDS-PAGE, transferred to nitrocellulose and
incubated with biotinylated LeX and bi-SiaLN. This ‘glycan
blot’ was used to identify proteins with appropriate glycan
affinity. Several proteins were identified including the
peripheral membrane protein MFG-E8, also known as
lactadherin, P47 or SED1 (Silva et al., 2017). Competition
experiments showed that lactadherin bound to oviduct cells
and that inhibition reduced sperm binding (Silva et al., 2017).
Although there is compelling evidence that oviduct gly-

cans are at least partially responsible for sperm binding,
there is also evidence that sperm binding to oviduct epithelial
cells is mediated to some degree by other interactions. Per-
turbation of glycans or their candidate receptors decreases
sperm binding to oviduct cell aggregates by a maximum of
60% (Kadirvel et al., 2012; Machado et al., 2014). Protein-
based interactions may account for the residual binding. For
example, fibronectin from oviduct cells can bind α5β1
integrin on bovine sperm (Osycka-Salut et al., 2017) and the
adhesion protein E-cadherin is found in both sperm and

Figure 2 Sperm bind to oviduct cell aggregates isolated from the isthmus (a; porcine sperm) and beads to which Lewis A (LeA) trisaccharide has been
attached (b; bovine sperm).
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oviduct epithelial cells (Pollard et al., 1991; Lefebvre et al.,
1995; Caballero et al., 2014).

Oviduct epithelial cells respond to sperm binding
In addition to the effect of adhesion on sperm, sperm adhe-
sion to the oviduct modifies the transcriptional profile of
oviduct epithelial cells (Fazeli et al., 2004; Georgiou et al.,
2005; Georgiou et al., 2007; Lopez-Ubeda et al., 2015).
Genes related to the inflammatory response, molecular
transport, protein trafficking and cell-to-cell signaling are
among those most affected by sperm (Lopez-Ubeda et al.,
2015). In the sow, there is evidence that the ovary has a local
effect on the transcriptome of the oviduct. Unilateral ovar-
iectomy reduces expression of genes believed to be involved
in sperm survival and early embryonic development (Lopez-
Ubeda et al., 2016). The effect of sperm on the sperm
reservoir appears conserved between birds and mammals.
Infiltration of porcine sperm into the UTJ and rooster sperm
into the chicken utero-vaginal junction alters the expression
of genes involved in pH regulation and immune-modulation
(Atikuzzaman et al., 2017). Even more surprisingly, the
transcriptional response of oviduct cells is different in
response to insemination of either X chromosome- or Y
chromosome-bearing sperm (Alminana et al., 2014). Thus,
the presence of sperm changes the behavior of oviduct cells
in addition to its consequences for sperm. The result of
altered production of specific proteins by oviduct cells is
not clear.

Sperm release from oviduct epithelial cells
For successful fertilization, sperm must be released from the
reservoir in the isthmus to meet the oocyte in the ampulla.
There are several hypotheses to explain how sperm are
released. The first is that a signal, perhaps from follicular
fluid or the ovulated cumulus–oocyte complex stimulates the
release of sperm. This would assure that some sperm are
released at the appropriate time. An alternate hypothesis is
that a small fraction of sperm is released almost continuously
so that there is always a small number of sperm prepared to
fertilize an oocyte. It is possible that both mechanisms exist;
that is, release in response to a signal is superimposed on top of
the more spontaneous release of fractions of sperm. In any case,
sperm release is due to a change in sperm behavior, in oviduct
cell function or in the oviduct fluid surrounding the cells.
An important maturation that sperm complete in the

oviduct is capacitation. After capacitation, sperm have a
reduced ability to bind oviduct glycans (Kadirvel et al., 2012;
Machado et al., 2014), supporting the hypothesis that during
capacitation, glycan receptors are modified. How capacita-
tion might affect glycan receptors is unclear, but there is
some preliminary evidence in cattle and swine that, during
capacitation, they may be targeted for proteolysis. The
molecular mass of one of the BSPs is altered during capaci-
tation (Hung and Suarez, 2012). Furthermore, a candidate
glycan receptor on porcine sperm, MFG-E8, co-precipitates
in sperm lysates with a proteasomal subunit suggesting it
may also be degraded (Miles et al., 2013).

Another alternative is that the development of hyper-
activated motility may be sufficient to detach a sperm from
the oviduct epithelium (Curtis et al., 2012). In support of this,
mouse sperm deficient in CatSper calcium channels that
cannot hyperactivate do not detach from the oviduct
(Ho et al., 2009).
There is evidence that the cumulus cells of the ovulated

cumulus–oocyte complex can release chemical signals, such
as progesterone (Schoenfelder et al., 2003; Tosca et al.,
2007), which might activate localized sperm release by
promoting Ca2+ influx through CatSper channels (Lishko
et al., 2012). Release may also be controlled by components
from the oviduct itself, such as disulfide reducants (Talevi
et al., 2007; Brussow et al., 2008), glycosidases that cleave
oviduct glycans from the epithelium (Carrasco et al., 2008a
and 2008b), and oviduct smooth muscle contractions (Chang
and Suarez, 2012). There is evidence that locally produced
anandamide activates cannabinoid receptors and TRPV1 to
induce a Ca2+ influx and sperm release (Gervasi et al., 2016).
Anandamide may also activate nitric oxide production by
sperm to promote their release (Osycka-Salut et al., 2012).
Finally, the production of unknown sulfated glyconjugates
may release sperm by competing for binding sites on the
oviduct epithelium (Talevi and Gualtieri, 2010). The dynamic
nature of sperm interaction with the oviduct suggests that a
variety of factors may regulate sperm release that may aid in
providing a constant supply of competent fertilizing sperm.

Immunological tolerance of sperm in the oviduct
The oviduct lumen must maintain an aseptic state for suc-
cessful fertilization and early embryonic development while
regulating maternal responses to allogenic sperm and semi-
allogenic embryos (Marey et al., 2016). Under pathologic
conditions, the mucosal immune system produces a proin-
flammatory response. However, bovine sperm binding to
oviduct epithelial cells induces an upregulation of IL-10,
TGFβ and increased production of prostaglandin E2, inducing
an anti-inflammatory response (Marey et al., 2016; Yousef
et al., 2016). This produces an environment that suppresses
sperm phagocytosis by PMNs and allows sperm greater
opportunity to survive in the oviduct and fertilize oocytes. In
essence, sperm induce their own protection from an immune
response in the oviduct.

Practical applications

Sperm reservoirs have a remarkable ability to prolong the
viability of sperm and, if we can understand how that is
accomplished, we may be able to modify sperm diluents to
lengthen sperm lifespan outside of the oviduct (McGetrick
et al., 2014). Being able to store bovine sperm for several
days would be advantageous in regions of the world where
liquid nitrogen is not available or where fresh semen is used
routinely due to short transportation times before use
(Vishwanath and Shannon, 2000). There is already some
evidence that addition of an oviduct protein can improve
viability or bovine, porcine and caprine sperm after a 24-48 h
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incubation (Elliott et al., 2009; Lloyd et al., 2009 and 2012;
Holt et al., 2015).
There is also another important application of this

research, development of a method to increase sperm life-
span in the oviduct. If sperm survived longer after insemi-
nation or natural mating, cows that ovulated well after
semen deposition would have a higher likelihood of
pregnancy. This might reduce the requirement for frequent
estrus detection in females because a precise estimate of
ovulation time might not be as crucial. Fertility despite the
uncoupling of mating with ovulation has been accomplished
by some mammals, notably some species of bats that store
sperm for months, as well as snakes, reptiles and insects
(Holt and Fazeli, 2016). Although the opportunity to reduce
estrus detection by lengthening sperm lifespan may be overly
optimistic, the examples in nature of species that store sperm
for a long duration suggest that it may be possible.
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