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PRIMITIVE ELEMENTS IN SYMMETRIC ALGEBRAS 

GORDON EDWARDS 

1. Typical Results. Let-R be a commutative ring with 1, and let 

S(M) = 0 S\M) 
7 = 0 

be the symmetric algebra of an i^-module M. We regard the isomorphisms 
S°(M) = R and S^M) ^ l a s identifications. There is a unique i^-algebra 
homomorphism A : S(M) -+S(M) ®R S(M) (called the comultiplication) 
satisfying A(m) = m ® 1 + 1 ® m for all m Ç M; any element x £ 5(Af) 
for which A(x) — x ® 1 + 1 ® x is said to be primitive. The set of all primi­
tive elements in S(M) is denoted P(M). 

Since A is a graded homomorphism, P(M) is a graded submodule of S(M); 
it is the kernel of the graded i^-module homomorphism aM : S(M) —> 
5(M) ®«5(Jlf) defined by aM(x) = A(x) - x ® 1 - 1 ® x for all x 6 S (M). 
Thus P(ilf) = (x)?=0P*(M) where P*(M) = P(M)r\Si(M). I t is obvious 
that P°(M) = 0 and Pl(M) = M. We are interested in P\M) for i > 1. 

First we establish a simple technical result. The nth graded component of 
S(M) ®RS(M) is ©"-oS'(M) ® S"-'(JfeO; let TT/ be the projection of this 
component onto the j th summand, and let n : S (M) ®RS(M) —>5(Af) be 
the multiplication morphism [p.{a ® b) = a&]. 

» - ( > " ) • 
LEMMA 1. (/* o ir" o A)(x) = I . \x for all x £ S"(M). 

Proof. Since S (M) is generated (as an P-algebra) by M, it suffices to prove 
the result for x = Wi . . . mn with mt Ç i f for i = 1, . . . , n. Since A is an 
algebra map, we have 

Ax = (Ami) • . . (Amn) 

= (mi ® 1 + 1 ® mi) . . . (mn ® 1 + 1 ® mn) 
n 

= ]C X mM • • • w*; ® w i . . . mXl . . . mXy. . . mn 

; = o (X) 

where the second summation extends over all ̂ -tuples (X) = (Xi, . . . , \f) £ Z* 
with 1 < Xi < . . . < Xi < n. The number of such j-tuples is I . I, so that 

(n\~ \J> 
(fx o T" O A ) ( X ) = . p a s claimed. 
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Observe that (ir0
n o A) (x) = 1 (g> x and (71-/ O A) (x) = x ® 1 for all 

x Ç Sn(M). Thus a necessary and sufficient condition for x to be primitive is 
(TT/ O A) (X) = 0 for 0 < j < n. Combining this with the preceding result, 
we have the following: 

THEOREM 1. If p is a prime number such that all integers prime to p are units 
in R, then Pn(M) = 0 unless n is a power of p. 

Proof. Let n = prs with s not divisible by p. If x £ Pn(M), then 

(T* O A) (X) = 0 and therefore 0 o IT/1 O A) (x) = I . Ix = 0 for 0 < j < n 

(using lemma 1). Now, in general 1 1 = 5(mod p), so ( I is not divisible 
\P J \P 1 /n\ 

by p iî s 9^ 0, and evidently 0 < pT < n ii s > 1. Consequently I T Ix = 0 
(n\ ^P ' 

provided s > 1, and since I I is a unit in R, x = 0. Thus Pn(M) = 0 
unless n is a power of p (i.e., s = l ) o r w = 0 (i.e., 5 = 0); but we know already 
that P° CM) = 0. 

COROLLARY 1. P(M) = M for all R-modules M if and only if R is an algebra 
over Q> the field of rational numbers. 

Proof. R is a Q-algebra if and only if every integer is a unit in R. If R is a 
Q-algebra, therefore, Pn{M) = 0 unless n = 1 (from Theorem 1). On the 
other hand, if R is not a Q-algebra, then some integer t is not a unit in R, and 
therefore some prime number p (e.g. some prime divisor of /) is not a unit in R. 
Let M = R/pR, so that S(M) ^R[X]/(pX). In this case xpe is a non-zero 
primitive element of degree pe for all e ^ 0 (where x is the residue class of 
X modulo pX). For, since px = 0, the ^-power map is additive in terms 
involving x, and 

A(xpe) = (Ax)pe = (x ® 1 + 1 0 x)pe = xpe ® 1 + 1 (8) xpe. 

For this choice of If, therefore, we have Ppe(M) ^ 0 for all e = 0. 

Note that the hypothesis of Theorem 1 covers not only rings of characteristic 
p, but also rings in which p is nilpotent (such as Z/(pr)) and rings in which p 
is topologically nilpotent (such as Zp, the ring of £-adic integers). The example 
given in Corollary 1 illustrates that in such cases, there do exist modules M 
with Ppe(M) ^ 0 for all e ^ 0. 

If R has prime characteristic p > 0, there is a well-known characterization 
of the module P(M) when M is projective of finite type; namely, 

P(M) = ® M(pr\ 

where M(pr) is the submodule of Spr(M) generated by \mpT\m G M}. Obviously 
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M(pr) C Ppr(M) in any event, since the ^-power map is additive in charac­
teristic p. The reverse inclusion is first proved for free modules. 

THEOREM 2. 7/ M is free, then P(M) = ©?=0 M^rK 

Proof. Let F be a basis for M, so that S(M) = R[Xy]y^Y, a polynomial 
algebra in the indeterminates Xv. S(M) ®R S(M) is likewise a polynomial 
algebra in the indeterminates Zv = Xy ® 1 and Z / = 1 ® Xy.Anyf £ ^ ( A f ) 
is a homogeneous polynomial in finitely many of the indeterminates, say 
Xi, . . . , Xt; we proceed by induction on t. 

The comultiplication A maps Xt to Zt + Z / for i = 1, . . . , / , so we have 

Af(Xu . . . , Xt) = / (Zi + Z / , . . . , Z, + Z / ) . 

On the other hand 

/ (X 1 ; . . . , X,) ® 1 = / (Z l f . . . , Zt) 

and 

l ® / ( X l t . . . , X ( ) = / ( Z 1 ' , . . . I Z / ) . 

Therefore/(Xi, . . . , X t) is primitive if and only if 

/ (Z i + Z / , . . . , Zt + Z / ) = / (Zi , . . . , Z t) + / ( Z / , . . . , Z / ) . 

We now apply the homomorphism from S(M) ®RS(M) to S(M) defined 
by the ''substitutions": 

Zi -> Xx Zi' -» 0 
Z t - > 0 Z / - > - Y , [ i = 2, . . . ,t] 

obtaining the identity 

f(Xl9 . . . , Xt) = f(Xu 0, . . . , 0) + /(O, X2j . . . , X,) 
= a 1 X 1 ^ + / ( 0 , Z 2 , . . . , X , ) 

for some ai Ç i?. Since a i X / r is primitive, / (0 , X2, . . . , X t) is also primitive. 
By induction, we conclude that 

f(Xu . . . , Xt) = a,Xr + . . . + atXr Ç M^\ 

The preceding result can be extended to include projective modules of finite 
type, using the techniques of localization. For if M is such a module, then there 
is a family of generators {/i, . . . ,fT} for R such that Mfi is a free i^-module 
for i = 1, . . . , r. Moreover, the natural homomorphism 4>t : S(M) —>S(Mfi) 
preserves the comultiplication, so that if x £ Spr(M) is primitive, xt = <t>t{x) 
is also primitive. Since Mfi is free over Rfi, we must have xt Ç (Mfi)

ipr) for 
i = 1, . . . , r. But 

S(Mfi) ^ S(ik0 <g>* Rfi S* 5(M),, f 

and it is easy to see that {Mfi)
{pr) corresponds to (M(pr))fi in this isomorphism. 
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Since/i, . . . , / r generates the unit ideal of R, it follows tha tx 6 M{pr\ which 
establishes the result: 

COROLLARY 2. / / M is projective of finite type, then 

oo 

P(M) = © M(pn. 
r=0 

The question then arises: if R is a ring of prime characteristic p, is P(M) = 
©T=o AT(pr) always? Is it true if M is of finite presentation at least? We shall 
show that this is not generally so, by exhibiting a ring R of characteristic p 
and an i^-module M for which Ppr(M) ^ Mm for any r ^ 0. Actually, this 
will be done for a large class of rings. 

2. Untypical Results. Henceforth we suppose that R = k ® V, where k is 
a field of characteristic p > 0 and F is a maximal ideal of i? with 
dim*(F/F2) ^ 2. Choose z>i, z>2 € F so that their residues are linearly inde­
pendent in V/V2. Let i7 be a free i^-module with i^-basis {si, s2} and let 
e = ViSi + v2s2- Let M = F/Re and let -K : S(F) -*S(M) be the ring homo-
morphism (onto) induced by the module epimorphism F —> M. Consider the 
element z = v^f'-^ £ Spr(F). 

THEOREM 3. ir(z) Ç Ppr(M) for all choices of p and r, but w(z) & M{pr) unless 
p = 2 and r = 1. 

Proof. We first show that ir(z) Ç P(M) = ker(o-^). By the commutativity 
of the accompanying diagram, it suffices to show that <rF(z) G ker(7r ® T): 

S(F) — 5(F) ®BS(F) 

7T 0 7T 

S(M) - ^ > 5(M) ®* 5(M) . 

Straightforward computa t ion yields: 

o>(z) = A(z) — z ® 1 — l ( g ) 0 

= yi(A^i)pr_1(A52) — z>isipr~1s2 0 1 — 1 ® yi^ip r - 152 

= wi[(*i 0 1 + 1 ® Ji)pr~1(j2 ® 1 + 1 ® s2) 

- Ji,r"1J2 ® 1 - 1 ® tf'"1**] 
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Here we have used the binomial theorem and the fact that I . I = ( — l)j 

(modp). Now we show that each summand in this expression lies in the 
kernel of ir ® ir. If w(si) = m\ and ir(s2) = m2l we will freely use the fact that 
(vimi + v2m2) (8) 1 = 0 and 1 ® (v1m1 + v2m2) = 0 in S(M) ®R S(M). 
Since 

vimiJ ® mipr~j~1m2 = —v2m2mij~l ® mipr~i~1m2 

= —mij~1m2 ® m1
pr~j~1v2m2 = mii~1m2 ® Vimipr~j 

= Vim1
j~1m2 ® m1

pr~i 

it follows that 

Vi(<7T ® W)(S1
J ® 5i2,r- ; /-152 - V - 1 ^ ® 5i 3 , r - i ) 

= Vimij ® mipr~i~lm2 — Vimij~1m2 ® mipr~j = 0. 

Therefore (TT ® a-)(erF(s)) = ^ ( ^ ( z ) ) = 0, and ir(z) G P(M) H 5pr(M) = 
Pp r(M) as claimed. 

It remains to show that TT(Z) $ M(2?r) unless p — 2 and r = 1, in which case 

7r(z) = V\m\m2 = —v2m2
2 Ç Af(2). 

Suppose, then, that 7r(s) = a^m^ + a2m2
pT for some ai, a2 G P . It follows 

that z — aiSipr — a2s2
pr £ ker(7r), or more explicitly 

v1s1
pr-1s2 — aiSipr — a2s2

pr = g(visi + v2s2) 

for some g £ S (F). Reducing all coefficients modulo F2, we may assume 
V2 = 0. And, since R — k © V, we may further assume that g has all its 
coefficients in k. As vi and z;2 are linearly independent after reducing modulo V2, 
there can be no cancellations in expanding the product g(viSi + v2s2). Since 
at most 3 terms survive, g must be a monomial, and in fact g = s1

pr~2s2 is the 
only possibility. But then gfyiSi + v2s2) = ViSipr~1s2 + v2Sipr~2s2

2, from which 
we see that T(Z) £ M(pr) unless pr = 2 (i.e. p = 2 and r = 1). 

We have exhibited an P-module M with one relation (e = v±si + v2s2) 
having the property that Ppr (M) 5̂  M(pr) unless p = 2 and r = 1. It is per­
haps worth mentioning that such examples are not easy to come by. In 
characteristic 3, for instance, if V2 = 0, this is the "only" P-module defined 
by one relation for which PZ(M) ^ Af(3). We use the fact, that when V2 = 0, 
any P-module M can be uniquely represented in the form FjA where F is free 
and A C VF. Uniqueness means that if F/A and F'/A' are two such repre­
sentations for M, there is an isomorphism a : F —> F' with a (A) = A'. 

THEOREM 4. Let R = & © Vas before, where k is afield of characteristic 3 and 
V2 = 0. If N = F I Re is an R-module defined by one relation e 6 VF such that 
PZ(N) ?* iV(8\ then N^M® M', where M is the R-module of Theorem 3 and 
M' is a free R-module, 
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Proof. Le t X be an i?-basis for the free module F, and let 

r 

e = X vist 

with Vf £ V and s* G ^ for i = 1, . . . , r. We first show t h a t W, the &-space 
spanned by the vectors {vi, . . . , vr}, mus t have dimension less than three if 
P3(N) 9^ iV(3). We will take advantage of the following commuta t ive d iagram: 

(Tjr TTF 

S*(F) > 0 S*(F) ®BSj(F) >S*(F) ®RF 
I i+j=Z I I 

X /I V \ 

S*{N) — © S'(N) ®R Sj(N) - ^ > S2(N) ®R N . 

Here X, /z, v are induced by the m a p F —> N and TF, TN are projections onto the 
appropr ia te summands . 

If 

* = ]C awSiSjSk € S\N) 
i<j<k 

with a^fc G R then (writing cr' for 7i> o cr^) we have 

(1) o-'OO = 2 ank(SiSj ® ** + V < (8) 5^ + 5 ^ ® s*). 

Since the kernel of v is generated by elements of the form ste ® ^ and SfSj 0 e, 
we cannot have X(x) G P3(N) unless 

(2) <r'{x) = ^ bfkSf ® J* + 2 ^ ^ ® * 

for some 6^ and ctj Ç &. 
By comparing the coefficients in expressions (1) and (2) and manipula t ing 

the resulting equat ions, it can be shown t h a t bu = 2cu (for i = 1, . . . , r) if 
W has dimension ^ 2 , and ctj = b^ = bH (for all i ^ j) if W has dimension 
^ 3 . Thus , lett ing 

we have o7 (x) = </(;y) if W has dimension ^ 3 . Since A is a cocommuta t ive 
comultiplication, it follows t h a t a(x) = a(y) and hence x — y £ P3(F) = F(3). 
Since X(y) = 0, X(x) £ iV<3>; this proves t h a t P3( iV) = N^ if IF has dimen­
sion ^ 3 . 

We now know t h a t W mus t have dimension 2 or 1 if P3(N) ^ iV(3). In the 
first case we can write e = Vifi + v%f2 where / i and ji are ^-linear combinat ions 
of {s\, . . . , sr}. If /1 and / 2 are independent over i?, we can choose a new 
i^-basis for F of the form {/i,/2} U F , and then we have N = M © M' where 
M is the module of Theorem 3 and M' is free with basis Y. On the other hand , 
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if fi and/2 are not independent, then e = (vi + av2)fi for some a £ k, and we 
are reduced to the second case (the dimension of W is 1). But it is easy to see 
that in this case P*(N) = 7V(3) necessarily, which concludes the proof. 

3. The characteristic two case. Theorem 3 leaves unanswered the question 
of finding an jR-module M in the characteristic two case for which 
P2(M) 9e M(2). As we shall see, if V2 = 0, any such module must have at 
least three generators and at least three relations. Here we treat the case of a 
module defined by one relation. 

THEOREM 5. Let R = k 0 V as before, where k is a field of characteristic 2 
and V2 = 0. If N = F/Re is an R-module defined by one relation e G VF, then 
P2(N) = N™. 

Proof. Let {Si}i€I be an i^-basis for F (where I is well-ordered) and let 
e = 12j€jVjsj with 0 9e Vj Ç. V for all j £ J (Z I. Note that aF(SiSj) = 
St 0 Sj + Sj 0 Si for all i, j G I. We will take advantage of the commutative 
diagram below, noting that ker(7r 0 TT) = F ®R Re + Re ®R F: 

G F 

S2{F) > F 0 F 

(TN 

S2(N) > N 0 N . 

Takex = Zi^jdijsisjeS2(F).UaF(x) G ker(7r 0 TT) (i.e.ifir(s) G P2(M)), 
we obtain an equation 

(1) X) dtj(st 0 Sj + Sj 0 st) = X bt(st 0 e) + X ci(e ® *<) 

for some bu Ci G £. For every j G / , the right hand side of (1) contributes a 
term (bj + CJ)VJ(SJ 0 s,-). Since no such term occurs on the left hand side and 
Vj 9e 0, we have bj = Cj for all j G J> 

Now let r : F 0 F —> i7 0 .F be the "twist" map, sending s* 0 Sj to ^ 0 st* 
Applying r to (1), we obtain 

X dij{Si 0 ^ + Sj 0 s<) = X bt(e 0 s,) + X) c<(^ ® «) 

which, added to (1), yields 

(2) X (bt + Ci)(e 0 5,) = X (i , + ct)(st 0 *)• 

Ii i & J and j G / , the left hand side contributes a term (6* + Ci)vj(Sj 0 sz), 
which does not occur on the right-hand side. Thus bt = c* for all i g / , since 
t>, 3 * 0 . 

We have so far shown that bt = c* for all i G / , provided J 9e 0. (If J = 0, 
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then N = F is free and there is nothing to prove.) Subs t i tu t ing in (1) yields 

2 dtj(Si ® Si + Sj ® j , ) = X &i(* ® <̂ + *< ® *)• 

Hence 

X) <* <**<** — 2 3 &<*** ^ &er (<TF) = Fi2\ 
i<3 i€ I 

SO 

* = Z ) ^ ^ = YJ biesf + J2 aisi2 

i<j if I 

for some at Ç i£. I t follows t h a t 7r(x) £ iV(2), because J2ieibtesi £ ker(7r). 
Therefore P 2 ( ^ ) = N ( 2 ) as claimed. 

T h e question remains : if R = k © F where & is a field of character is t ic 2 
and F 2 = 0, does there exist an i?-module M for which P2(M) j * M(2)? 

Let F be free with i£-basis {si, . . . , sm} and suppose there are n relat ions 
given by 

m 

ei = Z^ vnsi \i = 1, • • • , » ] 
z=i 

with Vu G F . Reformulate the problem in terms of matrices. Let W be the 
n X m matr ix with vector entries vtj, and Wl its t ranspose. Wri te 

x = Hi^jdijSiSj G 5 2 ( ^ ) 

as before, and let Z> = {dif)itj be the upper t r iangular matr ix obtained by 
set t ing dij = 0 for i > j . We then have the following two resul ts : 

L E M M A 2. w(x) £ P2(M) if and only if D + Dl = W"5' + CW for some 
m X n matrices B and C with entries in k. 

L E M M A 3. ir(x) £ M ( 2 ) if and only if D + Dl = WH* + HW for some 
m X n matrix H with entries in k. 

These results follow by straightforward computa t ion . 
A skew-symmetric matr ix in characterist ic 2 is a symmetr ic matr ix with 

zeros along the diagonal. T h e matrices B and C of Lemma 2 have the p roper ty 
t h a t WlBl + CW is skew-symmetric; conversely, if B0 and C0 are given 
matrices such t h a t G = WlB^ + C0W is skew-symmetric , then 

* = T,i£jgijStsj e s2(F) 

has <7F{x) £ ker(7r ® TT), SO t h a t TT(X) £ F2(M). T h e elements of P2{M) so 
obtained give a complete set of coset representat ives for the module 
P2(M)/M{2). Our problem is therefore reduced to finding matr ices B, C, and 
W such t h a t WtBi + CW is skew-symmetric, bu t 

WB% + CW 9* WW + HW 
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for ail matrices H with entries in k. If {xi, . . . , xr] is a basis for the subspace 
of V generated by the {vtj}, we have W = WiXi + . . . + WrxT where the Wt 

are uniquely determined matrices with entries in k. Our problem can now be 
formulated entirely in terms of linear algebra over the field k. 

Question. Can we find m X n matrices W\\ . . . , W7\ B, C, with entries in k, 
such that each W }Bl + CWi is skew symmetric, but for which there is no 
matrix H satisfying the equations 

W{B% + CWt = Wt
lHl + HWi for i = 1, . . . , r? 

This unusual condition is surprisingly hard to satisfy. In fact it cannot be 
satisfied at all unless m ^ 3 and n ^ 3. 

LEMMA 4. If n S 2 or m ^ 2, the answer to the Question is uno". 

The proof is left as an exercise. 

COROLLARY 3. In characteristic two, if R = k © V with V2 = 0 as before, 
any R-module M for which P2(M) ^ Mi2) must have at least 3 generators and at 
least 3 independent relations. 

We now give an explicit example with n = m = 3 where the Question has 
an affirmative answer. Set 

B 
1 0 1 0 0 1 
0 1 0 c = 1 0 0 
o o o_ _o i i_ 

0 0 1" "o i r 0 0 0' 
0 0 0 Wt = 1 1 0 Wi = 0 0 1 
1 1 0 0 0 0 0 1 1 

w1 

It can be seen in this case that there is no matrix H with W}W + HWi = 
WilBl + CWi for i = 1, 2, 3, although the right-hand sides are all skew-
symmetric. 

Translating this example in module terms, let k be a field of characteristic 2, 
V a &-space of dimension > 2, and R = k © V where the ring structure on R 
is determined by the ^-action on V and the requirement V2 = 0. 

The matrix W of Lemma 2 is then given by 

W 

with vu i>2, Vz linearly independent in V. Let M = F/A where F is free with 
i?-basis {si, 52, Sz) and A is the submodule of F generated by 

ei = fl2S2 + (vi + v2)s3 

e<t = v2(si + s2) + VzSz 

ez = fli (si + s2) + vz(s2 + sz). 

0 v2 Vi + V2 

v2 V2 Vz 

.vi Vi + vz Vz 
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Since 
0 ^ 1 + ^ 2 + ^ 3 Vz 

Z>1 + ^2 + Z>3 0 Vi + V2 

VZ Vx + V2 0 

WBX + CW = 

it follows from Lemmas 2 and 3 that the element 

Z = (Vi + V2 + Vz)SiS2 + VzS!S3 + (vi + V2)s2SS 

has the property that T(Z) £ P2(M) but w(z) (? M(2). We know of no simpler 
example. 

THEOREM 6. Let R = k © F a 5 before, where k is a field of characteristic 2 
and V2 = 0. If V has dimension ^ 3 , there exists an R-module M for which 
P2(M) 9* M^. 

Remark. Let L be a restricted lie algebra over a ring R of prime characteristic 
p, and C/(L) its restricted universal enveloping algebra. It is well known that 
U(L) possesses a cocommutative comultiplication, and that the lie algebra 
of primitive elements in U(L) is isomorphic to L itself if the latter is pro­
jective of finite type as an i£-module. 

In particular, any i^-module M can be regarded as a restricted lie algebra 
over R with trivial bracket [m, m;] = 0 and trivial p-ma.p m[p] = 0 for all 
m, m' £ M. As such, its restricted universal enveloping algebra is 
S(M)/MWS(M), and the canonical projection S(M) -> S(M)/M™S(M), 
preserves comultiplication. It follows that any primitive element in SP(M) 
which is not in M{v) gives rise to a nonzero primitive element of degree p in 
S(M)/M{V)S{M). The examples of Theorems 3 and 6 can accordingly be 
interpreted as examples of restricted lie algebras which are not projective of 
finite type and which cannot be recovered as the set of primitive elements in 
the restricted universal enveloping algebra, even though the canonical map 
L —» UÇL) is an inclusion. 

University of British Columbia, 
Vancouver, British Columbia 
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