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Dipole approach to high parton density QCD

We are now ready to present more recent developments in high energy QCD. We will
consider DIS in the rest frame of a proton or a nucleus. In this frame a virtual photon
fluctuates into a quark–antiquark pair, which, in turn, hits the proton or nuclear target.
We argue that quark–antiquark dipoles are convenient degrees of freedom for high energy
scattering in QCD. We will present a simple model of DIS on a nucleus, due to Glauber,
Gribov, and Mueller, in which the qq̄ dipole rescatters multiple times on a nuclear target
consisting of independent nucleons. We then include quantum corrections to this multiple-
rescattering picture: we argue that the initial qq̄ dipole may develop a cascade of gluons
before hitting the target nucleus. In the large-Nc limit the cascade is described by Mueller’s
dipole model. When applied to DIS the dipole cascade resummation leads to the Balitsky–
Kovchegov (BK) nonlinear evolution equation. We describe approximate analytical and
exact numerical solutions of the BK equation and show that it resolves both problems of
BFKL evolution: BK evolution is unitary and has no diffusion into the IR. It generates a
saturation scale Qs that grows with energy, justifying the use of perturbative QCD. We
conclude the chapter by presenting the Bartels–Kwiecinski–Praszalowicz (BKP) evolution
equation for multiple reggeon exchanges, along with the evolution equation for (C-odd)
odderon exchange.

4.1 Dipole picture of DIS

Let us begin by considering DIS in the rest frame of the proton or nucleus. While many
conclusions in this chapter may also apply to proton DIS, in the strict sense our results
would be justified only for DIS on a large nucleus since such a nucleus has a large atomic
number parameter A allowing us to make the approximations we will need below. We will
therefore only talk about DIS on a nuclear target.

Without any loss of generality we can choose a coordinate axis such that the momentum
of the virtual photon is given by

qμ =
(

q+,−Q2

q+ , 0⊥

)
(4.1)

in the (+,−,⊥) light cone notation. The light cone momentum of the virtual photon q+ is
very large (since the (high) photon–nucleus center-of-mass energy is ŝ = mq+), so that its
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124 Dipole approach to high parton density QCD

q

γ∗
x⊥ x⊥

Fig. 4.1. Forward scattering amplitude for DIS on a proton or nuclear target in the rest
frame of the target: the virtual photon splits into a qq̄ pair which then interacts with the
target. The interaction is depicted by the vertical oval. For simplicity the electron that emits
the virtual photon is not shown.

coherence length in the longitudinal plus direction (see Sec. 2.3),

x+ ≈ 2

|q−| = 2q+

Q2
, (4.2)

is much larger than the size of the nucleus. If the virtual photon fluctuates into a quark–
antiquark pair, the typical lifetime of such a qq̄ fluctuation would also be much longer
than the nuclear diameter. Therefore, a DIS process in the nuclear rest frame occurs when
a virtual photon fluctuates into a qq̄ pair (which we will also refer to as a color dipole or
simply a dipole); the qq̄ pair proceeds to interact with the target (Gribov 1970, Bjorken
and Kogut 1973, Frankfurt and Strikman 1988). The forward scattering amplitude for the
process is pictured in Fig. 4.1, with the qq̄ dipole–nucleus interaction represented by the
vertical oval. This is the dipole picture of DIS (Kopeliovich, Lapidus, and Zamolodchikov
1981, Bertsch et al. 1981, Mueller 1990, Nikolaev and Zakharov 1991). Note that while
the topology of the DIS diagram in Fig. 4.1 is the same as for DIS in the IMF, shown in
Fig. 2.2, the time-ordering of the interactions is different in the two figures.

The interaction of a virtual photon with a nucleus can be viewed as a two-stage process:
the virtual photon decays into a colorless dipole consisting of a quark and an antiquark
and the colorless dipole travels through the nucleus. However, this separation between the
time scale for the photon to decay into the qq̄ pair and the interaction time is not the
only advantage of the dipole picture. Another important simplification comes from the fact
that in high energy scattering a colorless dipole, with transverse size x⊥, does not change
its size during the interaction and therefore the S-matrix of the interaction is diagonal
with respect to the transverse dipole size (Zamolodchikov, Kopeliovich, and Lapidus 1981,
Levin and Ryskin 1987, Mueller 1990, Brodsky et al. 1994). Indeed, while the colorless
dipole is traversing the target, the distance x⊥ between the quark and antiquark can only
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4.1 Dipole picture of DIS 125

vary by an amount

�x⊥ ≈ R
k⊥
E

(4.3)

where E ∼ q0 denotes the energy of the dipole in the laboratory frame (the target rest
frame), R is the longitudinal size of the target, and k⊥ is the relative transverse momentum
of the qq̄ pair acquired through interaction with the target. In Eq. (4.3) k⊥/E is the relative
transverse velocity of the quark with respect to the antiquark. From Eq. (4.3) we can see
already that the change in the dipole size is suppressed by a power of the energy E and is
therefore small. To quantify this better let us first remember the definition of Bjorken x,
given in (2.2):

x = Q2

2P · q
= Q2

mq+ ≈ Q2

2mE
. (4.4)

Using Eq. (4.4) in Eq. (4.3) along with the uncertainty principle Q ≈ k⊥ ≈ 1/x⊥ yields

�x⊥
x⊥

≈ 2mxR = 4R

lcoh

� 1, (4.5)

where lcoh = 2/(mx) is the coherence length of the dipole fluctuation (see Eq. (2.56)).
We thus see that at small x � 1/(mR), when the dipole interacts with the whole nucleus
coherently in the longitudinal direction, the transverse recoil of the quark and the antiquark
are negligible compared with the size of the dipole. Therefore the transverse size of the
dipole is invariant in high energy interactions, as indicated in Fig. 4.1.

We conclude that in calculating the total DIS cross section, along with other high
energy QCD observables, it is convenient to work in transverse coordinate space. We will
therefore adopt a mixed representation: we will use longitudinal momentum space along
with transverse coordinate space. Light cone perturbation theory (LCPT) is a very useful
tool here again. Using LCPT to calculate the total DIS γ ∗A cross section we can factorize
the diagram in Fig. 4.1 into the square of the light cone wave function �γ ∗→qq̄(�x⊥, z) for
the splitting of a virtual photon into a qq̄ dipole and the total cross section for the scattering
of a dipole on a target nucleus σ

qq̄A
tot (�x⊥, Y ), so that

σ
γ ∗A
tot (x,Q2) =

∫
d2x⊥
4π

1∫
0

dz

z(1 − z)
|�γ ∗→qq̄(�x⊥, z)|2σqq̄A

tot (�x⊥, Y ). (4.6)

Here z = k+/q+, with k+ the light cone momentum of the quark in the qq̄ pair. In gen-
eral the dipole–nucleus cross section will depend on z too; however, in the eikonal and
LLA approximations that we mainly consider below, σ

qq̄A
tot is independent of z. The net

rapidity interval for the dipole–nucleus scattering is given by Y = ln(ŝx2
⊥) ≈ ln 1/x for

x⊥ ∼ 1/Q.
The reader may have other doubts about the factorization (4.6): after all, the LCPT rules

presented in Sec. 1.3 require us to subtract the light cone energy of the incoming state in
the energy denominator from each intermediate state’s energy. Since the light cone energy
of the incoming virtual photon is q− = −Q2/q+, it seems that each intermediate state that
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126 Dipole approach to high parton density QCD

we have absorbed into σ
qq̄A
tot (�x⊥, Y ) should “know” about the photon’s energy. However,

in the rest frame of the nucleus, q− is equal to −Q2/q+ ∼ 1/ŝ and is therefore negligibly
small compared with the typical minus components of momenta involved in dipole–nucleus
interactions. The same would be true for dipole–nucleus scattering: the incoming dipole
state would have a negligibly small light cone energy compared with the energies involved
in the interaction. Therefore, in our eikonal approximation (up to corrections of order 1/ŝ),
we can interchange the negligible light cone energy q− for the light cone energy of the
dipole without changing the answer, thus justifying the factorization of Eq. (4.6). (Note
that in calculating the light cone wave function �γ ∗→qq̄(�x⊥, z) we cannot neglect the light
cone energies of the virtual photon and the qq̄ dipole, since they are the only terms entering
the energy denominator.) Another important assumption is that the light cone energy of the
target is not modified until the interaction with the dipole: one can show that the time scale
of target fluctuations is much shorter than the lifetime of the dipole. Hence the target does
not affect the virtual photon’s wave function, since in constructing the latter the same light
cone energy of the target enters into both the energies of the intermediate states and the
initial-state energy, thus canceling in the energy denominators.

The factorization of Eq. (4.6) is very convenient: it allows us to separate the simple
γ ∗ → qq̄ QED process from the strong interaction dynamics contained in σ

qq̄A
tot (�x⊥, Y ).

Note that the virtual photon may have either transverse or longitudinal polarization.
Requiring that the photon polarization satisfies ε · q = 0 and imposing ε2

T = −1 for trans-
verse polarization and ε2

L = 1 for the longitudinal polarization, we obtain for qμ, Eq. (4.1),
the following polarizations:

ελ
T = (0, 0, �ελ

⊥), (4.7a)

εL =
(

q+

Q
,

Q

q+ , �0⊥

)
, (4.7b)

with �ελ
⊥ as given in Eq. (1.54). The polarization vectors (4.7) form a complete basis in

the space of possible polarizations, so that the numerator of the photon propagator in the
Landau gauge can be decomposed in terms of them as

gμν − qμqν

q2
= −
∑
λ=±

ελ
T μελ∗

T ν + εLμε∗
Lν. (4.8)

Using the polarizations (4.7) along with Eqs. (2.13) and (2.16) one can separate the total
DIS cross section into transverse (T ) and longitudinal (L) components (see Halzen and
Martin 1984):

σ
γ ∗A
T = 4π2αEM

q0
Wμν 1

2

∑
λ=±

ελ
T μελ∗

T ν = 4π2αEM

q0
W1 (4.9a)

σ
γ ∗A
L = 4π2αEM

q0
WμνεLμε∗

Lν = 4π2αEM

q0

[
−W1 +

(
1 + ν2

Q2

)
W2

]
, (4.9b)

with ν as defined in Eq. (2.5) and αEM the fine structure constant. Employing Eqs. (2.18a)
and (2.18b), we can rewrite Eqs. (4.9) in the high energy ν � Q limit as expressions for
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Fig. 4.2. Light cone wave function for a virtual photon fluctuating into a quark–antiquark
pair (a dipole). The dotted line denotes the intermediate state.

the dimensionless structure functions:

F2(x,Q2) = Q2

4π2αEM

σ
γ ∗A
tot = Q2

4π2αEM

(
σ

γ ∗A
T + σ

γ ∗A
L

)
, (4.10a)

2xF1(x,Q2) = Q2

4π2αEM

σ
γ ∗A
T . (4.10b)

It is useful to also define the longitudinal structure function FL, which measures the violation
of the Callan–Gross relation (2.44):

FL(x,Q2) ≡ F2(x,Q2) − 2xF1(x,Q2) = Q2

4π2αEM

σ
γ ∗A
L . (4.11)

Equations (4.10) and (4.11) allow us to find the DIS structure functions using the transverse
and longitudinal cross sections, which, with the help of Eq. (4.6), can be found from the
dipole–nucleus scattering via

σ
γ ∗A
T,L (x,Q2) =

∫
d2x⊥
4π

1∫
0

dz

z(1 − z)
|�γ ∗→qq̄

T ,L (�x⊥, z)|2 σ
qq̄A
tot (�x⊥, Y ). (4.12)

We have defined the transverse, �γ ∗→qq̄
T (�x⊥, z), and longitudinal, �γ ∗→qq̄

L (�x⊥, z), light cone
wave functions, which differ by the polarization vector of the incoming virtual photon.

Let us now calculate the light cone wave functions �
γ ∗→qq̄
T ,L (�x⊥, z) for the quark–

antiquark fluctuations of a virtual photon. The diagram is shown in Fig. 4.2, in which the
vertical dotted line denotes the intermediate state. Using the LCPT rules from Secs. 1.3 and
1.4, we write for the wave functions in momentum space (cf. the calculation in Sec. 2.4.2)

�
γ ∗→qq̄
T ,L (�k⊥, z) = eZf

z(1 − z)δij

�k2
⊥ + m2

f + Q2z(1 − z)
ūσ (k)γ · ελ

T ,Lvσ ′(q − k), (4.13)

where σ and σ ′ are the quark and antiquark helicities, i, j are their colors, mf is the mass
of a quark with flavor f , and Zf is the quark’s electric charge in units of the electron charge
e. (Note that qμ is given in Eq. (4.1).) As mentioned above, we define z = k+/q+ as the
fraction of the photon’s light cone momentum carried by the quark.
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128 Dipole approach to high parton density QCD

Starting with the transverse polarization we substitute the polarization vector from
Eq. (4.7a) into Eq. (4.13) and evaluate the Dirac matrix element using Appendix A.1,
obtaining

�
γ ∗→qq̄
T (�k⊥, z) = eZf

√
z(1 − z) δij

× (1 − δσσ ′)�ελ
⊥ · �k⊥(1 − 2z − σλ) + δσσ ′mf (1 + σλ)/

√
2

�k2
⊥ + m2

f + Q2z(1 − z)
. (4.14)

In arriving at Eq. (4.14) we have also used the fact that in two transverse dimensions
�ελ
⊥ × �k⊥ = −iλ�ελ

⊥ · �k⊥ for the �ελ
⊥ from Eq. (1.54).

Since we are interested in using the virtual photon’s wave function in transverse coordi-
nate space in Eq. (4.12), we perform a Fourier transform of Eq. (4.14):

�
γ ∗→qq̄
T ,L (�x⊥, z) =

∫
d2k⊥
(2π )2

ei�k⊥·�x⊥�
γ ∗→qq̄
T ,L (�k⊥, z) (4.15)

and employ Eq. (A.11) along with K ′
0(z) = −K1(z) to obtain

�
γ ∗→qq̄
T (�x⊥, z) = eZf

2π

√
z(1 − z) δij

[
(1 − δσσ ′)(1 − 2z − σλ) iaf

�ελ
⊥ · �x⊥
x⊥

K1(x⊥af )

+ δσσ ′
mf√

2
(1 + σλ)K0(x⊥af )

]
, (4.16)

where

a2
f = Q2z(1 − z) + m2

f . (4.17)

The square of the absolute value of the transverse wave function (4.16), summed over all the
outgoing quantum numbers and averaged over the possible polarizations of the incoming
transverse photon is (Bjorken, Kogut, and Soper 1971, Nikolaev and Zakharov 1991) given
by

|�γ ∗→qq̄
T (�x⊥, z)|2 = 2Nc

∑
f

αEMZ2
f

π
z(1 − z)

×
{
a2

f

[
K1(x⊥af )

]2
[z2 + (1 − z)2] + m2

f

[
K0(x⊥af )

]2}
. (4.18)

To calculate the longitudinal wave function �
γ ∗→qq̄
L (�x⊥, z) we repeat the above steps,

now using the longitudinal polarization vector (4.7b) in Eq. (4.13). The transverse momen-
tum space longitudinal wave function is

�
γ ∗→qq̄
L (�k⊥, z) = eZf [z(1 − z)]3/2 δij 2Q(1 − δσσ ′)

�k2
⊥ + m2

f + Q2z(1 − z)
. (4.19)

In arriving at Eq. (4.19) we have neglected a term that would have given us a delta
function, δ2(�x⊥), in the transverse coordinate-space wave function; as we will shortly see,
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4.2 GGM multiple-rescatterings formula 129

zero-transverse-size dipoles do not interact with the nucleus (they have zero scattering cross
section) and so such configurations do not contribute to the DIS structure functions.

Fourier-transforming Eq. (4.19) into transverse coordinate space yields

�
γ ∗→qq̄
L (�x⊥, z) = eZf

2π
[z(1 − z)]3/2 δij 2Q(1 − δσσ ′)K0(x⊥af ), (4.20)

so that the longitudinal wave function squared, again with all summations performed, is
(Bjorken, Kogut, and Soper 1971, Nikolaev and Zakharov 1991)

|�γ ∗→qq̄
L (�x⊥, z)|2 = 2Nc

∑
f

αEMZ2
f

π
4Q2z3(1 − z)3

[
K0(x⊥af )

]2
. (4.21)

To obtain the phase-space integral in Eqs. (4.6) or (4.12) we remember that the two-
particle momentum phase space given in Eq. (1.82) is (remembering that in our case the
quarks are not identical) ∫

dz

2z(1 − z)

d2k⊥
(2π )3

. (4.22)

After Fourier-transforming the wave function into transverse coordinate space the integral
becomes ∫

dz

2z(1 − z)

d2x⊥
2π

, (4.23)

in agreement with Eqs. (4.6) and (4.12).
We have now completed the calculation of the QED part of DIS in the dipole picture.

Equations (4.18) and (4.21), when used in Eq. (4.12), give us the transverse and longitudinal
DIS cross sections, which, in turn, when used in Eqs. (4.10) and (4.11) give us the structure
functions. The interesting physics of strong interactions is contained in the dipole–nucleus
scattering cross section σ

qq̄A
tot (�x⊥, Y ): most of this chapter is dedicated to calculating this

quantity.

4.2 Glauber–Gribov–Mueller multiple-rescatterings formula

We begin by employing Eq. (3.119a) to rewrite the total dipole–nucleus scattering cross
section as

σ
qq̄A
tot (�x⊥, Y ) = 2

∫
d2b N (�x⊥, �b⊥, Y ), (4.24)

where N (�x⊥, �b⊥, Y ) is the imaginary part of the forward scattering amplitude for a
dipole of transverse size �x⊥ interacting with the nucleus at impact parameter �b⊥ and
with net rapidity interval Y . Hence to find the cross section σ

qq̄A
tot we need to calculate

N (�x⊥, �b⊥, Y ).
To find N (�x⊥, �b⊥, Y ) let us consider the following (Glauber) model. Assume that the

nucleus is very large and dilute and is made out of A � 1 independent nucleons, where A is
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130 Dipole approach to high parton density QCD

Fig. 4.3. The four diagrams contributing to dipole interaction with a single nucleon at the
lowest nontrivial (two-gluon) order in the high energy approximation and an abbreviated
notation for their sum.

the atomic number of the nucleus.1 Any correlations between the nucleons are suppressed
by powers of the large parameter A: hence our approximation corresponds to summing
the leading powers of A. In evaluating the forward dipole–nucleus scattering amplitude
N (�x⊥, �b⊥, Y ) we will follow the strategy originally outlined by Glauber and by Gribov
(Glauber 1955, Franco and Glauber 1966, Gribov 1969b, Glauber and Matthiae 1970,
Gribov 1970) and implemented in QCD by Mueller (1990).

4.2.1 Scattering on one nucleon

First we consider the case when the dipole interacts with only one nucleon in the nucleus.
Assuming that the interaction is entirely perturbative, we see that the lowest-order contri-
bution to the forward high energy scattering amplitude comes from a two-gluon exchange.
The relevant diagrams are shown in Fig. 4.3. This lowest-order scattering process was
calculated in Sec. 3.2. Employing the results of that section (see Eq. (3.25)) we can write
down the total dipole–nucleon cross section as

σqq̄N ≈ 2πα2
s CF

Nc

x2
⊥ ln

1

x2
⊥�2

. (4.25)

In arriving at Eq. (4.25) we have assumed that the dipole is perturbatively small, x⊥ �
1/�QCD , and that the nucleon can be modeled as another dipole of transverse size 1/� �
x⊥, with � some soft QCD scale of order �QCD . We have also assumed that the nucleus
is sufficiently large that the cross section does not depend on the dipole’s orientation in the
transverse plane, over which we therefore average.

At the same two-gluon order the unintegrated gluon distribution function of the nucleon
can be found using Eq. (3.92) with the lowest-order BFKL Green function (3.59). This
gives

φonium
LO (x, k2

⊥) = αsCF

π

2

k2
⊥

, (4.26)

where we have assumed that k⊥ � �. The factor 2 on the right-hand side of Eq. (4.26)
simply counts the number of quarks in the dipole representing the nucleon. It should be

1 Strictly speaking A is called the mass number of the nucleus; nevertheless, we will follow the standard jargon in the
high energy field and refer to it as the atomic number.
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replaced by Nc if one wanted to model the nucleon more realistically, as consisting of Nc

valence quarks. Using Eq. (3.93) the corresponding lowest-order gluon distribution of an
onium (a nucleon) turns out to be

xGonium
LO (x,Q2

⊥) = αsCF

π
2 ln

Q2

�2
. (4.27)

Comparing Eq. (4.27) and Eq. (4.25), we can rewrite the latter as

σqq̄N ≈ αsπ
2

Nc

x2
⊥xGN

(
x,

1

x2
⊥

)
, (4.28)

where xGN is the gluon distribution in the nucleon (presently modeled as an onium).2

Equation (4.28) has an advantage over Eq. (4.25): it is valid for any nonperturbative gluon
distribution in the nucleon and is therefore more general. We will use these equations
interchangeably, though.

To find the dipole–nucleus scattering cross section at a given impact parameter we
need to average the dipole–nucleon scattering amplitude over all possible positions of the
nucleon inside the nucleus and to sum over the A nucleons in the nucleus, all of which may
participate in the interaction. We have

dσ
qq̄A
LO

d2b
=
∫

db′
3d

2b′
⊥ρA(�b⊥ − �b′

⊥, b′
3)

dσqq̄N

d2b′ , (4.29)

where db′
3d

2b′
⊥ = d3b is the three-dimensional volume element and ρA(�b⊥, b3) is the

nucleon number density, with �b⊥ = (b1, b2). In a simplified model, the nucleus has a
constant nucleon number density ρA = A/V , where V is the volume of the nucleus in its
rest frame. In the general case ρA(�b⊥, b3) is given by the Woods–Saxon parametrization of
the nuclear density (Woods and Saxon 1954).

Equation (4.29) gives the cross section for a dipole at impact parameter �b⊥ scattering
on a nucleon at impact parameter �b⊥ − �b′

⊥ (where �b′
⊥ is its transverse distance from the

dipole), convoluted with the nucleon density ρ, which, in turn, is proportional to the
probability of finding a nucleon at �b⊥ − �b′

⊥ (see Fig. 4.4). To simplify Eq. (4.29) we note
that the perturbative scattering cross section falls off as dσqq̄N/d2b′ ∼ 1/b

′4
⊥ at large impact

parameter, as can be seen for instance from Eq. (3.139) in Exercise 3.3 (after averaging
over the azimuthal orientations of one dipole; this mimics an unpolarized nucleon, without
any preferred direction). At nonperturbatively large impact parameter b′

⊥ � 1/�QCD one
expects an even steeper falloff, dσqq̄N/d2b′ ∼ exp(−2mπb′

⊥) (cf. Eq. (3.113)). Hence the
cross section dσqq̄N/d2b′ is localized at small impact parameters b′

⊥ � 1/�QCD .
In the large-A approximation that we are employing, one assumes that the nuclear wave

function and hence the density ρA(�b⊥, b3) does not change significantly over distances of
order 1/�QCD , which is small compared with the size of the nucleus, so that the nucleon
has an approximately equal probability of being anywhere within this transverse range.

2 We would like to stress here that in order to conform to the standard notation we write the gluon distribution with
Bjorken x in its argument, but throughout this section the gluon distribution is taken at the lowest (two-gluon) order
and is therefore x-independent.
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b⊥

nucleus

nucleon

dipole

b⊥

b⊥ − b⊥

Fig. 4.4. The geometry of dipole–nucleus scattering in the transverse coordinate plane. To
illustrate the notation of Eq. (4.29) the dipole is placed far from the nucleon; in reality
b′

⊥ � 1/�QCD .

Therefore, for large nuclei we can approximate ρA(�b⊥ − �b′
⊥, b′

3) as ρA(�b⊥, b′
3) and recast

Eq. (4.29) by integrating over b′
⊥ as

dσ
qq̄A
LO

d2b
= T (�b⊥)σqq̄N , (4.30)

where we have defined the nuclear profile function T (�b⊥) by

T (�b⊥) ≡
∞∫

−∞
db3ρA(�b⊥, b3). (4.31)

For a spherical nucleus of radius R with constant nucleon number density ρA = A/V one

has T (�b⊥) = 2ρA

√
R2 − �b2

⊥.
Comparing Eq. (4.30) with Eq. (4.24) and employing Eq. (4.28) we obtain

NLO(�x⊥, �b⊥, Y ) = αsπ
2

2Nc

T (�b⊥) x2
⊥xGN

(
x,

1

x2
⊥

)

= πα2
s CF

Nc

T (�b⊥) x2
⊥ ln

1

x⊥�
, (4.32)

where in the last line we have modeled the nucleon by a single quark with gluon distribution

xG(x,Q2
⊥) = αsCF

π
ln

Q2

�2
.

We now have the forward dipole–nucleus scattering amplitude for the case when only
one nucleon in the nucleus interacts with the dipole. This case has a problem akin to that
of linear BFKL evolution: if we increase the dipole size x⊥ in Eq. (4.32), at some point we
get NLO > 1, violating the black-disk limit, which states that

N (�x⊥, �b⊥, Y ) ≤ 1 (4.33)

(see Eq. (B.37) in Appendix B).

https://doi.org/10.1017/9781009291446.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291446.005


4.2 GGM multiple-rescatterings formula 133

x⊥

Fig. 4.5. Dipole–nucleus scattering in the Glauber–Gribov–Mueller approximation in the
Feynman gauge. The disconnected gluon lines at the top denote the sum over all possible
connections of the gluon lines to the dipole, as depicted in Fig. 4.3.

Let us stress again here that the transverse dipole size x⊥ is preserved in high energy
interactions. This makes the S-matrix diagonal not only in the impact parameter �b⊥, as
we saw in Eqs. (3.119) and also in Appendix B, but also in the dipole size �x⊥. Therefore,
the relations (3.119) between the cross sections and the S-matrix can also be written down
for dipole–nucleus scattering with a fixed dipole size �x⊥. The unitarity conditions (the
optical theorem), which in momentum space are written as complicated convolutions (see
e.g. Eq. (B.19)), become simple products of the amplitudes in (�x⊥, �b⊥)-space (see e.g.
Eq. (B.30)). For this reason we think of color dipoles (or any other objects in the transverse
coordinate representation) as the correct degrees of freedom for high energy scattering.

4.2.2 Scattering on many nucleons

When the probability of interaction with one nucleon becomes large, interactions with
multiple nucleons also becomes likely and should be taken into account. Now we will
see how multiple rescatterings of the dipole on different nucleons cure the problem of
black-disk-limit violation by Eq. (4.32).

Let us consider the case when any number of nucleons can interact, restricting the
interaction with each nucleon to the lowest nontrivial order. For this calculation we will
be working in the standard Feynman perturbation theory using the Lorenz ∂μAμ = 0
(Feynman) gauge. (Once we have separated the DIS cross section into the light cone wave
function squared and the dipole–nucleus cross section, we can calculate the latter using any
technique that is convenient.) We start by stating the diagrammatic answer for the many-
nucleon interaction case: in the Feynman gauge, the dipole–nucleus interaction becomes a
series of successive independent dipole–nucleon rescatterings, as shown in Fig. 4.5. There
each nucleon (denoted by an oval at the bottom, just as in Fig. 4.3) interacts with the dipole
via a two-gluon exchange: the disconnected gluon lines at the top of the diagram denote all
possible connections to the quark and the antiquark lines in the dipole, as defined in Fig. 4.3.

The diagram in Fig. 4.5 implies that in the covariant gauge there is no direct “cross-talk”
between the nucleons and that all the nucleons interact sequentially in the order in which
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l

l l − q

k k − l + q

A B
x+ x+

Fig. 4.6. Examples of diagrams that can be neglected for dipole–nucleus scattering in the
covariant (Feynman) gauge.

l q

p p + l p + l − q p p + l − q

p− q

l q

Fig. 4.7. Diagrammatic illustration that for a color-singlet object such as a nucleon, the
coupling of two gluons to a single quark line is equivalent to the coupling of each gluon
to a quark line that is on mass shell both before and after the quark–gluon interaction. The
solid vertical line in the rightmost graph indicates an effective cut.

the dipole encounters them, i.e., according to their ordering along the x+-axis. The dipole–
nucleon interactions in the covariant gauge of Fig. 4.5 are localized inside the nucleons,
on distance scales much shorter than the nuclear radius. While for a large dilute nucleus
these assertions seem natural, we still need to prove them. To do so, it is convenient to
change the frame slightly by giving the nucleus a slight boost, so that it moves along the
light cone in the minus direction with a large P − momentum. At the same time the boost
preserves the virtual photon’s motion along the plus light cone, with four-momentum as
shown in Eq. (4.1). Thus both the dipole and nucleus in this new frame move along their
respective light cones, as shown in Fig. 4.8. In the calculations below we will assume that
the gluon–nucleon coupling is perturbatively small.

To illustrate why the graphs in Fig. 4.5 dominate the scattering, let us show that the
diagrams in Fig. 4.6, demonstrating “cross-talk” (A) and the violation of x+-ordering (B),
are suppressed and can be neglected. Before we do that, let us carry out a simple exercise
elucidating the nature of the coupling of two gluons to a nucleon. Consider two gluons
coupling to a quark line in a nucleon, as shown in Fig. 4.7. This can be a part of any diagram
in Figs. 4.6 and 4.5. Note that one has to include a crossed diagram, as illustrated in Fig. 4.7.
Since the nucleon is a color singlet, the color factors of the two graphs on the left in Fig. 4.7
are identical (say, owing to a color trace), so that the difference between the two diagrams
is only in the propagators for the internal quark line. Adding the two propagators (using the
momentum labels from Fig. 4.7) and remembering that p− is the largest momentum in the
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t

x3

dipole
nucleus

x+x−

Fig. 4.8. Space–time picture of the dipole–nucleus scattering.

problem, we obtain

i(p/ + l/ + mq)

(p + l)2 − m2
q + iε

+ i(p/ − q/ + mq)

(p − q)2 − m2
q + iε

≈ ip/

(
1

p−l+ + iε
+ 1

−p−q+ + iε

)
= −ip/2πiδ(p−l+). (4.34)

We have used the fact that the outgoing quark is on mass shell, (p + l − q)2 = m2
q , so that

q+ = l+ with eikonal accuracy (see Sec. 3.2 for similar estimates). We conclude that (with
eikonal accuracy) l+ = q+ = 0. The δ-function in Eq. (4.34) puts the internal quark line
in the leftmost diagram of Fig. 4.7 on mass shell. The result (4.34) can be summarized
by replacing the internal quark line by the cut line, as shown in the rightmost graph of
Fig. 4.7: the cut enforces l+ = 0. What is essential to us is that neither gluon carries any
plus momentum.

Now we are ready to evaluate the diagrams in Fig. 4.6. Note that, owing to the large size
of the nucleus we are considering, even after the boost the nucleus is still somewhat spread
out in the x+-direction, as demonstrated in Fig. 4.8, where different nucleons correspond
to different straight lines parallel to the x− light cone. Hence each nucleon in the nucleus
is located at a different x+ coordinate. We thus need to Fourier-transform the diagrams in
Fig. 4.6 into coordinate x+-space by integrating over l−.

Starting with Fig. 4.6A we see that the l−-dependence can be contained only in the
propagator of the gluon carrying momentum l that is exchanged between the nucleons
there. However, as we have just shown when considering the diagrams in Fig. 4.7, l+ = 0
with eikonal accuracy, so that the diagram in Fig. 4.6A is proportional to

∞∫
−∞

dl−
e−il−�x+

l2 + iε
≈

∞∫
−∞

dl−
e−il−�x+

−�l2
⊥

= 0 (4.35)
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l

l − q

k k + l

x+

Fig. 4.9. Forward amplitude for a dipole scattering on two nucleons.

for nonzero light cone separations between the two nucleons, i.e., �x+ �= 0. Hence diagram
A is negligible in the covariant gauge in which we are working.3 Let us stress that in arriving
at the result (4.35) we have restricted ourselves to l− � p−: if we relaxed this constraint
then the integral in Eq. (4.35) would be nonzero, though it would still be suppressed for
large atomic numbers A (Kovchegov 1997).

Similarly, in Fig. 4.6B one has l+ = q+ = 0, so that the l−-dependence can be contained
only in the quark propagator of the (k − l + q)-line. Since the light cone momentum of the
quark k+ is large, we see that the diagram in Fig. 4.6B is proportional to

∞∫
−∞

dl−
e−il−�x+

(k − l + q)2 + iε
≈

∞∫
−∞

dl−
e−il−�x+

k+(k− − l− + q−) − (�k⊥ − �l⊥ + �q⊥)2 + iε
= 0

(4.36)

for �x+ > 0, as the pole of the propagator is in the upper half-plane while the contour
needs to be closed in the lower half-plane. For �x+ < 0 the integral in Eq. (4.36) is not
zero, but then we would obtain zero from the integral over the minus momentum carried
by the other pair of t-channel gluon lines. We thus can neglect diagram B as well.

The arguments used in proving that diagrams A and B in Fig. 4.6 are zero can be gener-
alized to more complicated diagrams in the same general categories. We have succeeded in
demonstrating that in the covariant gauge and in the approximation of two gluon exchanges
per nucleon the dipole–nucleus interaction is given by the graphs in Fig. 4.5. We now need
to resum these diagrams. To do this, we first consider dipole scattering on two nucleons
ordered in x+, as shown in Fig. 4.9. Unlike the diagram in Fig. 4.6B, the graph in Fig. 4.9
has the correct x+-ordering of the nucleons. Instead of giving zero it yields (note that k− is
very small for a quark on a plus light cone)

∞∫
−∞

dl−

2π

ie−il−�x+

(k + l)2 + iε
≈

∞∫
−∞

dl−

2π

ie−il−�x+

k+l− − (�k⊥ + �l⊥)2 + iε
= 1

k+ , (4.37)

3 Note that the diagram in Fig. 4.6A is nonzero in the A− = 0 light cone gauge even in the eikonal approximation.
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l

∂
∂b+

l

s̃ s̃

Fig. 4.10. Diagrammatic representation of Eq. (4.40) resumming all the diagrams
from Fig. 4.5.

where at the end of the calculation we have neglected the phase of the exponential since it is
proportional to �x+/k+ ∼ 1/(k+p−), which is suppressed by the center-of-mass energy.
It is important to note that in picking up the pole in Eq. (4.37) we put the propagator of
the quark carrying momentum k + l on mass shell. Therefore, the diagram factorizes into a
product of two independent dipole–nucleon scatterings; the quark and the antiquark in the
dipole effectively go on shell between the scatterings. (The factor 1/k+ left in Eq. (4.37)
serves to normalize the dipole–nucleon cross section for the nucleon on the right.) The
numerator of the quark propagator can be absorbed into two separate scattering amplitudes
using the property that (neglecting the quark mass) k/ + l/ =∑σ uσ (k + l)ūσ (k + l): the
factor uσ (k + l) is absorbed into one amplitude, while ūσ (k + l) is absorbed into the other.
Comparing this result with the standard normalization factor for the 2 → 2 cross section
at high energy (see Eqs. (B.22) and (B.23)), we conclude that to resum the diagrams in
Fig. 4.5 we simply need to iterate the dipole–nucleus cross section.

Define the forward matrix element of the S-matrix for the dipole–nucleus scattering by
(cf. Eq. (B.34))

S(�x⊥, �b⊥, Y ) = 1 − N (�x⊥, �b⊥, Y ). (4.38)

Suppressing the arguments �b⊥ and Y , we can define the S-matrix (the “propagator”)
s(�x⊥, b+) for a dipole to travel through the nucleus up to a point b+, so that S(�x⊥) = s(�x⊥, L)
with b+ ∈ (0, L), which defines the extent of the nucleus along the x+ axis. Going to
transverse momentum space we have

s̃(�k⊥, b+) =
∫

d2x⊥e−i�k⊥·�x⊥s(�x⊥, b+), (4.39)

with �k⊥ the relative transverse momentum of the quark and the antiquark in the dipole. As
we demonstrated above, all the integrations over the minus momenta in the diagrams in
Fig. 4.5 are done straightforwardly. Hence the b+-evolution of s̃(�k⊥, b+) is also clear: in
one step in b+ the dipole may interact with one nucleon. Denoting s̃(�k⊥, b+) by a circle,
we illustrate this statement in Fig. 4.10.

https://doi.org/10.1017/9781009291446.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291446.005


138 Dipole approach to high parton density QCD

Summing over all possible connections of the t-channel gluons to the dipole in Fig. 4.10
we obtain the following equation (Mueller (1990), see also Baier et al. (1997)):

∂s̃(�k⊥, b+)

∂b+ = −ρA(�b⊥, b+)

2

∫
d2l⊥
(2π )2

dσ 0
qq→qq

d2l

×
[
2 s̃(�k⊥, b+) − s̃(�k⊥ − �l⊥, b+) − s̃(�k⊥ + �l⊥, b+)

]
, (4.40)

where the minus signs outside the last two terms come from the coupling of one gluon
to the quark and the other to the antiquark. The differential cross section dσ 0

qq→qq/d
2l

is the momentum-space expression for the two-gluon exchange cross section in quark–
quark scattering, as given in Eq. (3.18), and the factor 1/2 is needed to convert it to the
forward amplitude. (Again we are modeling the nucleons as single valence quarks.) The
nucleon density factor ρA(�b⊥, b+) (now, in the boosted-nucleus frame, equal to the number
of nucleons per unit volume element db+d2b⊥) gives the probability of finding a nucleon
at a given location in the nucleus. Again we assume ρA(�b⊥, b+) to be constant on the
perturbatively short transverse distance scales relevant to Eq. (4.40). The overall minus
sign in Eq. (4.40) reflects the fact that we are calculating a variation of the S-matrix that
differs from the variation of the forward amplitude by a sign, as follows from Eq. (4.38).

Fourier-transforming Eq. (4.40) into transverse coordinate space we obtain

∂s(�x⊥, b+)

∂b+ = −ρA(�b⊥, b+)

2
σqq̄Ns(�x⊥, b+), (4.41)

σqq̄N =
∫

d2l⊥
(2π )2

dσ 0
qq→qq

d2l

(
2 − ei�l⊥·�x⊥ − e−i�l⊥·�x⊥

)
, (4.42)

exactly the dipole–nucleus cross section of Eqs. (4.25) and (4.28). (The factor 2 difference
in comparison to Eq. (4.25) is due to the fact that in Eq. (4.25) the nucleon is modeled as a
dipole whereas in our present calculation it is taken to be a single quark for simplicity.)

One can readily see from Eq. (4.41) that in transverse coordinate space Eq. (4.40)
becomes trivial. An important consequence of this triviality is that, for the first time, we see
explicitly that the transverse size of the dipole x⊥ does not change in the interactions with
the nucleons (and the nucleus). This demonstrates the argument presented in Sec. 4.1.

Equation (4.41) has the following simple physical meaning: as the dipole propagates
through the nucleus it may encounter nucleons, with the probability of interaction per
unit path length db+ given by the product of the nucleon density ρA and the interaction
probability σqq̄N from Eq. (4.28), with another factor one-half inserted owing to the optical
theorem (B.23). The initial condition for Eq. (4.41) is given by a freely propagating dipole
without interactions, for which s(�x⊥, b+ = 0) = 1. Solving Eq. (4.41) with this initial
condition yields

s(�x⊥, b+) = exp

⎧⎨
⎩−

b+∫
0

db′+ ρA(�b⊥, b′+)

2
σqq̄N

⎫⎬
⎭ . (4.43)
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Going back to the nuclear rest frame and remembering that S(�x⊥) = s(�x⊥, L), we obtain

S(�x⊥, �b⊥, Y = 0) = exp

{
−σqq̄N

2
T (�b⊥)

}
. (4.44)

Note that σqq̄N does not depend on the energy of the collision (and therefore on its net
rapidity): to underscore this we have put Y = 0 in the argument of the S-matrix in Eq. (4.44).
This will delineate this expression from the energy-dependent version that results from
incorporating small-x evolution into this picture.

Using Eq. (4.44) along with Eq. (4.28) in Eq. (4.38), the imaginary part of the forward
scattering amplitude in the Glauber–Gribov–Mueller (GGM) model (Mueller 1990) is
given by

N (�x⊥, �b⊥, Y = 0) = 1 − exp

{
−αsπ

2

2Nc

T (�b⊥) x2
⊥xGN

(
x,

1

x2
⊥

)}
. (4.45)

This is the GGM multiple–rescattering formula. Note again that the nucleon’s gluon
distribution function xGN in Eq. (4.45) is taken at the lowest, two-gluon, level and is thus
independent of x, so that the amplitude N in Eq. (4.45) is independent of energy.

Equation (4.45) has a remarkable property: one can see that it implies N ≤ 1 for all (per-
turbative) x⊥. This means that the resulting forward scattering amplitude obeys the black-
disk limit constraint (4.33), correcting the problem of the single rescattering amplitude
from Eq. (4.32). We see that multiple rescatterings unitarize the scattering cross section,
preserving the black-disk limit. The lesson we learn from the Glauber–Gribov–Mueller
model is that to unitarize a cross section it is important to include multiple rescatterings!

Equation (4.45) allows us to determine the parameter corresponding to resummation of
the diagrams like that shown in Fig. 4.5. Using the gluon distribution from Eq. (4.27) in
Eq. (4.45), and noting that for large nuclei the profile function T (�b⊥) scales as A1/3, we
conclude that the resummation parameter of multiple rescatterings is (Kovchegov 1997)

α2
s A

1/3. (4.46)

The physical meaning of the parameter α2
s A

1/3 is rather straightforward: at a given impact
parameter the dipole interacts with ∼ A1/3 nucleons, exchanging two gluons with each.
Since two-gluon exchange is parametrically of order α2

s we obtain α2
s A

1/3 as the resumma-
tion parameter.

4.2.3 Saturation picture from the GGM formula

Multiple nucleon interactions become important in Eq. (4.45) when the dipole size becomes
of order x⊥ ∼ 1/Qs , where the saturation scale Qs is defined by the following implicit
equation (cf. Eq. (3.133)):

Q2
s (�b⊥) = αsπ

2

2Nc

T (�b⊥)xGN (x,Q2
s ). (4.47)

Note that for a cylindrical nucleus, as considered in Sec. 3.4.2, one has T (�b⊥) = A/S⊥
so that, taking into account that the nuclear gluon distribution is xGA = AxGN (which is
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1

N

x

x 2

1/Λ

saturation

<< 1αs

1/Qs

Fig. 4.11. The imaginary part of the forward amplitude of the dipole–nucleus scattering
N plotted as a function of the transverse separation between the quark and the anti-
quark in a dipole x⊥, using Eq. (4.51). (Reprinted from Jalilian-Marian and Kovchegov
(2006), with permission from Elsevier.) A color version of this figure is available online at
www.cambridge.org/9780521112574.

true at the two-gluon level considered here), one can recast Eq. (4.47) in almost the exact
form of Eq. (3.133). The difference Nc/CF between the saturation scales in (4.47) and in
(3.133) is due to the fact that the saturation scale (4.47) we have just found is that for a quark
dipole, whereas the saturation scale in Eq. (3.133) was obtained solely for gluons. If we
were to replace the quark dipole in Fig. 4.5 with a gluon dipole, we would need to modify
the exponent in Eq. (4.45) by the ratio of the adjoint and fundamental Casimir operators
Nc/CF , putting Eq. (4.47) in exact agreement with Eq. (3.133). With this proviso, we see
that, at least at the lowest order considered, Eq. (4.47) gives the same saturation scale as
what follows from the GLR–MQ equation.

Inserting the lowest-order single-quark gluon distribution function,

xG
quark
LO (x,Q2

⊥) = αsCF

π
ln

Q2

�2
, (4.48)

into Eq. (4.45), we can rewrite it as

N (�x⊥, �b⊥, Y = 0) = 1 − exp

{
−α2

s CF π

Nc

T (�b⊥) x2
⊥ ln

1

x⊥�

}
. (4.49)

Defining the quark saturation scale (note the factor 4 difference compared with Eq. (4.47)
and the absence of a gluon distribution in this definition),

Q2
s (�b⊥) ≡ 4πα2

s CF

Nc

T (�b⊥), (4.50)

we rewrite Eq. (4.49) as

N (�x⊥, �b⊥, Y = 0) = 1 − exp

{
−x2

⊥Q2
s (�b⊥)

4
ln

1

x⊥�

}
. (4.51)

The dipole amplitude N from Eq. (4.51) is plotted schematically in Fig. 4.11 as a function of
x⊥. One can see that, at small x⊥, i.e., x⊥ � 1/Qs , we have N ∼ x2

⊥ so that the amplitude
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is zero for zero dipole size. This result is natural, since in a zero-size dipole the color
charges of the quark and the antiquark cancel each other, leading to the disappearance
of interactions with the target. This effect is known as color transparency (Kopeliovich,
Lapidus, and Zamolodchikov 1981, Nikolaev and Zakharov 1991, Heiselberg et al. 1991,
Blaettel et al. 1993, Frankfurt, Miller, and Strikman 1993).

The amplitude (4.51) is a rising function of x⊥ at small dipole size. However, at large
dipole size x⊥ � 1/Qs , growth stops and the amplitude levels off (saturates) at N = 1.
As mentioned earlier, this regime corresponds to the black-disk limit for dipole–nucleus
scattering: for large dipoles the nucleus appears as a black disk. The transition from N ∼ x2

⊥
to the black disk-like (N = 1) behavior in Fig. 4.11 occurs at around x⊥ ∼ 1/Qs . For dipole
sizes x⊥ � 1/Qs the amplitude N saturates to a constant. This translates into saturation of
the quark distribution functions in the nucleus, since xq + xq̄ ∼ F2 (see Eq. (2.46)) and
the saturation of N implies the saturation of F2, as follows from Eqs. (4.10a), (4.12), and
(4.24). Thus the saturation of N can be identified with parton saturation, justifying the
name saturation scale for Qs , Eq. (4.50).

Note that since T (�b⊥) ∼ A1/3 the saturation scale grows as

Q2
s ∼ A1/3 (4.52)

with atomic number A. If A is large enough, Qs becomes perturbatively large, Qs � �QCD ,
justifying the use of perturbation theory. The scaling in Eq. (4.52) is consistent with
Eq. (3.135), which we obtained from analyzing the GLR equation.

4.3 Mueller’s dipole model

The amplitude N given by the Glauber–Gribov–Mueller formula (4.51) is independent of the
energy of the collision (see also Eq. (4.49)) and therefore cannot be the final answer for the
high energy scattering problem at hand. It turns out that the energy dependence comes into
the dipole–nucleus scattering amplitude through quantum evolution corrections, much as the
two-gluon exchange amplitude in the onium–onium scattering in Sec. 3.2 acquires energy
dependence through the BFKL evolution of Sec. 3.3. To incorporate small-x evolution into
dipole–nucleus scattering we begin by rewriting the evolution in the language of LCPT, in
which it can be completely absorbed into the light cone wave function, with the help of
Mueller’s dipole model (Mueller 1994, 1995, Mueller and Patel 1994).

4.3.1 Dipole wave function and generating functional

Let us consider the light cone wave function of an ultrarelativistic meson consisting of a
heavy quark and antiquark (an onium), with no sea quarks and gluons present before the
small-x evolution, as shown in Fig. 4.12. We can safely apply perturbative QCD to the
onium wave function since here typical transverse distance x⊥ is about 1/mQ, where mQ

is the large mass of the heavy quark; the strong coupling constant is clearly small at such
distances.

We will denote the “bare” onium light cone wave function by �
(0)
σσ ′(�k⊥, z), where �k⊥ is

the relative transverse momentum of the qq̄ pair, z = k+/p+ is the fraction of the light
cone momentum p+ of the whole onium carried by the quark, while σ and σ ′ are the
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p− k

k

p σ

σ

1⊥

0⊥

Fig. 4.12. The onium light cone wave function before small-x evolution.

polarizations of the quark and the antiquark (see Fig. 4.12). The onium is moving in the
light cone plus direction. As usual we suppress the color and flavor indices, assuming that
they will be properly summed over when necessary. As we will shortly see, the transverse
size of the dipole remains invariant during the small-x evolution: therefore we will work in
a mixed representation where we use the transverse coordinates and longitudinal momenta
to describe dipoles. We thus Fourier-transform the onium wave function, using

�
(0)
σσ ′(�x10, z) =

∫
d2k⊥
(2π )2

ei�k⊥·�x10�
(0)
σσ ′(�k⊥, z), (4.53)

where �x10⊥ = �x1⊥ − �x0⊥ is the transverse size of dipole, the quark being located at �x1⊥ and
the antiquark at �x0⊥ (see Fig. 4.12).

As the initial onium state contains only the qq̄ pair its normalization is (cf. Eqs. (1.70)
and (1.82))

1∫
0

dz

z(1 − z)

∫
d2k⊥

2(2π )3

∑
σ,σ ′

∣∣∣�(0)
σσ ′(�k⊥, z)

∣∣∣2 = 1, (4.54)

which, in transverse coordinate space becomes

1∫
0

dz

z(1 − z)

∫
d2x10

4π

∑
σ,σ ′

∣∣∣�(0)
σσ ′(�x10, z)

∣∣∣2 = 1. (4.55)

We are interested in modifications to this wave function under small-x evolution in the
LLA approximation; thus we need to resum the terms containing αs ln 1/x corrections.
Throughout this section we will work in the A+ = 0 light cone gauge. As for the DGLAP
evolution of Sec. 2.4.2, one step of LLA small-x evolution consists of the appearance of a
single gluon in the wave function: the gluon can be emitted either from the quark line or
from the antiquark line, as shown in Fig. 4.13. (Just as in the case of BFKL evolution, quark
loops and the emission of qq̄ pairs are beyond the LLA, contributing subleading corrections
of order α2

s ln 1/x.) The corresponding modification of the onium wave function due to
the gluon emissions in Fig. 4.13 is easier to calculate than in the DGLAP case. We assume
that the light cone momentum k+

2 of the emitted gluon is small, k+
2 � k+

1 , p+ − k+
1 (see
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0⊥

Fig. 4.13. One step of small-x evolution in the onium wave function. The dotted lines
denote the intermediate states.

Fig. 4.13 for the explanation of the momentum and coordinate labeling). At the same
time we impose no ordering on the transverse momenta of the quarks and the gluon.
The kinematics is different from the DGLAP case (cf. Sec. 2.4.2): here the longitudinal
momenta are ordered while in the DGLAP case the transverse momenta were ordered.
In analogy with Eq. (2.68), we can write down the following expression for the qq̄G

(one-gluon) contribution to the onium light cone wave function in the A+ = 0 gauge at
order g:

�
(1)
σσ ′(�k1⊥, �k2⊥, z1, z2)

= gtaθ (k+
2 )

k−
2 + k−

1 + (p − k1 − k2)− − p−

×
∑

σ ′′=±1

[
ūσ (k1)γ · ε∗

λ(k2)uσ ′′(k1 + k2)

k+
1 + k+

2

�
(0)
σ ′′σ ′(�k1⊥ + �k2⊥, z1+z2)

− v̄σ ′′(p − k1)γ · ε∗
λ(k2)vσ ′(p − k1 − k2)

p+ − k+
1

�
(0)
σσ ′′(�k1⊥, z1)

]
. (4.56)

Here a is the gluon color index, σ , σ ′, and σ ′′ are the quark and antiquark polarizations,
and λ is the gluon polarization, while z2 = k+

2 /p+ and z1 = k+
1 /p+.

To simplify Eq. (4.56) we first remember that we have assumed that k+
2 � k+

1 , p+ − k+
1

(that is z2 � z1, 1 − z1) and that all the transverse momenta are comparable. In this kine-
matics the light cone energy of the gluon, k−

2 = k2
2⊥/k+

2 , dominates the energy denominator,
just as in the DGLAP case (cf. Eq. (2.69)), only now this is due to longitudinal momentum
ordering. We can write

1

k−
2 + k−

1 + (p − k1 − k2)− − p− ≈ 1

k−
2

= k+
2

k2
2⊥

. (4.57)

To evaluate the Dirac matrix elements in Eq. (4.56) we use Table A.1 along with Eq. (A.2),
again keeping in mind that k+

2 � k+
1 , p+ − k+

1 . For instance, the first matrix element in the
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square brackets of Eq. (4.56) simplifies to

ūσ (k1)γ · ε∗
λ(k2)uσ ′′(k1 + k2) ≈ 1

2
ūσ (k1)γ +uσ ′′(k1 + k2) ε−

λ (k2)∗

= 2δσσ ′′

√
k+

1 (k+
1 + k+

2 )
�ελ∗
⊥ · �k2⊥

k+
2

≈ 2δσσ ′′k+
1

�ελ∗
⊥ · �k2⊥

k+
2

.

(4.58)

Performing a similar approximation for the second matrix element in Eq. (4.56) and insert-
ing the result along with Eqs. (4.57) and (4.58) back into Eq. (4.56) yields

�
(1)
σσ ′(�k1⊥, �k2⊥, z1, z2)

≈ 2gtaθ (z2)
�ελ∗
⊥ · �k2⊥
k2

2⊥

[
�

(0)
σσ ′(�k1⊥ + �k2⊥, z1) − �

(0)
σσ ′(�k1⊥, z1)

]
, (4.59)

where we have also neglected z2 in comparison with z1 in the argument of one wave
function.

In the transverse coordinate space representation, Eq. (4.59) has the form

�
(1)
σσ ′(�x10, �x20, z1, z2) =

∫
d2k1⊥d2k2⊥

(2π )4
ei�k1⊥·�x10+i�k2⊥·�x20�

(1)
σσ ′(�k1⊥, �k2⊥, z1, z2)

= i
gta

π
�

(0)
σσ ′(�x10, z1) �ελ∗

⊥ ·
( �x21

x2
21

− �x20

x2
20

)
, (4.60)

where �x20 = �x2⊥ − �x0⊥, �x21 = �x2⊥ − �x1⊥, and xij = |�xij | as defined after Eq. (1.87). The
gluon has transverse coordinate �x2⊥, as illustrated in Fig. 4.13. We have used Eq. (A.10) to
obtain Eq. (4.60) from Eq. (4.59).

Squaring the coordinate-space one-gluon wave function from Eq. (4.60) and summing
over the quark and gluon polarizations and colors yields∑

σ,σ ′,λ,a

∣∣∣�(1)
σσ ′

∣∣∣2 = 4αsCF

π

x2
10

x2
20x

2
21

∑
σ,σ ′

∣∣∣�(0)
σσ ′

∣∣∣2 . (4.61)

To calculate the probability of finding one extra gluon in the onium wave function we have
to integrate Eq. (4.61) over the gluon’s phase space, which, in the z2 � z1, 1 − z1 � 1
approximation, is (cf. Eq. (4.23))4

min{z1,1−z1}∫
z0

dz2

z2

∫
d2x2

4π
, (4.62)

where z0 is some lower cutoff on the z2-integral, imposed to make the integration finite;
the exact value of z0 depends on the physical process incorporating to the wave function
we are constructing. The order-αs contribution to the probability of finding one gluon in

4 One may ask why, if our calculation is valid for z2 � z1, 1 − z1, we can extend the z2-integral all the way up to z1 or
1 − z1. While indeed our approximation breaks down for z2 close to z1 or 1 − z1, putting z1 or 1 − z1 as the upper
integration limit gives the correct leading-logarithmic contribution.
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p− k1

k1

p

0⊥

1⊥

2⊥

Fig. 4.14. Virtual contribution to small-x evolution in the onium wave function. The quark
transverse coordinates in the onium are not changed by the corrections.

the onium wave function is then (Mueller 1994)

min{z1,1−z1}∫
z0

dz2

z2

∫
d2x2

4π

∑
σ,σ ′,λ,a

∣∣∣�(1)
σσ ′

∣∣∣2 =
min{z1,1−z1}∫

z0

dz2

z2

∫
d2x2

αsCF

π2

x2
10

x2
20x

2
21

∑
σ,σ ′

∣∣∣�(0)
σσ ′

∣∣∣2 .

(4.63)

Note that the modified wave function in Eq. (4.63) contains a power of αs and a logarithmic
integral over z2, which would give us finally ln 1/x. We see that the modification we have
calculated brings in a factor αs ln 1/x. Another feature of Eq. (4.63) is that the �x2⊥-integral
in it contains UV divergences at x20 ≈ 0 and x21 ≈ 0. For now we will regulate these
divergences by a UV cutoff ρ, such that x20, x21 > ρ: in the end no physical quantity
depends on the value of this cutoff.

Before we proceed let us point out that, as for the Glauber–Gribov–Mueller model (see
e.g. Eq. (4.41)), the expression (4.63) completely factorizes transverse coordinate space
into the square of the “bare” onium wave function times the probability of emission of the
extra gluon. The emission of an extra gluon does not change the coordinates of the initial
quark and the antiquark, yet again illustrating our above argument about the convenience of
the transverse coordinate representation. This property also gives Eq. (4.61) a very simple
physical meaning, resulting from the probabilistic interpretation of the light cone wave
functions: the contribution to the onium wave function due to the emission of an extra
gluon is equal to the product of the probability of finding a dipole with size x10 inside the
onium (∼ |�(0)

σσ ′ |2) multiplied by the probability that the dipole emits a gluon at �x2⊥.
The one-gluon corrections to the dipole wave function need not be limited to the “real”

gluon shown in Fig. 4.13; they should also include virtual corrections, where the gluon
is both emitted and absorbed in the onium wave function, again like in the DGLAP case
in Sec. 2.4.2. The virtual diagrams giving the LLA contributions are shown in Fig. 4.14,
where, in accordance with the LCPT rules introduced in Sec. 1.3, the crossed lines denote
instantaneous terms. From the sheer number of graphs in Fig. 4.14 one can see that direct
calculation of all the virtual corrections can be a daunting task (see Chen and Mueller
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x20
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Fig. 4.15. Large-Nc limit in the onium wave function (top two panels) and the wave function
squared (bottom panel). The curly brackets in the top panel denote the daughter dipoles
generated by the gluon emission. The right-hand brace in the middle panel denotes the
parent dipole remaining intact after a virtual correction. The thin vertical line in the bottom
panel separates the wave function from its complex conjugate.

(1995) for an outline of the calculation). Instead we will follow Mueller (1994) and use
the unitarity argument presented in Sec. 2.4.2 (see Eq. (2.86)) to write down the following
expression for the order-αs virtual correction to the onium wave function:

�
(0)
σσ ′(�x10, z1)

∣∣∣∣
O(αs )

= −1

2

min{z1,1−z1}∫
z0

dz2

z2

∫
d2x2

αsCF

π2

x2
10

x2
20x

2
21

�
(0)
σσ ′(�x10, z1)

∣∣∣∣
O(α0

s )

= −2αsCF

π
ln

x01

ρ

min{z1,1−z1}∫
z0

dz2

z2
�

(0)
σσ ′(�x10, z1)

∣∣∣∣
O(α0

s )

. (4.64)

The integral over �x2⊥ is carried out in appendix section A.3 with ρ the UV regulator
introduced above.

Having obtained the one-gluon corrections we would now like to derive an equation
resumming the higher-order gluon emissions and virtual gluon corrections that bring powers
of αs ln 1/x into the wave function. (Remember that quark loops do not contribute leading
logarithms of x.) This turns out to be a rather difficult problem. A major simplification
occurs if we consider the onium wave function in the ’t Hooft large-Nc limit (’t Hooft
1974), taking Nc to be very large while keeping αsNc constant. In the large-Nc limit the
single gluon line is replaced by a double line, corresponding to replacing the gluon by a
quark–antiquark pair in the color-octet configuration. This is illustrated in Fig. 4.15. In the
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Fig. 4.16. Two steps of small-x evolution in the onium wave function squared (left) and their
large-Nc limits (right). The top panel shows a nonplanar diagram, which is N 2

c -suppressed
compared with the leading-Nc planar diagram shown in the bottom panel.

large-Nc limit it is convenient to talk about color dipoles instead of gluons. The original
onium is a color dipole consisting of a quark at �x1⊥ and an antiquark at �x0⊥. The emission
of a gluon in the onium wave function, taken in the large-Nc limit, corresponds to the
splitting of the original dipole with size x10 into two dipoles with sizes x12 and x20: the
dipole the size x12 consists of the original quark at �x1⊥ and the antiquark part of the gluon
line at �x2⊥, while the quark part of the gluon line at �x2⊥ along with the original antiquark at
�x0⊥ form the dipole with size x20 (see the top and bottom panels of Fig. 4.15). The virtual
gluon corrections leave the original dipole intact, as can be seen in the middle panel of
Fig. 4.15.

Another important feature of the large-Nc limit is that only planar diagrams contribute;
the nonplanar diagrams are suppressed by powers of Nc for fixed αsNc. This means that
different color dipoles generated by gluon emissions do not “talk” to each other: subsequent
emissions happen independently in each dipole. This is illustrated in Fig. 4.16, where in
the top panel we show an example of a diagram where a gluon emitted in one dipole in
the amplitude connects to another dipole in the complex conjugate amplitude. As can be
seen from the upper panel of Fig. 4.16, such a diagram is indeed nonplanar; hence, it is
1/N2

c -suppressed (as can be checked explicitly) and can be neglected in the large-Nc limit.
At the same time, the diagram in the lower panel of Fig. 4.16, while of the same order in
αs ln 1/x, is also planar: in it the gluon from one dipole does not interact with the other
dipole, remaining instead in its own dipole. This second diagram in Fig. 4.16 is of leading
order in Nc and has to be resummed by large-Nc dipole evolution. (Strictly speaking, the
diagram in the lower left panel of Fig. 4.16, when written in double-line notation, also
contains a nonplanar subleading-Nc correction, in which the quark line in the longer gluon
interacts with the quark of the original dipole: this correction is not shown in Fig. 4.16.)

Note that, in order to obtain the leading-ln 1/x contribution to the wave function, the
softer gluons (those with smaller z) have to be emitted later (to the right in our LCPT
diagrams) than the harder gluons, with larger values of z. For instance, let us consider an
onium wave function with two gluon emissions, as shown in Fig. 4.17. Assume further
that the gluon emitted earlier is softer than the gluon emitted later, i.e., that z3 � z2,
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p
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1⊥, z1

2⊥, z2

3⊥, z3

Fig. 4.17. Two gluons emitted in the onium wave function: if one assumes that the gluon
emitted earlier is softer, z3 � z2, then the square of this diagram will not give a leading-
ln 1/x contribution.

where, as usual,

zi = k+
i

p+ . (4.65)

A simple calculation of the wave function in Fig. 4.17, in the z3 � z2 approximation, car-
ried out along the steps outlined above for a single emission would yield a wave function
proportional to z3/z2 as far as the longitudinal momentum dependence is concerned. Squar-
ing this wave function and integrating the result over z2 and z3 with z1 � z2 � z3 � z0

yields an answer proportional to

α2
s

z1∫
z0

dz2

z2

z2∫
z0

dz3

z3

z2
3

z2
2

≈ 1

2
α2

s ln
z1

z0
. (4.66)

We see that we have only one longitudinal logarithm per two powers of the coupling αs :
this is not a leading logarithmic contribution. Hence the square of the diagram in Fig. 4.17
is subleading in ln 1/x and does not contribute to the leading-ln 1/x evolution we are
considering here. It does contribute when one attempts to calculate the NLO corrections to
the evolution we are about to construct (see Chapter 6). Using similar arguments, one can
show that the diagram in Fig. 4.17 does not contribute to the LLA, even when we take its
overlap with the wave function resulting when gluon 3 is emitted after gluon 2. In fact one
can also show that no diagram with inverse time-ordering like that in Fig. 4.17 contributes
in the LLA approximation. We thus come to another important conclusion: to obtain LLA
evolution in the wave function, the gluon emissions with

z2 � z3 � · · · � zn (4.67)

must be ordered in time, with the harder (larger-z) gluons emitted before the softer (small-z)
gluons.

Now the structure of the small-x light cone wave function becomes manifest: in one
step of evolution a gluon is emitted. It can be a real gluon, like those in the top and bottom
panels of Fig. 4.15, which would split the initial (parent) dipole 10 (“one-zero”) into two
new (daughter) dipoles 12 and 20. The subsequent αs ln 1/x evolution is driven by further
gluon emission: this would happen independently (and in parallel) in both daughter dipoles.
An example of two-gluon emission is shown in the second panel of Fig. 4.16. Alternatively,
the emission in the initial dipole can be virtual, as shown in the middle panel of Fig. 4.15;
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Fig. 4.18. Definition of an abbreviated notation for the sum of all large-Nc diagrams
contributing to the real-gluon emission in the square of an onium wave function.

then the initial dipole remains intact, any subsequent evolution occurring within the initial
dipole at later times.

As we can see from Eqs. (4.63) and (4.64), in the mixed representation in which we
are working, each step of the evolution factorizes from the previous one, simplifying
the construction of the gluon wave function. To illustrate this, let us consider two steps
of small-x evolution due to two consecutive real-gluon emissions, including all possible
LLA diagrams. It is convenient to introduce the shorthand diagram notation presented
in Fig. 4.18, where the sum of all four (large-Nc) diagrams corresponding to real-gluon
emission in the onium wave function comprises one diagram, that in the upper left of the
figure. The diagrams in Fig. 4.18 give us the correction to the dipole wave function in
Eq. (4.63). The kernel of this correction can be decomposed as follows:

αsCF

π2

x2
10

x2
20x

2
21

= αsCF

π2

(
1

x2
21

− 2
�x21 · �x20

x2
21x

2
20

+ 1

x2
20

)
, (4.68)

where the first and the last terms on the right-hand side of Eq. (4.68) correspond to the
last two graphs in Fig. 4.18, while the first two (interference) diagrams on the right of
Fig. 4.18 give the second term on the right of Eq. (4.68). The very first diagram in Fig. 4.18
corresponds to the full emission kernel on the left of Eq. (4.68).

Using the notation of Fig. 4.18, the square of the large-Nc onium wave function with two
real gluons in it in the LLA approximation can be represented simply by the two diagrams
depicted in Fig. 4.19, with the gluons ordered in longitudinal momenta such that z2 � z3.
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1
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2

Fig. 4.19. Two real gluons in the LLA approximation and in the large-Nc limit contributing
to the square of an onium wave function. The length of the lines is driven by light cone
time-ordering.

According to the rules outlined above, the gluon carrying momentum fraction z2 has to be
emitted before the gluon carrying z3, as shown in Fig. 4.19. The emission of gluon 2 splits
the original dipole 10 into two dipoles. The subsequent emission of gluon 3 can occur either
in dipole 12 (Fig. 4.19A) or in dipole 20 (Fig. 4.19B). (Note that gluon 3 is emitted from
gluon 2 via a three-gluon vertex.) Iterating Eq. (4.63) twice, we see that the sum of the graphs
A and B in Fig. 4.19 brings into the onium wave function squared the following factor:

z1∫
z0

dz2

z2

z2∫
z0

dz3

z3

∫
d2x2 d2x3

(
αsCF

π2

)2
x2

10

x2
20x

2
21

(
x2

12

x2
31x

2
32

+ x2
20

x2
32x

2
30

)
. (4.69)

(For simplicity of notation we have put z1 as the upper cutoff of the z2-integration,
since at LLA accuracy one cannot see any significant difference between z1 and 1 − z1.)
Equation (4.69) demonstrates that the small-x evolution in the onium wave function
consists of consecutive emissions ordered in rapidity and light cone time, with the
transverse dynamics included in a factorized way.

To describe the onium wave function formally including αs ln 1/x corrections to all
orders it is convenient to define the dipole generating functional Z(�x10, �b0⊥, Y ; u) by

Z(�x10, �b0⊥, Y ; u)
∑
σσ ′

|�(0)
σσ ′(�x10, z1)|2

∣∣∣∣
O(α0

s )

=
∫

d2r1d
2b1|�[1](�r1⊥, �b1⊥, Y )|2u(�r1⊥, �b1⊥)

+ 1

2!

∫
d2r1d

2b1d
2r2d

2b2|�[2](�r1⊥, �b1⊥, �r2⊥, �b2⊥, Y )|2

× u(�r1⊥, �b1⊥)u(�r2⊥, �b2⊥) + · · ·

=
∞∑

n=1

1

n!

∫
d2r1d

2b1 · · · d2rnd
2bn|�[n](�r1⊥, �b1⊥, . . . , �rn⊥, �bn⊥, Y )|2

× u(�r1⊥, �b1⊥) · · · u(�rn⊥, �bn⊥). (4.70)
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We have defined the rapidity variable Y = ln(z1/z0), where now z0 is the smallest momen-
tum fraction carried by a gluon in the wave function. In Eq. (4.70) the light cone wave
functions �[n](�r1⊥, �b1⊥, . . . , �rn⊥, �bn⊥, Y ) correspond to the onium state consisting of n

dipoles with sizes �r1⊥, . . . , �rn⊥ whose centers (in the transverse plane) are located at impact
parameters �b1⊥, . . . , �bn⊥ (e.g. �b0⊥ = (1/2)(�x1⊥ + �x0⊥)). The rapidity interval between these
daughter dipoles and the original parent dipole 1 0 is less than or equal to Y , i.e., the wave
functions squared |�[n]|2 are implicitly integrated over dipole rapidities from 0 to Y . Sum-
mation over all appropriate quantum numbers is implied in the square of the wave function
�[n]. Note that �

(0)
σσ ′(�x10, z1) taken at order α0

s is the bare wave function of the onium before
any emissions have taken place. In going from gluons to color dipoles we have changed
the notation for the wave functions: while �(n) denotes a wave function with n real gluons
in it, �[n] is a wave function with n dipoles (note the use of square brackets rather than
parentheses). Since we always have at least one dipole (the original onium), the sum over
n in Eq. (4.70) starts at n = 1.

The dummy functions u(�rn⊥, �bn⊥) are introduced so that one can extract the squares
of different multi-dipole onium wave functions from the generating functional Z,
using

|�[n](�r1⊥, �b1⊥, . . . , �rn⊥, �bn⊥, Y )|2 =
∑
σσ ′

|�(0)
σσ ′(�x10, z1)|2

∣∣∣∣
O(α0

s )

× δn

δu(�r1⊥, �b1⊥)· · ·δu(�rn⊥, �bn⊥)
Z(�x10, �b0⊥, Y ; u)

∣∣∣∣
u=0

,

(4.71)

where δ/δu(�r⊥, �b⊥) is a functional derivative. As usual this derivative is defined such that
(see e.g. Peskin and Schroeder (1995) for details)

δ

δu(�r⊥, �b⊥)
u(�r ′

⊥, �b′
⊥) = δ(2)

(�r⊥ − �r ′
⊥
)
δ(2)
(
�b⊥ − �b′

⊥
)

, (4.72)

which leads to

δ

δu(�r⊥, �b⊥)

∫
d2r ′d2b′f (�r ′

⊥, �b′
⊥) u(�r ′

⊥, �b′
⊥) = f (�r⊥, �b⊥) (4.73)

for an arbitrary function f (�r⊥, �b⊥).
Since |�[n]|2 gives the probability of having n dipoles in the onium wave function in

a given transverse space configuration, and since the sum over probabilities of having any
number of dipoles in all transverse configurations is 1, we conclude that (see Eq. (1.70))

Z(�x10, �b0⊥, Y ; u = 1) = 1. (4.74)

We want to write down an evolution equation for the generating functional Z summing
all powers of αsY . Before we do so, let us set up the initial condition for such an evolution.
When Y = 0 we have no evolution and no gluon emissions (neither real nor virtual). Hence
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152 Dipole approach to high parton density QCD

Fig. 4.20. An abbreviated notation for the sum of all large-Nc diagrams contributing to the
virtual gluon correction to the onium wave function.
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Z Z

Fig. 4.21. Diagrammatic representation for the evolution equation of the generating func-
tional Z (denoted by a shaded circle).

|�[n>1](Y = 0)|2 = 0 and

|�[1](�r1⊥, �b1⊥, Y = 0)|2 = δ2

(
�b1⊥ + �r1⊥

2
− �x1⊥

)
δ2

(
�b1⊥ − �r1⊥

2
− �x0⊥

)
, (4.75)

such that

Z(�x10, �b0⊥, Y = 0; u) = u(�x10, �b0⊥). (4.76)

Now that we have the initial conditions for Z-evolution, it is straightforward to write
down an evolution equation for Z. The main principle was stated several pages ago: in one
step of evolution a gluon is emitted in the dipole wave function: the gluon may be real,
splitting the parent dipole into two daughter dipoles, or it may be virtual, leaving the parent
dipole intact. In the former case the subsequent evolution continues independently in the
two daughter dipoles, while in the latter case evolution continues in the parent dipole. This
statement is illustrated diagrammatically in Fig. 4.21, where the generating functional Z

is represented by a shaded circle. The first graph on the right of Fig. 4.21 corresponds
to real-gluon emission, while the remaining two graphs represent the sum of all virtual
corrections, as shown in Fig. 4.20.

Guided by Fig. 4.21, and employing Eqs. (4.63) and (4.64) while replacing CF by Nc/2
in the large-Nc limit, we can write down the following evolution equation for the generating
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functional Z (Mueller 1994, 1995):

∂

∂Y
Z(�x10, �b0⊥, Y ; u)

= αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

×
[
Z

(
�x12, �b0⊥ + �x20

2
, Y ; u

)
Z

(
�x20, �b0⊥ + �x21

2
, Y ; u

)
− Z(�x10, �b0⊥, Y ; u)

]
.

(4.77)

The first term on the right-hand side of Eq. (4.77) corresponds to the first term on the right
of Fig. 4.21, while the last two terms in Fig. 4.21 give rise to the second term on the right
of Eq. (4.77). The minus sign in this second term is due to the minus sign in the virtual
correction in Eq. (4.64).

Equation (4.77) is a nonlinear evolution equation whose initial condition is given in
Eq. (4.76). Solving this evolution equation would allow one to construct the squares of
the multi-dipole onium wave functions using Eq. (4.71). Unfortunately the exact analytical
solution of Eq. (4.77) is not known. So, let us first connect Eq. (4.77) with results that are
already familiar to the reader, such as the BFKL equation.

4.3.2 The BFKL equation in transverse coordinate space

Consider the following functional derivative taken at u = 1:

δZ(�x10, �b0⊥, Y ; u)

δu(�r⊥, �b⊥)

∣∣∣∣
u=1

=
∞∑

n=1

n

n!

∫
d2r2d

2b2 · · · · · · d2rnd
2bn

× |�[n](�r⊥, �b⊥, �r2⊥, �b2⊥, . . . , �rn⊥, �bn⊥, Y )|2∑
σσ ′ |�(0)

σσ ′(�x10, z1)|2
∣∣∣∣
O(α0

s )

. (4.78)

If instead the value of the derivative had been taken at u = 0, the physical meaning of the
above object would have been clear from Eq. (4.71): it would have been the single-dipole
wave function squared, divided by the original onium’s wave function. To understand the
physical meaning of the actual object in Eq. (4.78) we note that the probability of having n

dipoles in the onium wave function (for an onium of given size �x10 and quark momentum
fraction z1) is given by

Pn(Y ) = 1

n!

∫
d2r1d

2b1 · · · d2rnd
2bn

|�[n](�r1⊥, �b1⊥, . . . , �rn⊥, �bn⊥, Y )|2∑
σσ ′ |�(0)

σσ ′(�x10, z1)|2
∣∣∣∣
O(α0

s )

, (4.79)

where the factorial is a symmetry factor removing the multiple counting of identical dipole
configurations, and where n > 0. The condition (4.74) translates into

∑∞
n=1 Pn(Y ) = 1.
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The average number of dipoles (at rapidities up to Y ) in the onium wave function is

〈n(Y )〉 =
∞∑

n=1

nPn(Y ). (4.80)

The series (4.80) is very similar to that in Eq. (4.78), except that in Eq. (4.78) we are
keeping the transverse size and impact parameter of one dipole fixed. We have thus arrived
at the physical meaning of the object in Eq. (4.78): it is the number of dipoles of size �r⊥
at impact parameter �b⊥ and with rapidities between 0 and Y located in the onium wave
function. We denote this object by n1(�x10, �r⊥, �b⊥ − �b0⊥, Y ), so that

n1(�x10, �r⊥, �b⊥ − �b0⊥, Y ) = δZ(�x10, �b0⊥, Y ; u)

δu(�r⊥, �b⊥)

∣∣∣∣
u=1

. (4.81)

To construct an equation for n1(�x10, �r⊥, �b⊥ − �b0⊥, Y ) we simply have to differentiate
Eq. (4.77) with respect to u, putting u = 1 at the end using Eq. (4.74). This yields an
equation that we will shortly show to be equivalent to the BFKL equation (Mueller 1994,
Mueller and Patel 1994, Mueller 1995, Nikolaev, Zakharov, and Zoller (1994))5

∂

∂Y
n1(�x10, �r⊥, �b⊥, Y ) = αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

[
n1

(
�x12, �r⊥, �b⊥ − �x20

2
, Y

)

+ n1

(
�x20, �r⊥, �b⊥ − �x21

2
, Y

)
− n1(�x10, �r⊥, �b⊥, Y )

]
. (4.82)

We have relabeled �b⊥ − �b0⊥ simply as �b⊥, which therefore now has the meaning of the
transverse space distance between the centers of the original dipole 10 and the dipole
of interest, of size �r⊥. The initial condition for Eq. (4.82) is obtained by differentiating
Eq. (4.76) with respect to u(�r⊥, �b⊥) and afterwards putting u = 1:

n1(�x10,�r⊥, �b⊥, Y = 0) = δ2(�x10 − �r⊥) δ2
(
�b⊥
)

. (4.83)

The distribution of pairs of dipoles in the onium wave function can be defined as a
second derivative of the generating functional:

n2(�x10, �r1⊥, �b1⊥ − �b0⊥, �r2⊥, �b2⊥ − �b0⊥, Y ) = δ2Z(�x10, �b0⊥, Y ; u)

δu(�r1⊥, �b1⊥)δu(�r2⊥, �b2⊥)

∣∣∣∣
u=1

. (4.84)

Equation (4.84) gives the number of pairs of dipoles with sizes �r1⊥ and �r2⊥ located at
impact parameters �b1⊥ and �b2⊥ and in the rapidity interval [0, Y ]. The equation for n2

is constructed in analogy to that for n1 by the double differentiation of Eq. (4.77) with
respect to u(�r1⊥, �b1⊥) and u(�r2⊥, �b2⊥), putting u = 1 at the end. The main difference

5 Nikolaev and Zakharov (1994) and Nikolaev, Zakharov, and Zoller (1994) were very close to solving these problems.
Nikolaev and Zakharov (1994) rewrote the DLA DGLAP evolution in terms of color dipoles. Nikolaev, Zakharov,
and Zoller (1994) obtained the BFKL equation in the dipole formulation, though several months later than Mueller
(1994). Lipatov (1986) was the first to notice that the BFKL equation has a particularly elegant form in the transverse
coordinate representation but his approach lacked the idea of using color dipoles instead of the transverse coordinates
of the gluons.
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1

0

1

0

⊥

Fig. 4.22. Onium–onium scattering in the BFKL approximation in the dipole model, with
the lower onium 1′0′ at rest.

comes in the initial conditions: the second derivative of Eq. (4.76) with respect to u gives
n2(�x10, �r1⊥, �b1⊥, �r2⊥, �b2⊥, Y = 0) = 0. The equation for n2 is also a linear differential
equation, though it also contains powers of n1. We will not write down this equation
explicitly and instead refer the reader to the papers by Mueller (1995) and Mueller and
Patel (1994). Higher derivatives of the generating functional Z give the number distributions
of dipole triplets, quadruplets, etc. The nth-order derivative of Z with respect to u gives the
distribution of n dipoles in the onium wave function.

While dipole number distributions are interesting quantities in themselves, they also
allow one to calculate scattering cross sections in a physically intuitive way. Consider
onium–onium scattering at high energies, where the small-x evolution is important. This
is the kinematics in which we studied the BFKL evolution in Sec. 3.3. Let us now try to
reproduce the BFKL result in the dipole language. Consider a frame in which one onium
is at rest while the other is incident on it at high energy. The total onium–onium scattering
cross section per unit impact parameter can then be written as a convolution of the number
of dipoles in the incident onium wave function and the scattering cross section of each
dipole on the onium when at rest:

n(�x10, �x1′0′ , �b, Y ) =
∫

d2rd2b′n1(�x10, �r⊥, �b′
⊥ − �b⊥, Y )

dσ̂ onium−onium
tot (�r⊥, �x1′0′ )

d2b′ . (4.85)

Here the two colliding onia have transverse sizes �x10 and �x1′0′ (the latter is at rest), �b
is the impact parameter, Y is the net rapidity interval for the onium–onium scattering,
and dσ̂ onium−onium

tot (�r⊥, �r ′
⊥)/d2b is the cross section for the scattering of two onia with

sizes �r⊥ and �r ′
⊥ mediated by a two-gluon exchange, as calculated in Exercise 3.3 (see

Eq. (3.139)). Equation (4.85) is illustrated in Fig. 4.22, where dipole evolution in the onium
10 creates a dipole of size �r⊥, which then interacts with the onium 1′0′ via a two-gluon
exchange.

Note that the dipole number density n1 counts all dipoles with rapidities between 0 and
Y (with respect to the dipole 10): any of these dipoles (if it has size �r⊥, over which we will
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integrate) can interact with the dipole 1′0′. The quantity n1 is, therefore, integrated over
the dipole rapidities. Such an integration is justified at the wave function level because the
Born-level cross section σ̂ onium−onium

tot is energy independent and cannot affect the result of
the integration.

It is important to stress that, while the dipole number distribution n1 in Eq. (4.85) is a
function of αsNc (see Eq. (4.82)) and is thus of order N0

c in the ’t Hooft large-Nc limit,
the two-gluon exchange cross section σ̂ onium−onium

tot is of order α2
s ∼ (αsNc)2/N2

c ∼ 1/N2
c ,

so that the whole onium–onium scattering cross section is Nc-suppressed. This is indeed in
agreement with the well-known result that any interaction cross section is Nc-suppressed
at large Nc (see e.g. Witten (1979)). The essential feature of the interactions in the dipole
model is the factorization into light cone wave function(s) and elementary scattering cross
sections. As the scattering cross sections are always Nc-suppressed, to capture the dominant
contribution to the scattering one has to use the leading-Nc wave functions constructed
above. The factorization presented in Fig. 4.22 is not unique: in a different reference frame,
say the center-of-mass frame, the dipole wave functions of both onia contain small-x
evolution; a dipole from one wave function exchanges two gluons with a dipole in another
wave function (Mueller and Patel 1994). Such a factorization gives the same answer as the
one we will obtain below for Fig. 4.22.

To find the scattering cross section per unit impact parameter,

n(�x10, �x1′0′ , �b⊥, Y ) = dσ̂ onium−onium
tot (�x10, �x1′0′ , Y )

d2b
, (4.86)

one can first solve Eq. (4.82) and then use the solution in Eq. (4.85) along with the cross
section from Eq. (3.139). Alternatively, one may note that the cross section n(�x10, �x1′0′ , �b, Y )
itself satisfies Eq. (4.82):

∂

∂Y
n(�x10, �x1′0′ , �b⊥, Y )

= αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

×
[
n

(
�x12, �x1′0′ , �b⊥ − �x20

2
, Y

)
+ n

(
�x20, �x1′0′ , �b⊥ − �x21

2
, Y

)
− n(�x10, �x1′0′ , �b⊥, Y )

]
(4.87)

with initial condition (cf. Eq. (3.139))

n(�x10, �x1′0′ , �b⊥, Y = 0) = dσ̂ onium−onium
tot (�x10, �x1′0′)

d2b

= 2α2
s CF

Nc

ln2 x11′x00′

x10′x01′
. (4.88)

Equation (4.87) can be solved exactly: the solution is somewhat involved and will be left
for the next section. Instead, we will consider here the simplified case where a cross section
is integrated over all impact parameters �b⊥. In momentum space this corresponds to the
t = 0 case, of zero momentum transfer. On top of that we will average over the directions
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of �x1′0′ : the resulting cross section does not depend on the directions of �x10 either, since
there is no preferred direction left in the transverse space. Defining

n(x10, x1′0′ , Y ) =
∫

d2b

2π∫
0

dφ1′0′

2π
n(�x10, �x1′0′ , �b⊥, Y ), (4.89)

we see that this new quantity satisfies

∂

∂Y
n(x10, x1′0′ , Y ) = αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

× [n (x12, x1′0′ , Y ) + n (x20, x1′0′ , Y ) − n(x10, x1′0′ , Y )] (4.90)

with initial condition (cf. Eq. (3.25))

n(x10, x1′0′ , Y = 0) = 4πα2
s CF

Nc

x2
<

(
ln

x>

x<

+ 1

)
, (4.91)

where x>(<) = max (min){|�x10|, |�x1′0′ |}.
The solution of Eq. (4.90) can be found by noticing that in the angular-averaged case

the eigenfunctions of the integral kernel are simple powers of the dipole size,(
x2

01

)1/2+iν
(4.92)

with eigenvalues

αsNc

π
χ (0, ν), (4.93)

where (cf. Eqs. (3.81), (3.74))

χ (0, ν) = 2ψ(1) − ψ

(
1

2
+ iν

)
− ψ

(
1

2
− iν

)
. (4.94)

To prove this we need to evaluate the following integral:∫
d2x2

x2
10

x2
20x

2
21

[(
x2

12

)1/2+iν + (x2
20

)1/2+iν − (x2
10

)1/2+iν
]
. (4.95)

This can be done by noticing that the integral (4.95) is equivalent to that in Eq. (3.64) with
n = 0. Alternatively, one can use the trick presented in appendix section A.3; in order to
make each term in Eq. (4.95) finite we insert a UV regulator ρ. After that, with the help of
Eqs. (A.18), (A.21), (A.24), and (A.29) one can rewrite Eq. (4.95) as

2π

[
21+2iν

�
(

1
2 + iν

)
�
(

1
2 − iν

)x2
10

∞∫
0

dkk−2iν

(
ln

2

kρ
+ ψ(1)

)
J0(kx10) − x1+2iν

10 ln
x2

10

ρ2

]
. (4.96)

Integrating over k in Eq. (4.96) using Eq. (A.18) yields

2πx1+2iν
10 χ (0, ν), (4.97)

as desired.
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We see that, as for to the BFKL equation (3.58), the eigenfunctions of Eq. (4.90)
are powers (though of the transverse dipole size instead of the transverse momentum),
with exactly the same eigenvalues, (4.93) as in that case.6 We conclude that Eq. (4.90) is
equivalent to the BFKL equation!

In fact, the substitution (Levin and Ryskin 1987)

n(x10, x1′0′ , Y ) =
∫

d2k
(

1 − ei�k⊥·�x10

) 1

k2
⊥

f (�k⊥, x1′0′ , Y ) (4.98)

turns Eq. (4.90) into the BFKL equation (3.58) for the function f (Kovchegov and Weigert
2007b). Verification of this statement is left as an exercise for the reader.

Using the eigenfunctions and the eigenvalues of the integral kernel in Eq. (4.90), we can
write down the solution of Eq. (4.90) as

n(x10, x1′0′ , Y ) =
∞∫

−∞
dν Cν(x1′0′)x1+2iν

10 eᾱsχ(0,ν)Y , (4.99)

where the coefficient Cν(x1′0′ ) is fixed by the initial conditions (4.91) as follows:

Cν(x1′0′) = 16 α2
s CF

Nc

1

(1 + 4ν2)2
x1−2iν

1′0′ . (4.100)

The general solution of Eq. (4.90) is then

n(x10, x1′0′ , Y ) = 16α2
s CF

Nc

x10 x1′0′

∞∫
−∞

dν

(
x10

x1′0′

)2iν
eᾱsχ(0,ν)Y

(1 + 4ν2)2
. (4.101)

For x10 ≈ x1′0′ we can use the diffusion approximation from Sec. 3.3.4: expanding χ (0, ν)
around ν = 0 using Eq. (3.84) and integrating over ν we obtain

n(x10, x1′0′ , Y ) = 16α2
s CF

Nc

x10x1′0′

√
π

14ζ (3)ᾱsY
(4.102)

× exp

[
(αP − 1)Y − ln2(x10/x1′0′ )

14ζ (3) ᾱsY

]
.

Readers who performed Exercise 3.5 will recognize Eq. (4.102) as the answer for the
onium–onium scattering cross section obtained there using the standard Feynman diagram
approach. Now we see that a calculation based on LCPT wave functions gives the same
result. Note that the single-dipole distribution n1 is only one component of the onium wave
function. This wave function also contains multi-dipole distributions n2, n3, etc. Hence, as
we will shortly see, the dipole approach, while in a certain limit equivalent to BFKL, in
fact contains more information.

6 We have verified this statement so far only in the case where the angular dependence has been integrated out: we will
consider the general angular-dependent case in the next section.
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4.3.3 The general solution of the coordinate-space BFKL equation∗

Let us now construct the solution of the BFKL equation (4.87) without making any sim-
plifying assumptions. The goal now is to construct the most general eigenfunctions of the
kernel of Eq. (4.87). This kernel operates in the transverse plane: it is convenient to think
of this plane as a complex plane, replacing the two-component vectors �xi⊥ by complex
numbers ρi , namely

ρi = xi,1 + ixi,2; ρ∗
i = xi,1 − ixi,2, (4.103)

where the indices 1, 2 denote two transverse axes. In the same way as in the vector notation
we define ρij = ρi − ρj and ρ∗

ij = ρ∗
i − ρ∗

j , along with the absolute value squared |ρij |2 =
ρijρ

∗
ij and the integration measure d2ρ = dρdρ∗. Using the above complex notation it is

straightforward to check that the kernel of Eq. (4.87), written as∫
d2ρ2

|ρ2
10|

|ρ2
20||ρ2

21|
(4.104)

is conformally invariant: it is clearly invariant under rotations, translations, scale transfor-
mations, and reflections in the complex plane. It is also invariant under the inversion

ρi → 1

ρ∗
i

, ρ∗
i → 1

ρi

. (4.105)

Thus the kernel is invariant under all Möbius transformations

z → az + b

cz + d
(4.106)

for arbitrary complex a, b, c, and d with ad − bc �= 0. When ad − bc = 1 the group
reduces to SL(2, C).

Consider the functions (Lipatov 1986)

En,ν (ρ1a, ρ2a) =
(

ρ12

ρ1aρ2a

)(1+n)/2+iν (
ρ∗

12

ρ∗
1aρ

∗
2a

)(1−n)/2+iν

, (4.107)

where ρa is an arbitrary point in the complex (transverse) plane, with ρia = ρi − ρa as
before; n is integer and ν is real. It is easy to check by direct differentiation that the functions
En,ν are the eigenfunctions of the Casimir operators M2 and M∗2 of the conformal Möbius
group (Lipatov 1986, Lipatov 1989, Bartels, Lipatov, and Vacca 2005):

M2En,ν (ρ1a, ρ2a) ≡ ρ2
12∂1∂2E

n,ν (ρ1a, ρ2a) = −h(h − 1)En,ν (ρ1a, ρ2a) , (4.108a)

M∗2En,ν (ρ1a, ρ2a) ≡ ρ∗2
12∂∗

1 ∂∗
2 En,ν (ρ1a, ρ2a) = −h̄(h̄ − 1)En,ν (ρ1a, ρ2a) , (4.108b)

where ∂i = ∂/∂ρi , ∂∗
i = ∂/∂ρ∗

i , and

h = 1 + n

2
+ iν, h̄ = 1 − n

2
+ iν. (4.109)
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160 Dipole approach to high parton density QCD

The functions En,ν are orthonormal (Lipatov 1986)∫
d2ρ1d

2ρ2

|ρ12|4 En,ν (ρ1a, ρ2a)Em,μ(ρ1b, ρ2b)

= an,νδnmδ(ν − μ)δ2(ρab) + bn,ν |ρab|−2−4iν

(
ρab

ρ∗
ab

)n

δn,−mδ(ν + μ), (4.110)

where

an,ν = π4/2

ν2 + n2/4
= |bn,ν |2

2π2
, (4.111a)

bn,ν = π324iν
�
(−iν + 1

2 (1 + |n|))
�
(
iν + 1

2 (1 + |n|)) �
(
iν + 1

2 |n|)
�
(
1 − iν + 1

2 |n|) . (4.111b)

(Note that En,ν and E−n,−ν are not orthogonal.) The functions En,ν also form a complete
basis (Lipatov 1986), so that

(2π )4δ2(ρ11′ )δ2(ρ22′ ) =
∞∑

n=−∞

∞∫
−∞

dν

∫
d2ρa

16(ν2 + 1
4n2)

|ρ12|2|ρ1′2′ |2

× En,ν(ρ1a, ρ2a)En,ν∗(ρ1′a, ρ2′a). (4.112)

The delta functions on the left of Eq. (4.112) should be understood as acting on the space
of well-behaved functions of ρ1, ρ2, ρ1′ , and ρ2′ that go to zero in the limits ρ1 = ρ2 and
ρ1′ = ρ2′ .

Since the kernel of Eq. (4.87) is invariant under Möbius transformations, the functions
En,ν are its eigenfunctions. To see this explicitly we need to find

I (ρ0, ρ1, ρa) ≡
∫

d2ρ2
|ρ2

10|
|ρ2

20||ρ2
21|

[En,ν(ρ1a, ρ2a) + En,ν (ρ2a, ρ0a) − En,ν(ρ1a, ρ0a)].

(4.113)

Performing the inversion transformation and also reflection with respect to ρa , i.e., ρi →
1/ρia , yields

I (1/ρ0, 1/ρ1,∞) =
∫

d2ρ2
|ρ01|2

|ρ02|2|ρ12|2
(
ρh

20ρ
∗h̄
20 + ρh

12ρ
∗h̄
12 − ρh

10ρ
∗h̄
10

)
. (4.114)

The integral now becomes equivalent to that in Eq. (3.64), the answer to which is given by
Eqs. (3.68) and (3.74). Using those results and reversing the ρi → 1/ρia transformation,
we write

I (ρ0, ρ1, ρa) = 2πχ (n, ν)En,ν(ρ1a, ρ0a), (4.115)

with χ (n, ν) given by Eq. (3.81).
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Since the En,ν are the eigenfunctions of the dipole kernel and form a complete orthonor-
mal basis, we can write the general solution of Eq. (4.87) as

n(�x10, �x1′0′ , �b⊥, Y ) = n(ρ1, ρ0; ρ1′ , ρ0′ ; Y )

=
∞∑

n=−∞

∞∫
−∞

dν

∫
d2ρae

ᾱsχ(n,ν)YCn,νE
n,ν(ρ1a, ρ0a)En,ν∗(ρ1′a, ρ0′a),

(4.116)

with the coefficients Cn,ν fixed by the initial condition (4.88), which in the complex plane
can be written as

n(ρ1, ρ0; ρ1′ , ρ0′ ; Y = 0) = 2α2
s CF

Nc

ln2

∣∣∣∣ρ11′ρ00′

ρ10′ρ01′

∣∣∣∣ . (4.117)

To find the Cn,ν we need to decompose the (Möbius-invariant) logarithm squared into a
series over the En,ν :

ln2

∣∣∣∣ρ11′ρ00′

ρ10′ρ01′

∣∣∣∣ = ∞∑
n=−∞

∞∫
−∞

dν

∫
d2ρaDn,νE

n,ν(ρ1a, ρ0a)En,ν∗(ρ1′a, ρ0′a). (4.118)

The coefficients Dn,ν can be found if we first note that

|ρ10|4∂1∂
∗
1 ∂0∂

∗
0 ln2

∣∣∣∣ρ11′ρ00′

ρ10′ρ01′

∣∣∣∣ = π2

2
|ρ10|2|ρ1′0′ |2 [δ2(ρ11′ )δ2(ρ00′) + δ2(ρ10′)δ2(ρ01′ )

]
.

(4.119)

Using Eq. (4.112) along with the following property of the En,ν functions,

En,ν(ρ1a, ρ2a) = (−1)nEn,ν(ρ2a, ρ1a), (4.120)

yields

|ρ10|4∂1∂
∗
1 ∂0∂

∗
0 ln2

∣∣∣∣ρ11′ρ00′

ρ10′ρ01′

∣∣∣∣ = 1

π2

∑
even n

∞∫
−∞

dν

∫
d2ρa

(
ν2 + 1

4n2
)

× En,ν(ρ0a, ρ1a)En,ν∗(ρ0′a, ρ1′a), (4.121)

where the sum runs over all integer even n. However, using Eqs. (4.108) and (4.118) we get

|ρ10|4∂1∂
∗
1 ∂0∂

∗
0 ln2

∣∣∣∣ρ11′ρ00′

ρ10′ρ01′

∣∣∣∣ = ∞∑
n=−∞

∞∫
−∞

dν

∫
d2ρaDn,νh(h − 1)h̄(h̄ − 1)

× En,ν(ρ1a, ρ0a)En,ν∗(ρ1′a, ρ0′a). (4.122)
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Comparing Eqs. (4.122) and (4.121) we can read off Dn,ν , and substituting it back into
Eq. (4.118) we obtain

ln2

∣∣∣∣ρ11′ρ00′

ρ10′ρ01′

∣∣∣∣ = 1

π2

∑
even n

∞∫
−∞

dν

∫
d2ρa

ν2 + 1
4n2[

ν2 + 1
4 (n + 1)2

] [
ν2 + 1

4 (n − 1)2
]

× En,ν(ρ0a, ρ1a)En,ν∗(ρ0′a, ρ1′a). (4.123)

Equations (4.123) and (4.117), when compared with Eq. (4.116), allow us to write for even
n

Cn,ν = 2α2
s CF

π2Nc

ν2 + 1
4n2[

ν2 + 1
4 (n + 1)2

] [
ν2 + 1

4 (n − 1)2
] (4.124)

with Cn,ν = 0 for odd n.
Equations (4.116) and (4.124) give us the most general solution of Eq. (4.87) with initial

condition (4.88) (cf. Lipatov 1986):

n(ρ1, ρ0; ρ1′ , ρ0′ ; Y )

= 2α2
s CF

π2Nc

∑
even n

∞∫
−∞

dν eᾱsχ(n,ν)Y

× ν2 + 1
4n2[

ν2 + 1
4 (n + 1)2

] [
ν2 + 1

4 (n − 1)2
] ∫ d2ρaE

n,ν(ρ0a, ρ1a)En,ν∗(ρ0′a, ρ1′a).

(4.125)

The integral over ρa in Eq. (4.125) can be carried out analytically (Lipatov 1997,
Navelet and Peschanski 1997), yielding a somewhat simplified expression in terms of
hypergeometric functions:

n(ρ1, ρ0; ρ1′ , ρ0′ ; Y )

= α2
s CF

π4Nc

∑
even n

∞∫
−∞

dν eᾱsχ(n,ν)Y ν2 + 1
4n2[

ν2 + 1
4 (n + 1)2

] [
ν2 + 1

4 (n − 1)2
]

×
[
bn,−νw

hw∗h̄F (h, h; 2h; w)F (h̄, h̄; 2h̄; w∗)

+ bn,νw
1−hw∗1−h̄F (1 − h, 1 − h; 2(1 − h); w)F (1 − h̄, 1 − h̄; 2(1 − h̄); w∗)

]
,

(4.126)

where

w = ρ01ρ0′1′

ρ00′ρ11′
, (4.127)
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so that

ln2

∣∣∣∣ρ11′ρ00′

ρ10′ρ01′

∣∣∣∣ = ln2 |1 − w|. (4.128)

4.4 The Balitsky–Kovchegov equation

We now return to the DIS process in the dipole picture of Sec. 4.1. As follows from
Eqs. (4.12) and (4.24), in order to find the DIS structure function all one needs is to
find the imaginary part of the dipole–nucleus forward scattering amplitude N (�x⊥, �b⊥, Y ).
In Sec. 4.2 we constructed such an amplitude in the Glauber–Gribov–Mueller multiple
rescattering approximation. The resulting forward amplitude has no energy dependence,
as one can see from Eq. (4.49), and therefore cannot be a realistic description of the
high energy asymptotics of dipole–nucleus scattering. At the same time, the approach of
Sec. 4.2 is valid only when the small-x evolution emissions are not important, that is, only
for αsY � 1. At higher energies, corresponding to rapidities Y satisfying αsY � 1, small-x
evolution becomes important and can no longer be neglected.

We see that we need to resum the LLA corrections to the dipole–nucleus scattering
amplitude (4.49). As usual we are interested in quantum evolution corrections that resum
the powers of αs ln 1/x ∼ αsY .7 Just as in Sec. 4.2 we will be working in the rest frame
of the nucleus, but this time we choose to work in the light cone gauge of the projectile
dipole, A+ = 0, if it is moving in the light cone plus direction. One can show by explicit
calculation that for the multiple rescatterings in Fig. 4.5 this gauge is equivalent to the
covariant gauge (∂μAμ = 0, see Sec. 3.3.1); therefore, our discussion in Sec. 4.2 remains
valid in this new gauge. As in Sec. 4.2 we will be working either in the nucleus rest frame
or in the frame in which the dipole is moving in the light cone plus direction while the
target nucleus is moving in the minus direction.

We need to identify radiative corrections that bring in powers of αsY . As we saw in
Sec. 4.2, multiple rescatterings bring in only powers of αs not enhanced by factors of Y (but
enhanced by powers of A; the resummation parameter was α2

s A
1/3). Therefore, additional

t-channel gluon exchanges with new nucleons would not generate any powers of Y but
would bring in only extra factors of αs . These are not the corrections we are trying to
resum now. Other possible corrections in the light cone gauge of the projectile dipole are
modifications of the dipole wave function. The incoming dipole may have some gluons
(and “sea” quarks) present in its wave function. For instance, the dipole may emit a gluon
before interacting with the target; then the whole system of quark, antiquark, and gluon
would rescatter in the nucleus, as shown in the upper panel of Fig. 4.23. The dipole may
emit two gluons, which would then interact with the nucleus, along with the original qq̄

pair, as shown in the lower panel of Fig. 4.23. In principle there could be many extra
gluon emissions, as well as the generation of extra qq̄ pairs in the incoming dipole’s wave
function. As we will shortly see, these gluonic fluctuations from Fig. 4.23 actually do bring

7 Quantum evolution is defined as the variation of a physical quantity, with Q2 and/or x, resulting from quantum
emissions and absorptions.
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164 Dipole approach to high parton density QCD

x+
coh

2R

Fig. 4.23. Quantum evolution corrections to dipole–nucleus scattering due to one-gluon
(upper panel) and two-gluon (lower panel) emissions. The lower panel also shows the
coherence time scale for gluon emission x+

coh and the nuclear size 2R. At high energy
x+

coh � 2R: the figure does not fully reflect this scale difference.

the factors of αs enhanced by powers of rapidity Y , i.e., they do generate leading logarithmic
corrections. Just as with the BFKL evolution, fluctuations leading to the formation of qq̄

pairs actually enter at the subleading logarithmic level, bringing in powers of α2
s Y , and are

not important for the leading logarithmic approximation used in this chapter.
Several times above (see the discussion around Eqs. (2.156), (3.126), and (4.2)), we

have used the fact that owing to the uncertainty principle, for an incoming dipole moving
in the light cone plus direction a gluon with momentum kμ in its wave function would have
coherence length

x+
coh ≈ k+

k2
⊥

(4.129)

along the x+-axis. Note straight away that t-channel gluon exchanges between the dipole
and the nucleons in the nucleus, in the Glauber–Gribov–Mueller approximation of Sec. 4.2,
have k+ = 0 with eikonal accuracy (i.e., up to corrections suppressed by powers of the
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l l − q

p p + l

x+

k

p + l − k

Fig. 4.24. A diagram with a gluon emission between the dipole interactions with two
nucleons.

energy). Thus these t-channel gluons have x+
coh = 0 and are instantaneous in the x+ “time”

direction in our eikonal picture. These are the instantaneous or Coulomb gluons. The
instantaneous nature of these gluons explains why the dipole rescatters on the nucleons
sequentially: as the nucleons are assumed to be separated in x+, the dipole interacts with
a nucleon as it crosses the latter’s x+-range, with interactions that are out of order, like
that in Fig. 4.6B, not allowed by causality. The nucleons span the whole nucleus; thus the
x+-time interval filled with the instantaneous interactions of Fig. 4.5 is of the order of the
nuclear radius R in the nuclear rest frame.

Consider now the gluon modifications to the incoming dipole’s wave function shown
in Fig. 4.23. If a gluon’s k+ is large enough, as is the case at high energy, the coherence
lengths of these gluons would be much larger than the nuclear radius, x+

coh � R, so that
each gluon would coherently rescatter on the nucleons in the nucleus, just like the original
dipole in Fig. 4.5. This is indeed what is shown in Fig. 4.23.

Note that gluons are emitted by the incoming dipole only before the multiple rescattering
interaction (and absorbed back, after the interaction, into the forward amplitude). Emissions
during the interaction are suppressed by the inverse powers of the center-of-mass energy
of the scattering system. This can be checked via an explicit calculation in the covariant
Feynman perturbation theory. Imagine a diagram with the gluon emitted or absorbed
between the rescatterings, as shown in Fig. 4.24. As in our analysis of the graph in Fig. 4.9
above, we concentrate on the contribution of quark propagators to the l−-integral. We see
that the diagram is proportional to

∞∫
−∞

dl−

2π

e−il−�x+

[(p + l)2 + iε][(p + l − k)2 + iε]

≈
∞∫

−∞

dl−

2π

e−il−�x+

[p+l−− ⊥2 + iε][(p+ − k+)(k− + l−)− ⊥′2 + iε]
(4.130)
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166 Dipole approach to high parton density QCD

Fig. 4.25. Forward amplitude for dipole–nucleus scattering including small-x evolution:
the incoming dipole develops a cascade of daughter dipoles, each of which interacts with
the nucleus independently.

where ⊥ and ⊥′ denote the appropriate transverse momenta, whose exact values are not
important to us here. We have used the fact that l+ = 0 and assumed for simplicity that
p− = 0. We also changed the frame to that where the nucleus is moving along the negative
light cone. Closing the integration contour in the lower half-plane we obtain

−i

p+(p+ − k+)

1

k− + ⊥2/p+ − ⊥′2/(p+ − k+)

[
e
−i ⊥2

p+ �x+ − e
−i
(
−k−+ ⊥′2

p+−k+
)
�x+]

≈ −i

p+2k−
(

1 − eik−�x+) ∼ −1

p+2p′− = −1

p+s
, (4.131)

where we have used the fact that p+ � k+ and, more importantly, �x+ ∼ 1/p′− with p′−

the large light cone momentum of a nucleon in the nucleus (such that s = p+p′− is the
dipole–nucleon center-of-mass energy squared). This allowed us to expand the exponential
in the second line of Eq. (4.131). Comparing with the rescatterings without gluon emission
given in Eq. (4.37) (identifying k+ in (4.37) with p+ here), we see that gluon emission
between rescatterings brings in suppression by a power of the energy squared s and can
thus be neglected.

Alternatively we can consider this calculation in light cone perturbation theory. In this
case, the emission of a gluon is allowed and is equally probable at any point throughout the
coherence length of the parent dipole x

qq̄+
coh = p+/p2

⊥, with p the momentum of the dipole
and p+ very large. The probability of emission of a gluon inside the nucleus (in the nuclear
rest frame) is then proportional to R/x

qq̄+
coh ∼ 1/p+ ∼ 1/s; i.e., again, just as in Eq. (4.131)

it is suppressed by a power of the center-of-mass energy squared s compared with emission
outside the nucleus and can be neglected in the eikonal approximation considered here.

Our goal, therefore, is to resum the cascade of long-lived gluons that the dipole in
Fig. 4.23 develops before interacting with the nucleus and then to convolute this cascade
with the interaction amplitudes of the gluons with the nucleus. To resum the cascade we
will assume the large-Nc limit and use Mueller’s dipole model, presented in Sec. 4.3. In
the large-Nc limit the gluon cascade translates into a dipole cascade, examples of which
are shown in Figs. 4.19 and 4.22. As we have seen above, in the LLA gluon emissions do
not change the transverse coordinates of the quark and antiquark lines in the parent dipole.
Therefore, the color dipoles have the same transverse coordinates throughout the whole
process: once they are created their transverse coordinates do not change. Resummation
of the dipole cascade reduces to the set of diagrams represented in Fig. 4.25, which is
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a generalization of Fig. 4.5 to the case of quantum evolution corrections. The incoming
dipole develops a cascade of daughter dipoles through evolution according to Mueller
dipole model.

The evolved system of dipoles interacts with the nucleus. The interaction is brief and
does not change the transverse coordinates of the dipoles. In the large-Nc limit no dipole
interacts with any other dipole during the evolution that generates all the dipoles. For a
large nucleus the daughter dipole–nucleus interaction was calculated above in the GGM
approximation and is given by Eq. (4.51). That result resums powers of α2

s A
1/3. Analyzing

the diagrams for the interaction of several dipoles with the nucleus we see that the GGM
interaction of, say, two dipoles with a single nucleon is suppressed by extra powers of αs

not enhanced by A1/3 and is therefore subleading and can be neglected. The interaction of
two dipoles with two nucleons in the large-Nc limit is dominated by diagrams where each
dipole interacts with only one nucleon (assuming both dipoles interact). In general one can
argue that, in the large-Nc limit and at the leading order in A (or, equivalently, resumming
powers of α2

s A
1/3), the interaction of any number of dipoles with the nucleus is dominated

by the independent interactions of each dipole with a different set of nucleons in the nucleus
through multiple rescatterings of the type in Fig. 4.5. This is depicted in Fig. 4.25: when
the dipole wave function hits the nucleus, each dipole present in the wave function may
interact with different nucleons in the nucleus by the exchange of pairs of gluons. (It
can be shown that only some dipoles thus interact.) Therefore, the dipoles are completely
mutually noninteracting: they do not exchange gluons in the process of evolution, since
those corrections would be suppressed by powers of Nc, and they interact with different
nucleons in the nucleus; the last statement is correct at leading order in A (Kovchegov
1999).

Summation of the dipole cascade of Fig. 4.25 now becomes straightforward. Instead
of calculating the forward dipole–nucleus scattering amplitude N (�x⊥, �b⊥, Y ) we start with
the S-matrix S(�x⊥, �b⊥, Y ), which is related to N via Eq. (4.38). We write it here again for
completeness:

S(�x⊥, �b⊥, Y ) = 1 − N (�x⊥, �b⊥, Y ). (4.132)

As follows from the above discussion, S(�x10, �b0⊥, Y ) can be written as a convolution of the
dipole cascade and the dipole interactions with the target, as shown in Fig. 4.25. Namely, it is
a sum of the probability of finding one daughter dipole in the parent dipole, convoluted with
the S-matrix for dipole–nucleus scattering in the GGM approximation, and the probability
of finding two dipoles, convoluted with their multiple rescattering interactions with the
nucleus, etc. We write (Kovchegov 1999)

S(�x10, �b⊥, Y ) =
∞∑

k=1

1

k!

∫
d2r1d

2b1 · · · d2rkd
2bk

× δkZ(�x10, �b⊥, Y ; u)

δu(�r1⊥, �b1⊥) · · · δu(�rk⊥, �bk⊥)

∣∣∣∣
u=0

s0(�r1⊥, �b1⊥) · · · s0(�rk⊥, �bk⊥).

(4.133)
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Fig. 4.26. Diagrammatic representation for the evolution equation of the S-matrix for
dipole–nucleus scattering, denoted by a shaded circle. The vertical dashed lines denote the
interaction with the target.

Here

δkZ(�x10, �b⊥, Y ; u)

δu(�r1⊥, �b1⊥) · · · δu(�rk⊥, �bk⊥)

∣∣∣∣
u=0

(4.134)

gives the probability of finding exactly k daughter dipoles in the parent dipole wave function
(cf. Eq. (4.71)), and

s0(�r⊥, �b⊥) ≡ S(�r⊥, �b⊥, Y = 0) = exp

{
−x2

⊥Q2
s0(�b⊥)

4
ln

1

x⊥�

}
, (4.135)

as follows from Eqs. (4.51) and (4.132).
Summing the series in Eq. (4.133) yields (see Eq. (4.70))

S(�x10, �b⊥, Y ) = Z
(
�x10, �b⊥, Y ; u = s0

)
(4.136)

(Kovchegov 1999). This relation shows that both the dipole–nucleus S-matrix and the
generating functional Z obey the same nonlinear evolution equation. The initial condition
for Z in (4.76) is replaced by Eq. (4.135).

We see that the evolution of S(�x⊥, �b⊥, Y ) is the same as the evolution of the generation
functional Z in Sec. 4.3: it is illustrated in Fig. 4.26 (cf. Fig. 4.21). The dipole cascade and
its interaction with the target are denoted by a shaded circle. In one step of the evolution
in energy (or rapidity) a soft gluon is emitted in the dipole. If the gluon is real then the
original dipole is split into two dipoles, as shown at top right of Fig. 4.26; these dipoles
proceed to evolve and interact (or not) independently with the target (the S-matrix includes
the noninteraction term, the “1” in Eq. (4.132)). Virtual corrections, given by the two lower
diagrams in Fig. 4.26, lead only to the parent dipole’s subsequent evolution and interaction
with the target. We obtain an evolution equation for the S-matrix (Balitsky 1996, Kovchegov
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1999):

∂

∂Y
S(�x10, �b⊥, Y )

= αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

×
[
S

(
�x12, �b⊥ + �x20

2
, Y

)
S

(
�x20, �b⊥ + �x21

2
, Y

)
− S(�x10, �b⊥, Y )

]
. (4.137)

The initial condition for this evolution equation is given by S(�x10, �b⊥, Y = 0) in Eq. (4.135).
As usual �b⊥ = (�x1⊥ + �x0⊥)/2.

Using Eq. (4.132) in Eq. (4.137) we derive an evolution equation for the imaginary part
of the forward dipole–nucleus scattering amplitude N (Balitsky 1996, Kovchegov 1999):

∂

∂Y
N (�x10, �b⊥, Y ) = αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

×
[
N

(
�x12, �b⊥ + �x20

2
, Y

)
+ N

(
�x20, �b⊥ + �x21

2
, Y

)
− N (�x10, �b⊥, Y )

− N

(
�x12, �b⊥ + �x20

2
, Y

)
N

(
�x20, �b⊥ + �x21

2
, Y

)]
. (4.138)

This is the Balitsky–Kovchegov (BK) evolution equation. The initial condition for the BK
evolution is given by Eq. (4.51):

N (�x⊥, �b⊥, Y = 0) = 1 − exp

{
−x2

⊥Q2
s0(�b⊥)

4
ln

1

x⊥�

}
, (4.139)

where we have replaced Q2
s (�b⊥) from Eq. (4.51) by Q2

s0(�b⊥) to underscore that this is
the saturation scale in the initial condition for the evolution. (As we will see shortly,
the saturation scale is modified by the nonlinear BK evolution equation: in particular it
becomes dependent on the rapidity Y .) Equation (4.138) resums all powers of the multiple
rescattering parameter α2

s A
1/3, along with the leading logarithms of energy in the large-Nc

limit given by powers of αsNcY .
Below we will sometimes use a more compact notation for the dipole–nucleus amplitude,

N (�x1⊥, �x0⊥, Y ) ≡ N (�x10, �b⊥, Y ). (4.140)

Using this notation, we can rewrite Eq. (4.138) as

∂

∂Y
N (�x1⊥, �x0⊥, Y ) = αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

×
[
N (�x1⊥, �x2⊥, Y ) + N (�x2⊥, �x0⊥, Y ) − N (�x1⊥, �x0⊥, Y )

− N (�x1⊥, �x2⊥, Y ) N (�x2⊥, �x0⊥, Y )

]
. (4.141)
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Fig. 4.27. Diagrammatic representation of the BK evolution equation for the forward
dipole–nucleus scattering amplitude N , denoted by a shaded circle. Only one virtual term
is shown, for brevity.

The BK equation is represented diagrammatically in Fig. 4.27. Balitsky–Kovchegov
evolution has a simple physical meaning. At fixed rapidity a colorless dipole with size x10

decays into two dipoles with sizes x12 and x20. Either one dipole proceeds to evolve and
interact with the target while the other dipole remains a spectator (the first two, linear,
terms after the equals sign in Fig. 4.27) or both dipoles evolve and interact with the target
(the nonlinear term in Fig. 4.27). The minus sign in front of the nonlinear term reflects
the fact that taking into account two independent interactions overestimates the result.
The nonlinear term corresponds to the shadowing corrections in the GGM approach: for
instance, expanding Eq. (4.45) in powers of interactions with the nucleons we see that the
quadratic term enters with a minus sign. The reason for that minus sign is the same as
the reason for the minus sign in the last term of Eq. (4.138).

Equation (4.138) was originally derived by Balitsky (1996) in the framework of the
effective theory of high energy interactions and, independently, by one of the present
authors (Kovchegov 1999) using the formalism of Mueller’s dipole model (Mueller 1994,
1995). It was rederived by Braun (2000a) using the large-Nc limit of the expression for
the triple pomeron vertex from Bartels and Wusthoff (1995) in a resummation of the fan
diagrams in Fig. 3.23.

Comparing the linear part of the BK equation (the first three terms on the right of
Eq. (4.138)) with Eq. (4.87), we see that the linear terms in the BK equation give the
coordinate-space BFKL equation. As already mentioned, the nonlinear term can be obtained
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from the triple-pomeron vertex in the large-Nc limit (Braun 2000a). Hence Eq. (4.138) has
the overall structure of the GLR equation and corresponds to fan diagram resummation in
the conventional Feynman perturbation theory. It is natural to expect that the BK evolution
leads to the same physical effects as the GLR equation: for a given fixed dipole size, the
dipole amplitude N would start out growing with rapidity owing to BFKL evolution (see
Eq. (4.102)); the nonlinear term would become important at higher rapidity and lead to
saturation and slowdown of the energy growth. In the next section we will see that this is
indeed the case.

In solving the BK equation (4.138) one often (but not always) assumes that the variation
in the amplitude N (�x10, �b⊥, Y ) with the impact parameter �b⊥ is small when �b⊥ varies over
distance scales comparable with the dipole size |�x10|. This is indeed true for scattering on a
very large nucleus far away from its edges. This assumption allows one to neglect the shifts
in the impact parameter on the right-hand side of Eq. (4.138). Moreover, assuming that the
nucleus is isotropic we may neglect the angular dependence of �x10. We thus may replace
N (�x10, �b⊥, Y ) approximately by N (x10, Y ) in Eq. (4.138), obtaining

∂

∂Y
N (x10, Y ) = αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

×
[
N (x12, Y ) + N (x20, Y ) − N (x10, Y ) − N (x12, Y ) N (x20, Y )

]
.

(4.142)

Performing the Fourier transformation

N (x⊥, Y ) = x2
⊥

∫
d2k

2π
ei�k⊥·�x⊥Ñ (k⊥, Y ), (4.143)

we write (Kovchegov 2000)

∂Ñ(k⊥, Y )

∂Y
= ᾱsχ

[
0,

i

2

(
1 + ∂

∂ ln k⊥

)]
Ñ (k⊥, Y ) − ᾱsÑ

2(k⊥, Y ). (4.144)

This equation is useful for obtaining approximate solutions for the BK evolution that we
will present below. Also, note that making the identification

φ(x, k2
⊥) = NcS⊥

αsπ2
Ñ (k⊥, Y = ln 1/x) (4.145)

in Eq. (4.144) reduces it to the GLR equation (3.128). This is indeed remarkable: however,
there exists no physical justification for the Fourier transformation (4.143). At the lowest,
two-gluon-exchange, order the relation between the dipole amplitude N and the uninte-
grated gluon distribution φ should be of the form of Eq. (4.98) (with f there proportional
to φ). In the region where multiple rescatterings and quantum evolution are important, the
exact relation between N and φ is not clear.
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4.5 Solution of the Balitsky–Kovchegov equation

To date there is no exact analytical solution of the BK equation. Below we will present
several approximate analytical solutions, along with some numerical results. One of the
main conclusions can be derived right away, without doing any work, if we notice that
N = 1 is the fixed point of BK evolution: for N = 1, corresponding to the black-disk limit,
the right-hand side of Eq. (4.138) vanishes and the growth of N with rapidity stops. Hence
the BK equation does not violate the black-disk limit.

4.5.1 Solution outside the saturation region; extended geometric scaling

Let us begin analyzing BK evolution when the forward amplitude is small, N � 1. In
the multiple rescatterings (GGM) approximation (see Eq. (4.139)) we know that for small
dipoles with x⊥ � 1/Qs0 the amplitude N is also small, and saturation and unitarization
effects are not very important yet. The fact that the forward amplitude N goes to zero as
x⊥ → 0 is based on a fundamental physical principle of color transparency, which is valid
beyond the multiple-rescattering approximation. This allows us to conclude that N � 1 for
small dipole sizes x⊥ even when small-x evolution is included. For N � 1 we can linearize
the BK equation; as we observed earlier, this gives us the coordinate-space BFKL equation.
With the approximation used in Eq. (4.142) we can write

∂N (x10, Y )

∂Y
= ᾱs

2π

∫
d2x2

x2
10

x2
20x

2
21

[
N (x12, Y ) + N (x20, Y ) − N (x10, Y )

]
. (4.146)

This is exactly Eq. (4.90), whose solution we can write as (cf. Eq. (4.101))

N (x⊥, Y ) =
∞∫

−∞
dν Cν exp{ᾱsχ (0, ν)Y + (1 + 2iν) ln(x⊥Qs0)} , (4.147)

where we use Qs0 as the typical transverse scale characterizing the target nucleus. In the
�b⊥-independent approximation that we are employing, Qs0 is not a function of �b⊥. As
usual, Cν is a constant fixed by the initial conditions. Just as in the case of BFKL evolution,
the integral (4.147) can be evaluated either in the DLA or in the diffusion approximation
depending on the kinematics of the problem.

Double logarithmic approximation

Consider the case of very small dipole size, x⊥Qs0 � 1, such that transverse logarithms
like ln(x⊥Qs0) become important, leading to a new resummation parameter αsY ln(x⊥Qs0).
This is the DLA we considered before. Approximating χ (0, ν) as follows,

χ (0, ν) ≈ 2

1 − 2iν
, (4.148)
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we find a saddle point at

ν∗
DLA ≈ − i

2

(
1 −
√

2ᾱsY

ln 1/(x⊥Qs0)

)
. (4.149)

Using Eq. (4.148) in Eq. (4.147) and performing the integration over ν in the saddle point
approximation yields

N (x⊥, Y )

∣∣∣∣
x⊥Qs0�1

= (x⊥Qs0)2Cν∗
DLA

√
π

2
(2ᾱsY )1/4 ln−3/4 1

x⊥Qs0

× exp
{

2
√

2ᾱsY ln 1/(x⊥Qs0)
}

. (4.150)

We see that, as for the GGM multiple-rescatterings case (see Eq. (4.139)), the amplitude
N (x⊥, Y ) in the DLA regime grows quadratically with the dipole size x⊥, though this rise
receives a correction owing to the exponential in Eq. (4.150). On top of that, as is typical
for the DLA case, the amplitude also grows with rapidity Y .

Extended geometric scaling region

Now let us study the region where the dipole size is still small, but not much smaller than
the inverse saturation scale: x⊥Qs0 � 1. In this region, evolution is still linear and one
would still expect Eq. (4.147) to give us the solution. We begin by evaluating the ν-integral
in Eq. (4.147) in the saddle-point approximation. The location of the saddle point νsp is
determined by the standard condition

ᾱsχ
′(0, νsp)Y + 2i ln x⊥Qs0 = 0, (4.151)

which gives the saddle point νsp as a function of x⊥ and Y : νsp = νsp(x⊥, Y ). (The prime
in Eq. (4.151) indicates a derivative with respect to ν, χ ′(0, ν) = ∂χ (0, ν)/∂ν.) Crudely
approximating the ν-integral in Eq. (4.147) by the value of the integrand at ν = νsp, we
obtain

N (x⊥, Y ) ∝ (x⊥Qs0)1+2iνsp eᾱsχ(0,νsp)Y . (4.152)

The amplitude given by Eq. (4.152) grows with energy and with the dipole size x⊥.
When it becomes of order 1, say N ≈ 1/2, the approximation in which this solution is
derived breaks down and one has to go back to solving the nonlinear BK equation (4.142).
Let us estimate where this breakdown of the linear regime occurs. We want to find a line
in the (x⊥, Y )-plane along which N is an order 1 constant: this will give us the saturation
scale.

The saturation scale Qs(Y ) (which now is a function of rapidity) is therefore defined by
the condition

N (x⊥ = 1/Qs(Y ), Y ) = const, (4.153)

where the constant is of order 1. Using Eq. (4.152) in Eq. (4.153) yields

ᾱsχ (0, ν0)Y + (1 + 2iν0) ln(Qs0/Qs(Y )) = 0, (4.154)
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where ν0 ≡ νsp(x⊥ = 1/Qs(Y ), Y ). Taking the saddle point condition (4.151) along the
saturation line we get

ᾱsχ
′(0, ν0)Y + 2i ln(Qs0/Qs(Y )) = 0. (4.155)

Solving Eqs. (4.154) and (4.155) yields (Gribov, Levin, and Ryskin 1983, Iancu, Itakura,
and McLerran 2002, Mueller and Triantafyllopoulos 2002)

Qs(Y ) = Qs0 exp

{
ᾱs

χ (0, ν0)

1 + 2iν0
Y

}
(4.156)

with

χ ′(0, ν0)

χ (0, ν0)
= 2i

1 + 2iν0
. (4.157)

It follows from Eq. (4.157), which one can solve numerically using Eq. (3.81), that ν0 is
simply a number (Gribov, Levin, and Ryskin 1983),

ν0 ≈ −0.1275i. (4.158)

Using this value of ν0 in Eq. (4.156) we get

Qs(Y ) ≈ Qs0 e2.44ᾱsY . (4.159)

We have obtained a very important result: as follows from Eqs. (4.156) and (4.159), the
saturation scale grows as an exponential of the rapidity. Since Y = ln 1/x this is indeed
consistent with the power-of-1/x growth in Eq. (3.135) obtained on general physical
grounds in discussing GLR evolution. We now have the same qualitative result, with the
exact exponent of the growth now specified by the slightly more detailed calculation that
we have performed. Note that since Qs0 ∼ A1/6 (see Eq. (4.52)), we have Qs(Y ) ∼ A1/6

as well. This result can be understood as follows: the initial conditions for BK evolution
(4.139) contain only one dimensionful scale Qs0 (we neglect the logarithm as a slowly
varying function). The BK equation is conformally invariant; hence the scales resulting
from this evolution, such as Qs(Y ), should all be proportional to Qs0 and have the same A-
scaling (see e.g. Kharzeev, Levin, and McLerran (2003)). It is also important to stress that the
small-x evolution does not preserve the GGM formula (4.45) by simply including x- and A-
dependence in the lowest-order nuclear gluon distribution, defined by xGA = AxGN ; this
would lead to a different scaling of Qs(Y ) with A. In fact evolution corrections completely
destroy the GGM form of N .

The region with momentum Q < Qs(Y ) (corresponding to x⊥ > 1/Qs(Y )), where the
nonlinear term in the BK equation becomes important, is the saturation region.

Eliminating the rapidity dependence from Eq. (4.152), to absorb all the Y -dependence
into Qs(Y ), yields with the help of Eq. (4.156)

N (x⊥, Y ) ∝ (x⊥Qs0)1+2iνsp

(
Qs(Y )

Qs0

)(1+2iν0)χ(0,νsp)/χ(0,ν0)

. (4.160)

With the accuracy of our crude version of the saddle point approximation, we write νsp ≈ ν0

in the vicinity of the saturation scale. Substituting this into Eq. (4.160) we obtain (Iancu,
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Itakura, and McLerran 2002, Mueller and Triantafyllopoulos 2002)

N (x⊥, Y ) ∝ [x⊥Qs(Y )]1+2iν0 . (4.161)

The dipole amplitude still grows with both x⊥ and Y , just as in the DLA regime.
However, the growth with x⊥ is slower than the quadratic DLA scaling of Eq. (4.150).
Conversely, the growth in N with rapidity appears to be stronger in Eq. (4.161) than in the
DLA case (4.150).

We have another important result in Eq. (4.161): the dipole scattering amplitude
N (x⊥, Y ), which, in general, can be a function of two independent variables x⊥ and Y , is
here a function of a single variable, x⊥Qs(Y ). This result is known as geometric scaling.
Geometric scaling has been demonstrated (and the term coined) in an analysis of the HERA
DIS data by Stasto, Golec-Biernat, and Kwiecinski (2001) (see also Kwiecinski and Stasto
2002) presenting one of the strongest arguments for the observation of saturation phenom-
ena at HERA (see Fig. 9.1). Theoretically it was first observed as a property of GLR-type
equations by Bartels and Levin (1992). For the BK equation, geometric scaling was first
demonstrated deep inside the saturation region by Levin and Tuchin (2000): this result will
be derived below. As we will see shortly, the expression (4.161) that we have obtained is
valid outside the saturation region, but not too far from the saturation boundary, i.e., for
x⊥Qs(Y ) � 1. The fact that geometric scaling is valid outside the saturation region was
first observed by Iancu, Itakura, and McLerran (2002). This scaling phenomenon outside
the saturation region is referred to as extended geometric scaling.

Note that the (absolute) value of ν0 found in Eq. (4.158) is not very large. In fact, one
can check explicitly that χ (0, ν0) is still well described by Eq. (3.84), which was used in the
diffusion approximation presented in Sec. 3.3.4. The result (4.161) is valid as long as νsp is
not too far from ν0 (cf. (4.160)). If we decrease the dipole size x⊥ then we would eventually
end up in the DLA region, where the saddle point is close to ν = −i/2 (cf. Eq. (4.149)).
Clearly Eq. (4.150) cannot be written as a function of a single variable x⊥Qs(Y ) and thus
violates geometric scaling. We conclude that the extended geometric scaling of Eq. (4.161)
is valid only as long as χ (0, νsp) is described better by the diffusion formula (3.84) than
by the DLA approximation (4.148). By equating the two approximations we see that the
transition occurs near ν

geom
sp = −0.22i, which, owing to Eq. (4.151), corresponds to

ln
1

x
geom
⊥ Qs0

≈ 5.75 ᾱsY, (4.162)

so that the border (upper limit) of the extended geometric scaling region is defined by the
scale kgeom = 1/x

geom
⊥ given by (cf. Iancu, Itakura, and McLerran (2002))

kgeom = Qs0e
5.75 ᾱsY = Qs(Y )

(
Qs(Y )

Qs0

)1.35

. (4.163)

Therefore, the extended geometric scaling is valid up to

k⊥ = 1

x⊥
≤ kgeom. (4.164)
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Since kgeom � Qs(Y ), the region of extended geometric scaling is parametrically broad and
can be quite large at large Y . For k⊥ > kgeom the solution maps back onto the DLA regime
of Eq. (4.150).

Our current analytical knowledge of the saturation scale at high energy extends well
beyond the approximation derived in Eq. (4.156). In fact we know that

Qs(Y ) = Qs0 exp

{
ᾱs

χ (0, ν0)

1 + 2iν0
Y − 3

2(1 + 2iν0)
ln ᾱsY + const

− 6

(1 + 2iν0)2

√
2π

−ᾱsχ ′′(0, ν0)Y
+ O

(
1

Y

)}
. (4.165)

One can show that the expression in the exponent of Eq. (4.165) is universal, in the sense that
it is independent of the initial conditions for BK evolution with the exception of the constant
term, which may depend on the initial conditions. As mentioned above, the first term in this
expression was derived by Gribov, Levin, and Ryskin (1983) when analyzing GLR evolution
and by Iancu, Itakura, and McLerran (2002) for the BK equation. The second term in the
exponent of Eq. (4.165) was found by Mueller and Triantafyllopoulos (2002) and by Munier
and Peschanski (2004a). The derivation of Mueller and Triantafyllopoulos (2002) is close
to that presented above: however, they obtained the correct value of the second term on
the right of Eq. (4.165) by modeling the saturation boundary as an absorptive barrier in
the (x⊥, Y )-plane. The derivation of Munier and Peschanski (2004a) employed a traveling
wave solution of the BK equation. The third nontrivial (O(1/

√
Y )) term in the exponent

was also calculated by Munier and Peschanski (2004b). The traveling wave approach is
very close in spirit and in letter to the method of characteristics used to solve differential
equations: we will present both solutions below. For a comprehensive up-to-date summary
of the results on the high energy behavior of the saturation scale we recommend a recent
paper by Beuf (2010).

4.5.2 Solution inside the saturation region; geometric scaling

Let us now analyze the behavior of the solution of Eq. (4.138) deep inside the saturation
region, where nonlinear effects are very important. Deep inside the saturation region,
when the dipole size x⊥ becomes large, x⊥ � 1/Qs(Y ) (but we still have x⊥ � 1/�QCD),
the quasi-classical GGM amplitude from Eq. (4.51) approaches 1. As mentioned at the
beginning of this section, analyzing Eq. (4.138) we can easily see that N = 1 is also a
stationary solution of that equation. Therefore we conclude that, for large dipole sizes, BK
evolution would not change the amplitude

N (�x⊥, �b⊥, Y ) = 1, x⊥ � 1/Qs(Y ), (4.166)

which has reached the black-disk limit (BDL) (cf. Eq. (4.33)) and will remain there. Now
let us determine the asymptotic approach to the black-disk limit (4.166). To do this we
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employ Eq. (4.137). As follows from Eq. (4.132), the S-matrix is small near the BDL,
where N ≈ 1. Keeping only terms linear in S in Eq. (4.137) yields

∂S(�x10, �b⊥, Y )

∂Y
= −αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

S(�x10, �b⊥, Y ), (4.167)

where the integral over dipole sizes goes over x02, x12 > 1/Qs(Y ). To perform the integral
we replace the ultraviolet (UV) cutoff ρ in Eq. (A.20) (see also Eq. (4.64)) with 1/Qs(Y )
and use Eq. (A.29) to obtain

∂S(�x10, �b⊥, Y )

∂Y
= −2ᾱs ln [x10Qs(Y )] S(�x10, �b⊥, Y ). (4.168)

Defining the scaling variable

ξ ≡ ln
[
x2

⊥Q2
s (Y )
]

(4.169)

with (cf. Eq. (4.156))

2χ (0, ν0)

1 + 2iν0
ᾱs ≡ ∂ξ

∂Y
= ∂ ln

[
x2

⊥Q2
s (Y )
]

∂Y
, (4.170)

we can rewrite Eq. (4.168) as

∂S

∂ξ
= − 1 + 2iν0

2χ (0, ν0)
ξS. (4.171)

The solution of Eq. (4.171) can be written straightforwardly as (Levin and Tuchin 2000)

S(ξ ) = S0 exp

{
− 1 + 2iν0

2χ (0, ν0)
ξ 2

}
(4.172)

with S0 < 1 a constant. The corresponding dipole amplitude N is given by

N (ξ )

∣∣∣∣
x⊥�1/Qs (Y )

= 1 − S0 exp

{
− 1 + 2iν0

2χ (0, ν0)
ξ 2

}
(4.173)

Equation (4.173) is known as the Levin–Tuchin formula (Levin and Tuchin 2000).
Note that the S-matrix and the amplitude N for dipole–nucleus scattering given by

Eqs. (4.172) and (4.173) are functions of a single variable ξ , or, more precisely, of the
combination x⊥Qs(Y ). This is indeed the geometric scaling found above: while before we
obtained the scaling outside the saturation region, now we see that geometric scaling is also
valid inside the saturation region.

Equations (4.173), (4.161), and (4.150) give us a good idea of the amplitude N (x⊥, Y )
given by the solution of the BK equation as a function of rapidity Y and dipole size x⊥.
We see that N (x⊥, Y ) grows with x⊥ but at very large x⊥ saturates to 1: thus the black-
disk limit is not violated. Hence, at the qualitative level the overall shape of N (x⊥, Y )
given by the GGM formula and shown in Fig. 4.11 is preserved. The amplitude N (x⊥, Y )
also grows with rapidity Y though at larger x⊥ the growth slows down, eventually stop-
ping at the black-disk limit. The saturation scale increases with rapidity; this means that
the GGM curve from Fig. 4.11 starts moving to the left on that plot. We will illustrate
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178 Dipole approach to high parton density QCD

these conclusions with explicit plots when we discuss the numerical solution of BK
evolution.

4.5.3 Semiclassical solution

We now present another powerful approach to solving the BK equation, which allows us to
reproduce the results obtained above while providing new insight.

Defining (cf. Eq. (3.74))

χ (γ ) ≡ 2ψ(1) − ψ(γ ) − ψ(1 − γ ), (4.174)

with γ related to ν via Eq. (3.79), we rewrite Eq. (4.144) as

∂Y Ñ (ρ, Y ) = ᾱsχ
(−∂ρ

)
Ñ (ρ, Y ) − ᾱsÑ

2(ρ, Y ), (4.175)

where ∂Y = ∂/∂Y and

ρ = ln
k2
⊥

Q2
s0

. (4.176)

Let us now look for the solution of Eq. (4.175) using a semiclassical approximation. We
write

Ñ (ρ, Y ) = e�(ρ,Y ) (4.177)

and assume that �(ρ, Y ) is a slowly varying function of its arguments, such that �ρY �
�ρ�Y , �ρρ � �2

ρ , �YY � �2
Y , with similar relations for the higher-order derivatives: the

nth-order derivative is always much smaller than the nth power of the first derivative. (Here
�ρ = ∂�/∂ρ, �Y = ∂�/∂Y , etc.)

Substituting Eq. (4.177) into Eq. (4.175) and employing the semiclassical approxima-
tions just outlined yields

∂Y � = ᾱsχ
(−∂ρ�

)− ᾱse
�. (4.178)

We will study Eq. (4.178) using the method of characteristics (see e.g. Courant and
Hilbert 1953), following Gribov, Levin, and Ryskin (1983), Collins and Kwiecinski (1990),
Bartels, Schuler, and Blumlein (1991), and Levin and Tuchin (2001). Defining partial
derivatives

−γ ≡ �ρ, ω ≡ �Y , (4.179)

we can rewrite Eq. (4.178) as

F ≡ ω − ᾱsχ (γ ) + ᾱse
� = 0. (4.180)
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4.5 Solution of the BK equation 179

The characteristics of Eq. (4.178) can then be found by solving the following set of ordinary
differential equations:

dρ

dt
= F−γ = ᾱs

dχ (γ )

dγ
, (4.181a)

dY

dt
= Fω = 1, (4.181b)

dγ

dt
= −Fρ − (−γ )F� = ᾱsγ e�, (4.181c)

dω

dt
= −FY − ωF� = −ᾱsωe�, (4.181d)

d�

dt
= (−γ )F−γ + ωFω = −ᾱsγ

dχ (γ )

dγ
+ ω. (4.181e)

Equation (4.181b) gives Y = t . In addition we can use Eq. (4.180) to eliminate ω from
Eqs. (4.181). The remaining equations are

dρ

dY
= ᾱs

dχ (γ )

dγ
, (4.182a)

dγ

dY
= ᾱsγ e� (4.182b)

d�

dY
= ᾱs

[
χ (γ ) − γ

dχ (γ )

dγ
− e�

]
. (4.182c)

These equations are still difficult to solve in the general case. One may construct approx-
imations of χ (γ ) and solve the resulting equations exactly (see Levin and Tuchin (2001)).
Instead of following this path we will keep χ (γ ) exact and will again explore the linear
regime. If Ñ = e� � 1 then we can recast Eq. (4.182c) as

d�

dY
≈ ᾱs

[
χ (γ ) − γ

dχ (γ )

dγ

]
. (4.183)

We see that there exists a critical characteristic trajectory of constant � (and hence Ñ ),
defined by d�/dY = 0, which leads to the following equation for γ = γcr (Gribov, Levin,
and Ryskin 1983):

χ (γcr ) = γcr

dχ (γcr )

dγcr

. (4.184)

This is exactly equivalent to Eq. (4.157). Equation (4.184) gives γcr ≈ 0.6275, which is
consistent with Eq. (4.158) (see Eq. (3.79)). The critical line in the (ρ, Y )-plane follows
from Eq. (4.182a):

dρs

dY
= ᾱs

χ (γcr )

γcr

. (4.185)

Since we have defined the critical line as a line of constant Ñ , the definition is analogous
to that of Eq. (4.153) and therefore defines the saturation scale. Solving Eq. (4.185) with
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the initial condition ρs(Y = 0) = 0 yields

ρs(Y ) = ᾱs

χ (γcr )

γcr

Y, (4.186)

which is equivalent to Eq. (4.156) if we write ρs(Y ) = ln Q2
s (Y )/Q2

s0.
Note that one can verify the e� � 1 approximation made in arriving at Eq. (4.183):

substituting γ = γcr back into Eq. (4.182c) and using the relation (4.184) one can solve the
resulting equation to show that the value of � along the critical trajectory (�cr ) is indeed
large and negative, �cr ≈ − ln ᾱsY .

Finally, near the critical (saturation) line we can expand (for fixed Y ) as follows:

� ≈ �cr + �ρs
(ρ − ρs) = �cr − γcr (ρ − ρs). (4.187)

We have also used Eq. (4.179) in arriving at Eq. (4.187). Note that �cr ≈ − ln ᾱsY is
independent of ρ and is a slowly varying function of Y : therefore, it carries little dynamical
information and can be treated as a constant in our approximation. Employing Eq. (4.186)
to define Q2

s (Y ) = Q2
s0e

ρs , we obtain

Ñ (ρ, Y ) = e� ∝ e−γcr (ρ−ρs ) =
(

Q2
s (Y )

k2
⊥

)γcr

, (4.188)

which again is in perfect agreement with Eq. (4.161) (if we replace x⊥ with 1/k⊥ in the
latter). Thus we have rederived the extended geometric scaling behavior of the dipole–
nucleus scattering amplitude, this time working in momentum space.

It is interesting to notice that the critical line has a very transparent physical meaning.
The solution for �, given by Eq. (4.187), can be written as

� ≈ �cr − γcrρ + ωcrY, (4.189)

with ωcr = ᾱsχ (γcr ). This is similar to the phase of a traveling wave packet moving along
the ρ-axis with time Y , having wave number γcr and frequency ωcr . (The profile of the
wave packet would be determined by a prefactor to Eq. (4.188), which is not given by
our approximate solution.) Such a wave packet has two characteristic velocities: the phase
velocity vph (the velocity of a line with constant phase �) and the group velocity vgr (the
velocity of the maximum of the packet). Using Eq. (4.180) but dropping the e� term, we
can easily calculate these two velocities, obtaining

vgr = ∂ω

∂γ
= ᾱs

dχ (γ )

dγ
, (4.190)

vph = ω

γ
= ᾱs

χ (γ )

γ
. (4.191)

One can see that the critical line corresponds to the unique trajectory on which vgr = vph

(Gribov, Levin, and Ryskin 1983, Munier and Peschanski 2004a).
The characteristics trajectories of BK evolution are shown in Fig. 4.28. They cannot

cross each other, and the critical trajectory plays the role of a divider between two groups
of trajectories, as shown in Fig. 4.28. This figure illustrates the special and essential role of
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Fig. 4.28. The characteristics for Eq. (4.178) plotted in the (ρ, Y )-plane.

the critical (saturation) trajectory as a divider between pQCD (DGLAP) physics, possibly
modified by small corrections due to the interactions of partons, and the saturation domain.
The parton interactions are responsible for the characteristic phenomena in the latter region,
in particular for the saturation of the parton density. The trajectories to the right of the critical
line are very close to the trajectories of the linear (BFKL) evolution equation except in the
region close to the critical line, when the effect of the critical (saturation) trajectory becomes
important. This is illustrated by the “separating trajectory” also shown in Fig. 4.28, which
separates the characteristics which are not affected by the saturation region, located to the
right of that line, from those located to the left of the line. The unaffected characteristics
are those of the DLA DGLAP. The trajectories to the left of the separating trajectory but
to the right of the critical trajectory do not resemble the trajectories of the linear equation,
and their behavior indicates that the linearized semiclassical approach is not applicable in
this region.

4.5.4 Traveling wave solution

There is another elegant method of reproducing (and improving upon) the above results
for geometric scaling and the critical anomalous dimension. We start with Eq. (4.175) and
expand its kernel around γcr , defined in Eq. (4.184):

χ (−∂ρ) = χ (γcr ) + (−∂ρ − γcr )χ ′(γcr ) + 1
2 (−∂ρ − γcr )2χ ′′(γcr ) + · · · (4.192)

Truncating the expansion at the quadratic level of course limits the applicability of the
approach we are about to develop. Certainly this approximation would not work in the
DLA region. Equation (4.175) becomes

∂Y Ñ (ρ, Y ) = ᾱs

[
χ (γcr ) − Ñ (ρ, Y )

]
Ñ (ρ, Y ) − ᾱsχ

′(γcr )
(
∂ρ + γcr

)
Ñ (ρ, Y )

+ 1
2 ᾱsχ

′′(γcr )(∂ρ + γcr )2Ñ (ρ, Y ). (4.193)
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Redefining the variables and the unknown function Ñ (Munier and Peschanski 2003),

t ≡ 1
2 ᾱsχ

′′(γcr )γ 2
crY, (4.194a)

x ≡ γcr ρ + ᾱs

[
χ ′′(γcr )γ 2

cr − χ (γcr )
]
Y, (4.194b)

u(t, x) ≡ 2

χ ′′(γcr )γ 2
cr

Ñ (ρ, Y ), (4.194c)

and employing Eq. (4.184) brings Eq. (4.193) into the form

∂tu(t, x) = ∂2
xu(t, x) + u(t, x)[1 − u(t, x)]. (4.195)

This equation was first studied by Fisher (1937) and by Kolmogorov, Petrovsky, and
Piskunov (1937) and is referred to in the mathematical community as the F–KPP equation.
(For a review see van Saarloos (2003).)

The initial condition for Eq. (4.195) can be constructed by first finding the initial
condition for Eq. (4.144). Inverting Eq. (4.143) we write

Ñ (k⊥, Y ) =
∫

d2x⊥
2π

e−i�k⊥·�x⊥ N (x⊥, Y )

x2
⊥

. (4.196)

Dropping the b-dependence in Eq. (4.139) and using the result in Eq. (4.196) we obtain

Ñ (k⊥, Y = 0) =
∫

d2x⊥
2π

e−i�k⊥·�x⊥ 1

x2
⊥

[
1 − exp

{
−x2

⊥Q2
s0

4
ln

1

x⊥�

}]
. (4.197)

While the exact analytic integration in Eq. (4.197) does not lead to a compact answer, we
can find the asymptotics of the initial conditions from it. At large k⊥ (small x⊥), expanding
the exponential in Eq. (4.197) to the first nontrivial order and integrating using Eq. (A.9)
yields

Ñ (k⊥, Y = 0)

∣∣∣∣
k⊥/Qs0�1

≈ Q2
s0

4k2
⊥

. (4.198)

At small k⊥ (large x⊥), dropping the exponential and integrating over x⊥ with 1/Qs0 as the
IR cutoff we get

Ñ (k⊥, Y = 0)

∣∣∣∣
k⊥/Qs0�1

≈ ln
Qs0

kT

. (4.199)

For u(t = 0, x) these initial conditions imply

u(t = 0, x) ∞

⎧⎪⎪⎨
⎪⎪⎩

1
4e−x/γcr , x → +∞,

− x

2γcr

, x → −∞.

(4.200)

It was proven that the F–KPP equation admits traveling wave solutions at late times t

if the initial condition u(0, x) decreases monotonically from 1 to 0 as x varies from −∞
to +∞, falling off exponentially with x as x → +∞ (Bramson 1983). While the initial
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condition giving u(0, x) in Eq. (4.200) violates this condition at x → −∞, following
Munier and Peschanski (2003) we assume that the high energy asymptotics of the solution
outside the saturation region will not change significantly if we simply “freeze” u(0, x)
at u = 1 inside the saturation region. According to the theory of the F–KPP equation the
asymptotic traveling wave solution depends on the speed of the exponential falloff e−x/γcr

at x → +∞ in the initial condition for the equation: for 1/γcr ≈ 1.5936 > 1 the traveling
wave solution is

u(t, x)

∣∣∣∣
t→∞

∼ f
(
x − 2t + 3

2 ln t + O(1)
)
, (4.201)

for some function f . We see that u(t, x) and, owing to Eq. (4.194), Ñ (ρ, Y ) are functions
of a single variable,

x − 2t + 3
2 ln t = γcr ln

k2
⊥

Qs(Y )2
+ const, (4.202)

where

Qs(Y )2 = Q2
s0 exp

{
ᾱs

χ (γcr )

γcr

Y − 3

2γcr

ln ᾱsY

}
. (4.203)

This is indeed geometric scaling. The saturation scale in Eq. (4.203) is identical to that in
Eq. (4.165) up to the first two terms in the exponent.

Dropping the nonlinear term in Eq. (4.195) we see that u(t, x) = e−x+2t is clearly a
solution of the resulting linearized equation, giving (Munier and Peschanski 2004a)

Ñ (ρ, Y ) ∝
(

Q2
s (Y )

k2
⊥

)γcr

, (4.204)

in agreement with Eqs. (4.161) and (4.188).
Owing to the approximations we have made, in expanding χ (γ ) in order to arrive at

Eq. (4.193) and in neglecting the fact that Eq. (4.200) violates the condition stated by
Bramson (1983) for the existence of a traveling wave solution, we can conclude that the
reduction of the BK equation to the F–KPP equation is valid only for k⊥ values in the vicinity
of the saturation scale. In particular, Eq. (4.193) does not give the solution (4.173) deep
inside the saturation region. Interestingly, the traveling wave (geometric scaling) pattern
itself appears to be more universal than the F–KPP reduction: for instance, Eq. (4.173)
also has a traveling wave form. The traveling wave structure is also preserved in other
models of the dipole BFKL kernel. For example, if we simplify the kernel of Eq. (4.138)
by resumming only the transverse logarithms (such as ln x2

⊥Q2
s (y) and ln x2

⊥�2
QCD), thus

taking into account only the leading twist contributions to the full BFKL kernel, the BK
equation can be reduced to a wave equation (Levin and Tuchin 2000, 2001) for which one
also has a traveling wave solution (Polyanin and Zaitsev 2004, formula 3.4.1).

The existence of traveling wave solutions indicates that, at very high energy, Ñ (ρ, Y )
behaves like a wave with a fixed coordinate (ρ) profile, which travels with increasing Y

toward larger values of ρ without a change in profile. This is an important physical result
from the traveling wave approach.
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Fig. 4.29. Dipole amplitude N (x⊥, Y ) plotted as a function of x⊥; the curves right to left
correspond to increasing values of αsY , as shown in the legend. (We thank Javier Albacete
for providing us with this figure.)

4.5.5 Numerical solutions

There are a number of numerical solutions of the BK equation. We are not going to give a
comprehensive overview of these solutions here but will merely show some results.

A numerical solution of the BK equation (4.142) without impact parameter dependence,
giving the amplitude N (x⊥, Y ) as a function of x⊥, is shown in Fig. 4.29 for several values of
the rescaled rapidity αsY . The initial condition is specified at Y = 0 by a slight modification
of the GGM formula (4.51),

N (x⊥, Y ) = 1 − exp

{
−x2

⊥Q2
s0

4
ln

(
1

x⊥�
+ e

)}
(4.205)

with Qs0 = 1 GeV and � = 0.2 GeV, and is represented by the dashed line in Fig. 4.29.
(Since the exponent of Eq. (4.51) is written in the x⊥� � 1 approximation, e has been
added in Eq. (4.205) to keep N positive for x⊥� > 1.)

We see from Fig. 4.29 that the nonlinear small-x evolution pushes the dipole amplitude
N (x⊥, Y ) towards lower values of x⊥ as Y increases. This is indeed in agreement with our
analytical results: as Qs(Y ) grows with rapidity, 1/Qs(Y ) decreases, moving the curve to
the left along the x⊥-axis. The growth in the saturation scale with rapidity Y is shown in
Fig. 4.30. Here, the saturation scale is defined by requiring that N (x⊥ = 1/Qs(Y ), Y ) =
1/2; it is plotted in Fig. 4.30 as a function of αsY . Again we see qualitative agreement with
the above analytical results: the saturation scale grows with rapidity. At large Y we see
that ln Qs(Y ) grows linearly with αsY , in agreement with Eq. (4.165); the slope of about
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Fig. 4.30. The saturation scale Qs(Y ) given by a numerical solution of the BK evolution
equation, plotted as a function of the rescaled rapidity αsY . (We thank Javier Albacete for
providing us with this figure.)

2.1 is close to the analytical estimate, 2.44Nc/π = 2.33, in Eq. (4.159). (Note that for a
more detailed comparison of Fig. 4.30 with the analytical results one also needs to take into
account the logarithmic correction in the exponent of Eq. (4.165).)

The numerical solutions also exhibit the property of geometric scaling. This is demon-
strated in Fig. 4.31, which shows the curves from Fig. 4.29 plotted as functions of the
scaling variable

τ = x⊥Qs(Y ), (4.206)

for the same set of αsY values as in Fig. 4.29. One can see the onset of the geometric scaling
behavior both inside and outside the saturation region: as the rapidity Y increases, all the
curves approach a universal scaling curve. (Indeed, at very large transverse momenta or
very small x⊥ the geometric scaling in Fig. 4.31 would be violated owing to the onset of
the DLA DGLAP asymptotics; this is not shown in the figure because of its limited range
in x⊥Qs(Y ).)

For another quantitative comparison of the analytic results and the numerical solutions
we show in Fig. 4.32 a plot of the coordinate-space dipole amplitude N (x⊥, Y ) as a function
of the scaling variable τ over a broader range in τ , both for fixed-coupling (the dashed
line) and running-coupling (the solid line) BK evolution (Albacete and Kovchegov 2007b).
(The running-coupling BK evolution is given by the BK equation with running-coupling
corrections included (rcBK). We will discuss rcBK in Chapter 6 (see Eq. (6.9) with kernels
given either by Eq. (6.12) or Eq. (6.14)).) In the fixed-coupling case, comparing the power
of 0.6 in Fig. 4.32 with Eq. (4.161) or Eq. (4.188) we see that it is consistent with the
theoretical prediction of 0.6275 from, say, Eq. (4.184).
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Fig. 4.31. The dipole amplitude N (x⊥, Y ) as a function of the scaling variable τ = x⊥Qs(Y );
the curves (in clockwise order in relation to the crossing point) correspond to the same values
of αsY as in Fig. 4.29. (We thank Javier Albacete for providing us with this figure.) A color
version of this figure is available online at www.cambridge.org/9780521112574.

-510 -410 -310 -210 -110 1

-710

-610

-510

-410

-310

-210

-110

1

Y = 40

τ2 × 0.6 ~ 

Fixed coupling

τ2 × 0.85 ~ 

Running coupling

)τN(

τ

Fig. 4.32. Asymptotic solutions (Y = 40) of the evolution equation for running coupling
(solid line) and fixed coupling with αs = 0.2 (dashed line). A fit to a power-law function
aτ 2γ in the region τ ∈ [10−6, 10−2] yields γ ≈ 0.85 for the running-coupling solution and
γ ≈ 0.6 for the fixed-coupling solution. (Reprinted with permission from Albacete and
Kovchegov (2007b). Copyright 2007 by the American Physical Society.) A color version
of this figure is available online at www.cambridge.org/9780521112574.
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Fig. 4.33. A contour plot of the numerical solutions (∼k⊥Ñ (�k⊥, Y )) of the BFKL and
BK evolution equations in momentum space, as functions of the transverse momen-
tum k⊥ and the rescaled rapidity αsY = αs ln 1/x. (We thank Anna Stasto for pro-
viding us with this figure.) A color version of this figure is available online at
www.cambridge.org/9780521112574.

In Sec. 3.3.6 we discussed the two main problems of BFKL evolution unitarity violation
and diffusion into the IR. From Fig. 4.29, along with the analytical calculations presented
above in Sec. 4.5.2, we see that for the BK solution one always has N ≤ 1, so that we
can conclude that BK evolution does not violate the black-disk limit hence resolving this
issue of the BFKL evolution. We see that a resolution of BDL violation still occurs in the
perturbative domain, owing to the large value of saturation scale Qs(Y ) there.

To answer the question regarding diffusion into the IR, represented by the Bartels cigar
of Fig. 3.19, we will present one more result, from the numerical solution of the fixed-
coupling BK equation of Golec-Biernat, Motyka, and Stasto (2002). Figure 4.33 depicts
the lines of constant value for the numerical solution for k⊥Ñ (k⊥, Y ) of the BFKL and BK
equations in momentum space. Namely, Fig. 4.33 contains contour plots of k⊥Ñ (k⊥, Y ) as
a function of transverse momentum k⊥ and rapidity Y = ln 1/x. To illustrate the point, the
initial conditions for both the BFKL and BK equations were chosen to be delta functions in
the transverse momenta, δ(k⊥ − k0⊥) with k0⊥ = 1 GeV. One can see that the solutions
of the BFKL equation (the dotted lines in Fig. 4.33) spread out as the rapidity increases.
This is the diffusion discussed in Sec. 3.3.6, which is dangerous because it generates
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Fig. 4.34. Our understanding of high energy QCD interactions plotted in the plane of
rapidity Y = ln 1/x and ln Q2. (Reprinted from Jalilian-Marian and Kovchegov (2006),
with permission from Elsevier.) A color version of this figure is available online at
www.cambridge.org/9780521112574.

nonperturbative low-k⊥ gluons, for which our small-coupling treatment would not apply.
Figure 4.33 shows that nonlinear BK evolution (shown by the solid lines in Fig. 4.33) avoids
this problem. The nonlinear term in Eq. (4.138) leads to two main effects: (i) it drives the
constant-value lines of the solution towards higher momenta, which is consistent with the
increase in the saturation scale in Eq. (4.156), and (ii) it virtually eliminates the spread
of the solution: as one can see from Fig. 4.33 the width of the k⊥-distribution of the BK
solution is roughly independent of rapidity. This solves the IR diffusion problem of the
BFKL equation.

4.5.6 Map of high energy QCD

We summarize the results obtained in this Chapter in Fig. 4.34. This is a “map of high
energy QCD”, which may be compared with Fig. 4.28 and Fig. 3.22. Figure 4.34 represents
the action of the evolution equations we have discussed, plotted in the (Q2, Y = ln 1/x)-
plane. The region with Q2 � �2

QCD is nonperturbative: there αs is large and so we cannot
use perturbation theory. The DGLAP evolution applies at large Q2 and not very small x,
as indicated by the horizontal arrows denoting evolution in Q2. The BFKL equation is
responsible for the evolution in x: it is represented by the short vertical arrows. At small
enough x the linear BFKL evolution breaks down and nonlinear saturation effects set in.
The transition to the saturation region is denoted by the saturation line Q = Qs(Y ) (cf. the
critical line in Fig. 4.28), and the saturation region is located above this line. The gener-
alization of the BFKL evolution in x to include the saturation physics is accomplished by
BK evolution in the large-Nc limit. Outside the large-Nc limit the nonlinear small-x evo-
lution is described by the Jalilian–Marian–Iancu–McLerran–Weigert–Leonidov–Kovner

https://doi.org/10.1017/9781009291446.005 Published online by Cambridge University Press

http://www.cambridge.org/9780521112574
https://doi.org/10.1017/9781009291446.005


4.6 The BKP equation∗ 189

Fig. 4.35. Diagrams contributing to the BKP evolution. The vertical gluon lines are
reggeized gluons, while the large solid circles denote Lipatov vertices.

(JIMWLK) evolution equation, which is a functional evolution equation to be presented in
the next chapter (Jalilian-Marian et al. 1997b, 1999a, b, Iancu, Leonidov, and McLerran
2001a, b, Weigert 2002, Ferreiro et al. 2002). Both the BK and JIMWLK evolutions are
shown by long vertical arrows. As shown above, geometric scaling works inside the satura-
tion region. We have also indicated the lower boundary of the extended geometric scaling
region by kgeom from Eq. (4.163).

The saturation region is also called the the color glass condensate, as indicated in
Fig. 4.34: this term will be explained below. It is important to stress once more that
all the nonlinear dynamics driving the saturation phenomena takes place for Qs � Q �
�QCD , i.e., in the perturbative region where the strong coupling constant is small and our
perturbative calculations are justified.

4.6 The Bartels–Kwiecinski–Praszalowicz equation∗

One may wonder whether the dipole evolution presented above should receive some poten-
tially important subleading-Nc corrections. The problem is easier to address when formu-
lated in terms of the standard BFKL approach. The BFKL equation of Sec. 3.3 gives the
evolution for two reggeized gluons in the t-channel. Now imagine the case of an arbitrary
number of t-channel reggeized gluons. Their small-x evolution is shown in Fig. 4.35.

To write down an evolution equation for n-reggeized gluon exchange, as in the
BFKL case one has to define the Green function of the exchange, G(�k1⊥, . . . ,
�kn⊥; �k′

1⊥, . . . , �k′
n⊥; Y ), corresponding to a “rectangle” like that in Fig. 3.5, with n gluon

legs attached to it from above and n more attached from below, as shown on the left of
Fig. 4.36. Moreover, we only account for the discontinuities (the imaginary parts) of the
Green function between all consecutive t-channel gluon exchanges, as shown by the cuts
in Fig. 4.36. The scattering amplitude without such cuts can be reconstructed from the
BKP Green function by the repeated use of dispersion relations, as in the case of gluon
reggeization considered in Sec. 3.3.5.

https://doi.org/10.1017/9781009291446.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291446.005


190 Dipole approach to high parton density QCD

∂
∂Y

k1 kn

G

k2

k1 k2 kn

k1 kj

G

kik1 kn

G

ki kn

li li

Σ Σ
i < j i

Fig. 4.36. Diagrammatic representation of the BKP evolution equation for the 2n-point
Green function. All momenta flow up in the diagrams and the vertical straight lines denote
cuts.

One can write down an evolution equation for this Green function by applying the
BFKL kernel to any pair of the reggeized gluons shown in Fig. 4.36. One obtains the
Bartels–Kwiecinski–Praszalowicz (BKP) equation,

∂Y G(�k1⊥, . . . , �kn⊥; �k′
1⊥, . . . , �k′

n⊥; Y )

=
n∑

i=1

ωG(�ki⊥)G(�k1⊥, . . . , �kn⊥; �k′
1⊥, . . . , �k′

n⊥; Y ) + λcolor

∑
i<j

∫
d2lid

2lj

× K
ij
NF (�ki⊥, �kj⊥; �li⊥, �lj⊥)G(�k1⊥, . . . , �li⊥, . . . , �lj⊥, . . . , �kn⊥; �k′

1⊥, . . . , �k′
n⊥; Y ),

(4.207)

where K
ij
NF (�ki⊥, �kj⊥; �li⊥, �lj⊥) is the nonforward BFKL kernel, given by (cf. Eq. (3.103))

K
ij
NF (�ki⊥, �kj⊥; �li⊥, �lj⊥) = αsNc

2π2
δ(2)(�ki⊥ + �kj⊥ − �li⊥ − �lj⊥)

×
[

k2
i⊥

l2
i⊥(�ki⊥ − �li⊥)

+ k2
j⊥

l2
j⊥(�ki⊥ − �li⊥)

− (�ki⊥ + �kj⊥)2

l2
i⊥l2

j⊥

]
.

(4.208)

The coefficient λcolor depends on the color-SU(3) representation of the two gluons that
interact, namely

λsinglet = 1, λ8S
= λ8A

= 1
2 , λ10 = λ10 = 0, λ27 = − 1

3 (4.209)

where 8S, 8A, 10, 10, 27 denote the representations of the SU(3) color group (the sub-
scripts S,A denote the symmetric and antisymmetric representations). For n = 2 in the
color-singlet case Eq. (4.207) reduces to the BFKL equation (3.58) and in the color-octet
case Eq. (4.207) becomes the equation (3.102) leading to the bootstrap equation (3.107).

The general proof of Eq. (4.207) can be found in the papers of Bartels (1980) and
Kwiecinski and Praszalowicz (1980) (see also Jaroszewicz 1980). A review of this approach
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Table 4.1. The intercepts of
multi-reggeized gluon states as found in
Korchemsky, Kotanski, and Manashov
(2002)

Number of reggeized gluons Intercept

n = 2 2.77ᾱs

n = 4 0.67ᾱs

n = 6 0.39ᾱs

was given by Lipatov (1999). (See also the papers of Korchemsky, Kotanski, and Manashov
(2004) and Lipatov (2009) and references therein for recent developments.)

The contribution of multi-reggeized gluon states to the onium–onium scattering cross
section is Nc-suppressed compared with that of single-BFKL-pomeron exchange. To see
this suppression for a four-reggeized gluon state (with all four gluons in a net color-singlet
state) one has to first subtract from it the color configurations corresponding to single- and
double-BFKL-ladder exchanges (which are included in the four-gluon evolution, owing to
the bootstrap property of Sec. 3.3.5), along with the three-reggeized gluon configurations.
The remaining quantity would contribute to the onium–onium cross section at order 1/N4

c

(for αsNc fixed); this is suppressed in comparison with single-BFKL-ladder exchange,
which is of order 1/N2

c , (4.102), and is comparable with double-BFKL-pomeron exchange,
also of order 1/N4

c . The dipole model presented above does not contain such contributions:
in fact one has to augment the dipole model with color quadrupoles to reproduce the
evolution of the four-gluon BKP state (Chen and Mueller 1995).

While the coupling of the four-gluon BKP state, and of the states with higher numbers of
gluons, to the onia is N2

c -suppressed, their evolution (4.207) clearly contains a leading-Nc

contribution.8 One may, therefore, be concerned that the solutions of Eq. (4.207) could lead
to these multi-reggeized gluon states giving contributions to the cross section that grow
with rapidity faster than the multi-BFKL-pomeron exchanges at the same order in N2

c -
suppression and thus become order-1 corrections to the dipole model (or even dominating
the cross section). For instance, the four-gluon state, after all subtractions, might grow with
energy faster than the two-BFKL-pomeron exchange contribution. Such worries have been
put to rest by an explicit solution of the large-Nc version of the BKP equation, performed by
Korchemsky, Kotanski, and Manashov (2002), whose results (for even n) are summarized
in Table 4.1. One can see, for instance, that the intercept of the n = 4 state, equal to 0.67ᾱs ,
is significantly smaller than the effective intercept due to two BFKL ladder exchanges,
which is 2(αP − 1) = 8ᾱs ln 2 ≈ 5.55ᾱs and can be safely neglected. More importantly, it
follows from Table 4.1 that the higher-n states actually have intercepts that decrease with n,
thus becoming progressively less important than the n-pomeron contribution with intercept
n(αP − 1), growing linearly with n. States with odd n are also unimportant for the total

8 For a general SU(Nc) group the decomposition of Nc ⊗ Nc contains another representation, denoted R7, with λR7 =
1/Nc . The evolution of two gluons in this representation, along with that in representation 27 (λ27 = −1/Nc) is
Nc-suppressed. (See Kovner and Lublinsky (2007) for a detailed presentation of group factors.)
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cross section: their intercepts are less than or equal to zero. In the next section we will work
out the case of an odderon, which corresponds to three gluons in the t-channel.

4.7 The odderon∗

Consider a scattering amplitude mediated by a t-channel exchange of a C-odd object, all of
whose other quantum numbers are those of a pomeron (or QCD vacuum). Such a process is
important phenomenologically for the exclusive production of some C-odd vector mesons,
such as pions, J/ψ , ηC , etc. The exchanged object with vacuum quantum numbers except
for C = −1 is called the odderon (by analogy with the definition of the pomeron in Sec. 3.2).
Its existence in QCD was first suggested by Lukaszuk and Nicolescu (1973).

Let us determine the odderon contribution to onium–onium scattering. We start by con-
sidering the general scattering amplitude for an onium on a target. The charge conjugation
operation interchanges the quark and the antiquark:

C : �x1⊥ ↔ �x0⊥, z ↔ 1 − z, (4.210)

where as usual the quark in the onium is located at �x1⊥ while the antiquark is at �x0⊥, and z

is the longitudinal momentum fraction carried by the quark. In the GGM or LLA approxi-
mations the z-dependence can be neglected: we will discard it here. The odderon-exchange
amplitude, by definition, corresponds to an elastic amplitude that is anti-symmetric under
the operation (4.210):

O(�x1⊥, �x0⊥, Y ) = −O(�x0⊥, �x1⊥, Y ). (4.211)

We can relate the elastic odderon amplitude O to the S-matrix S(�x1⊥, �x0⊥, Y ) (in the
notation of Eq. (4.140)) by

O(�x1⊥, �x0⊥, Y ) = 1

2i

[
S(�x1⊥, �x0⊥, Y ) − S(�x0⊥, �x1⊥, Y )

]
. (4.212)

In the eikonal and LLA approximations we have S(�x0⊥, �x1⊥) = S†(�x1⊥, �x0⊥), so that

O(�x1⊥, �x0⊥, Y ) = 1

2i

[
S(�x1⊥, �x0⊥, Y ) − S†(�x1⊥, �x0⊥, Y )

]
= Im S(�x1⊥, �x0⊥, Y ) (4.213)

(Hatta et al. 2005a). We see that the odderon amplitude is equal to the imaginary part of the
S-matrix and hence, to the real part of the T -matrix. We can thus generalize Eq. (4.132) to

S(�x1⊥, �x0⊥, Y ) = 1 − N (�x1⊥, �x0⊥, Y ) + iO(�x1⊥, �x0⊥, Y ). (4.214)

Now let us return to onium–onium scattering. The lowest-order C-odd onium–onium
scattering amplitude is given by the three-gluon exchange diagrams depicted in Fig. 4.37.
The gluons in Fig. 4.37 couple only to the quarks and antiquarks in the onia: contributions
with gluons coupling to each other are either C-even or zero, by color algebra considerations.
In general, three gluons can be either in the f abc or dabc color configuration, where dabc =
2Tr[ta{tb, tc}] is an absolutely symmetric object, the braces denoting an anticommutator.
We are interested in the part of the diagram in Fig. 4.37 (in the eikonal approximation)
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1

0

1

0

Fig. 4.37. The lowest order odderon exchange diagram in onium–onium scattering. As usual,
the disconnected gluon lines imply sums over all couplings to the quark and antiquark lines.

1

0

1

0

Fig. 4.38. Odderon evolution in the large-Nc approximation: a dipole cascade convoluted
with triple-gluon exchange.

contributing to the odderon onium–onium amplitude O(�x1⊥, �x0⊥; �x ′
1⊥, �x ′

0⊥, Y ). One can
show, using Eq. (4.212), that only the dabc configuration contributes to O. By analogy with
Eq. (4.117) we write, switching to the complex-variable notation of Sec. 4.3.3,

O(ρ1, ρ0; ρ1′ , ρ0′ ; Y = 0) = c0 α3
s ln3

∣∣∣∣ρ11′ρ00′

ρ10′ρ01′

∣∣∣∣ (4.215)

with c0 some constant (dependent on Nc), whose exact value is not important for us.
Clearly the exchange in Eq. (4.215) is C-odd, as it changes sign under either the 1 ↔ 0 or
the 1′ ↔ 0′ interchange.

Equation (4.215) can be used as the initial condition of the LLA small-x evolution in the
large-Nc limit, which we would like to construct for the odderon amplitude O(�x1⊥, �x0⊥, Y ).
Above, in constructing the dipole model cascade we did not make any assumptions about
the C-parity of the scattering amplitude: hence the dipole evolution should apply to the
odderon case. Working in the rest frame of one of the colliding onia we present the
odderon evolution in Fig. 4.38, constructed by analogy with Fig. 4.22. The incoming
onium develops a dipole cascade, with one dipole exchanging three t-channel gluons
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with the lower onium at rest. Note that the triple-gluon exchange of Fig. 4.37 can only
couple to a single dipole in the onium wave function, since a single gluon cannot couple
to a color dipole in an elastic process. Hence the evolution for the odderon amplitude
should be described by the same dipole BFKL equation, with different initial condition
(4.215).

By analogy with Eq. (4.87) we write (Kovchegov, Szymanowski, and Wallon (2004))

∂YO(�x1⊥, �x0⊥; �x ′
1⊥, �x ′

0⊥; Y )

= αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

× [O(�x1⊥, �x2⊥; �x ′
1⊥, �x ′

0⊥; Y ) + O(�x2⊥, �x0⊥; �x ′
1⊥, �x ′

0⊥; Y ) − O(�x1⊥, �x0⊥; �x ′
1⊥, �x ′

0⊥; Y )
]
.

(4.216)

This is the linear evolution equation for the odderon amplitude; Eq. (4.215) provides its
initial conditions. While Eq. (4.216) is derived here in the large-Nc limit it is also valid for
any Nc, as shown by Hatta et al. (2005a).

Since Eq. (4.216) is simply the BFKL equation, we know how to find its solution.
Decomposing the initial condition (4.215) over the eigenfunctions of the Möbius group,
we write

O(ρ1, ρ2; ρ1′ , ρ2′ ; Y = 0)

= c0 α3
s

6

π2

∑
odd n

∞∫
−∞

dν

∫
d2ρa

× ν2 + 1
4n2[

ν2 + 1
4 (n + 1)2

] [
ν2 + 1

4 (n − 1)2
]χ (n, ν)En,ν(ρ1a, ρ2a)En,ν∗(ρ1′a, ρ2′a)

(4.217)

and, using Eq. (4.115), we obtain the general solution of Eq. (4.216) for the odderon
amplitude:

O(ρ1, ρ2; ρ1′ , ρ2′ ; Y )

= c0 α3
s

6

π2

∑
odd n

∞∫
−∞

dν

∫
d2ρa eᾱsχ(n,ν)Y

× ν2 + 1
4n2[

ν2 + 1
4 (n + 1)2

] [
ν2 + 1

4 (n − 1)2
]χ (n, ν)En,ν(ρ1a, ρ2a)En,ν∗(ρ1′a, ρ2′a).

(4.218)

Owing to the property (4.120) of the functions En,ν this amplitude is indeed C-odd. Note
that the solution (4.125) of the BFKL equation for the forward amplitude is C-even as
it contains a sum over even n, while the odderon solution (4.218) has a sum over odd n

and is therefore C-odd. We see from Eq. (4.216) that in dipole language the odderon and
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the pomeron evolutions are given by the same dipole BFKL equation; the different initial
conditions project out different contributions.

The solution (4.218), constructed in this form by Kovchegov, Szymanowski, and Wallon
(2004), is analogous to that found in momentum space earlier by Bartels, Lipatov, and
Vacca (2000), which is known as the BLV solution. The latter was obtained by solving
the BKP equation (4.207) for three gluons in the dabc color state. We can now find the
intercept of the three-gluon BKP dabc-state. The leading high energy asymptotics of the
BFKL solution (4.125) is given by the n = 0 term in the series, since it carries the largest
intercept. In the case of Eq. (4.218) the n = 0 term is no longer included in the sum, and the
largest intercept comes from the n = ±1 terms, giving, in the saddle-point approximation
around ν = 0 (Bartels, Lipatov, and Vacca 2000),

αodd − 1 = ᾱsχ (n = ±1, ν = 0) = 0. (4.219)

We see that the odderon amplitude does not grow with energy, even when small-x evolution
is included! This is an interesting result, which may be the reason for the lack of experimental
observation of the odderon.

The odderon amplitude also receives saturation corrections due to nonlinear evolution.
Consider dipole–nucleus scattering. The nonlinear evolution equation for the C-odd ampli-
tude O(�x1⊥, �x0⊥, Y ) in the large-Nc approximation can be found by inserting Eq. (4.214)
into Eq. (4.137) and taking the imaginary part of the resulting expression, keeping in mind
that both N and O are real quantities. This gives (Kovchegov, Szymanowski, and Wallon
2004, Hatta et al. 2005a)

∂YO(�x1⊥, �x0⊥, Y ) = αsNc

2π2

∫
d2x2

x2
01

x2
20x

2
21

× [O(�x1⊥, �x2⊥, Y ) + O(�x2⊥, �x0⊥, Y ) − O(�x1⊥, �x0⊥, Y )
]

− αsNc

2π2

∫
d2x2

x2
01

x2
20x

2
21

× [O(�x1⊥, �x2⊥, Y )N (�x2⊥, �x0⊥, Y ) + N (�x1⊥, �x2⊥, Y )O(�x2⊥, �x0⊥, Y )
]
.

(4.220)

We conclude that saturation simply suppresses the odderon amplitude O further, by making
it decrease with energy. This can be readily seen from Eq. (4.220) by, for instance, substitut-
ing N = 1 in it for x20, x21 > 1/Qs(Y ), corresponding to the saturated total dipole–nucleus
cross section. One would then get the S-matrix version of the Levin–Tuchin formula,
Eq. (4.172), but now for the odderon amplitude O, indicating that it falls off steeply with
increasing energy or rapidity in the presence of saturation.

Further reading

More details on some aspects of the GGM multiple-rescattering formula and on BK evo-
lution, with its solution, can be found in the reviews by Iancu and Venugopalan (2003),
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Weigert (2005), and Jalilian-Marian and Kovchegov (2006). Further information on the
semiclassical approximation for the solution of the BK equation can be found in Levin
and Tuchin (2000, 2001) (see also Diaz Saez and Levin (2011) and references therein).
A comprehensive summary of the current status and achievements of the traveling wave
approach can be found in Beuf (2010). The most recent status of the saturation bound-
ary approaches to solving the BK equation at higher orders is discussed in Avsar et
al. (2011) and references therein. The consequences of the conformal symmetry of the
fixed-coupling BK evolution for its solution have been recently explored by Gubser
(2011).

The solution of the BKP equation, especially for the odderon case, has been widely
discussed, and we consider that the review and paper of Lipatov (1999, 2009) together
with the paper of Korchemsky, Kotanski, and Manashov (2004) can bring the reader to the
current understanding of this problem. A comprehensive review of the theory of odderon
evolution and the status of experimental searches for the odderon was given by Ewerz
(2003).

Exercises

4.1 By summing all possible connections of the t-channel gluons to the dipole in
Fig. 4.10, derive Eq. (4.40) explicitly.

4.2∗∗ Find the virtual correction to the onium wave function in Eq. (4.64) by an explicit
calculation of diagrams. One may directly sum the LCPT diagrams in Fig. 4.14 (Chen
and Mueller 1995). Alternatively, one may start with a momentum-space expression
for each distinct contributing Feynman diagram, Fourier-transform it into coordinate
space in x−, regulate the x−-integrals, and integrate over the x−-coordinates of the
quark–gluon vertices from −∞ to 0. Fourier-transforming the obtained expression
into transverse coordinate space should yield (4.64).

4.3 Follow the steps outlined in the text to find the eigenvalues of the kernel of Eq. (4.90).
Namely, starting with Eq. (4.95) reduce it to Eq. (4.97).

4.4 Starting with Eq. (4.90) use the substitution (4.98) to obtain the BFKL equation
(3.58) for the function f . You may find Eqs. (A.9) and (A.10) handy.

4.5 (a) Solve the following zero-transverse-dimensional equation for the generating
functional Z(Y, u) (cf. Eq. (4.77)):

∂Y Z = αs(Z
2 − Z) (4.221)

with initial condition Z(Y = 0, u) = 0. Using Eq. (4.81) find the number of
dipoles in this “wave function”.

(b) Perform a similar exercise for a toy model of the BK equation (4.138): solve

∂Y N = αsN − αsN
2, (4.222)
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with N (Y = 0) = N0 � 1 as the initial condition; N0 > 0 is a constant. Show
that N (Y ) → 1 as Y → ∞.

4.6 Suppose that the dipole–nucleus scattering amplitude in the linear regime outside
the saturation region is given by the following approximation of the DLA formula
(4.150) (for x⊥Qs0 � 1)

N (x⊥, Y ) = (x⊥Qs0)2 exp
{

2
√

ᾱsY ln[1/(x⊥Qs0)2]
}

. (4.223)

(a) Find the energy-dependent saturation scale Qs(Y ) by requiring that

N (x⊥ = 1/Qs(Y ), Y ) = 1. (4.224)

(b) Show that for 1/Qs(Y ) � x⊥ � 1/kgeom,with kgeom = Q2
s (y)/Qs0, (cf.

Eq. (4.163)), Eq. (4.223) can be rewritten as

N (x⊥, Y ) ≈ x⊥Qs(Y ), (4.225)

i.e., as a function of a single variable x⊥Qs(Y ) instead of the two variables x⊥
and Y (cf. Eq. (4.161)). This is a simplified derivation of the extended geometric
scaling (Iancu, Itakura, and McLerran 2002).

4.7∗ Derive Eq. (4.217) with O(ρ1, ρ2; ρ1′ , ρ2′ ; Y = 0) as given in Eq. (4.215).

4.8 Determine the high energy asymptotics of the F2 structure function (and σ
γ ∗A
tot ). At

very small x we have Qs � Q. Argue that in such a case the x⊥-integral in (4.12) is
dominated by 1/Qs � x⊥ � 1/Q. Approximating the dipole–nucleus interaction
by a black disk of radius R, so that N (x⊥, b⊥, Y ) ≈ θ (R − b⊥), and expanding the
Bessel functions in Eqs. (4.18) and (4.21), show using Eq. (4.10a) that

F2 ∼ σ
γ ∗A
tot ∼ R2 ln ŝ ∼ ln3 ŝ; (4.226)

the last conclusion results from the substitution R = R0 + a ln ŝ, reflecting the dif-
fusion of the black-disk radius (3.115). Equation (4.226) sets an upper limit on σ

γ ∗A
tot

known as the Gribov bound (Gribov 1970).
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