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Abstract

We give continuous separation theorems for convex sets in a real linear space equipped with a norm that
can assume the value infinity. In such a space, it may be impossible to continuously strongly separate a
point p from a closed convex set not containing p, that is, closed convex sets need not be weakly closed.
As a special case, separation in finite-dimensional extended normed spaces is considered at the outset.
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1. Introduction

We will consider extended normed spaces as introduced in [3]. That is, given a vector
space X over a field of scalars F (either R or C) we let 0X denote the origin of X
and adopt the standard convention that 0 · ∞ = 0, where∞ means +∞ throughout this
paper. We say that a function ‖ · ‖ : X→ [0,∞] is an extended norm provided it satisfies
the following properties:

(i) ‖x‖ = 0 if and only if x = 0X;
(ii) ‖αx‖ = |α|‖x‖ for each x ∈ X, α ∈ F;
(iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for each x, y ∈ X.

When X is a vector space and ‖ · ‖ is an extended norm on X, we refer to 〈X, ‖ · ‖〉 as
an extended normed space. When the extended norm is understood in the context, we
may simply refer to X as an extended normed space. In this paper, we will restrict our
attention to real extended normed spaces, that is, where the scalar field is R.

The papers [1, 3, 4] present various arguments for using extended metrics and
extended norms. Indeed, in much of analysis natural norm constructions often fail
to be finite-valued on a vector space. For example, the supremum norm on C(K),

c© 2015 Australian Mathematical Publishing Association Inc. 1446-7887/2015 $16.00

145

https://doi.org/10.1017/S144678871500004X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871500004X


146 G. Beer and J. Vanderwerff [2]

the continuous real-valued functions on a compact Hausdorff space K, would assume
infinite values if K were not compact. On the other hand, defining a truncated
supremum metric loses information on the large structure of the space, and a metric
does not take advantage of the linear structure. Further discussion in this direction can
also be found in [1, 3, 4]. With this in mind, [3] demonstrates that, taking appropriate
care, considerable information concerning an extended normed space 〈X, ‖ · ‖〉 can be
obtained from the structure of 〈Xfin, ‖ · ‖〉, where Xfin = {x ∈ X : ‖x‖ < ∞} is a linear
subspace of X and is itself a conventional normed space. We may occasionally say
that an extended norm is nontrivial if {0X} , Xfin , X.

Let X be an extended normed space, and let φ be a nonconstant linear functional
on X. As in conventional normed linear spaces, φ is continuous if and only if Ker(φ)
is closed [3, Corollary 4.6], and since translation is a homeomorphism, this occurs if
and only if some/all level sets of φ are closed hyperplanes. On the other hand, in the
extended norm setting, such hyperplanes can be open as well; this occurs if and only
if Xfin ⊆ Ker(φ) [3, Corollary 3.9]. Also, as in the conventional setting, a nonconstant
linear functional φ is continuous as soon as it is either bounded above or below on
some nonempty open set. From either property, it is clear that φ is bounded on the unit
ball of the space so that φ is continuous at 0X , from which global continuity follows
[3, Theorem 4.3].

When 〈X, ‖ · ‖〉 is an extended normed space, we let BX = {x : ‖x‖ ≤ 1} and we use
X∗ to denote the continuous linear functionals on X. However, [3] shows that the
natural ‘operator norm’ on X∗ need not be a norm, but rather it is a seminorm on X∗.
Nevertheless, we follow [3] and denote

‖φ‖op = sup{|φ(x)| : x ∈ BX} for φ ∈ X∗.

Also, it is not hard to show, but important to keep in mind, that as soon as X is not
a conventional normed space, X endowed with the extended norm topology is not a
topological vector space in that scalar multiplication fails to be jointly continuous [3,
Proposition 3.2]. On the other hand, X endowed with the weak topology remains a
locally convex topological vector space.

The goal of this paper is to continue and build upon the broad study of extended
normed spaces as initiated in [3]. Our particular focus centers on convex sets and
separation; our results ultimately reflect an altered relationship between core and
interior. We have chosen this focus because many of the important applications
of convex analysis, such as Fenchel duality, sandwich theorems, and subdifferential
analysis, rely upon separation theorems [6, 8, 9, 11]. We anticipate that comprehensive
versions of separation theorems are necessarily the key to the development of convex
analysis in extended normed spaces; however, this development is beyond the scope
of the current paper.

As in [3], considerable information can be derived efficiently by taking advantage
of the well-established topological and algebraic theory for conventional normed
spaces; however, differences do arise and often they may be quite delicate and perhaps
unexpected when first encountered.
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2. Separation in finite-dimensional spaces

Before we examine separation results, we provide a natural example of a finite-
dimensional extended normed space.

Example 2.1. Let X be the collection polynomials on the real line whose degree is
less than or equal to n. Then 〈X, ‖ · ‖∞〉 is an extended normed space where for p ∈ X,
we define ‖p‖∞ = supx∈R |p(x)|. Letting X = span({1, x, x2, . . . , xn}), we write p ∈ X as
p = a0 + a1x + · · · + anxn, and then

‖p‖∞ =

|a0| if p = a0,

∞ otherwise.

Moreover, if we consider the subspace Z = span({x, x2, . . . , xn}), then ‖p1 − p2‖∞ =∞

whenever p1, p2 ∈ Z and p1 , p2. Consequently, the extended norm topology is
discrete when restricted to Z.

Many examples used in this paper, and indeed in [3], are based on this type
of extended norm where the specific vectors {1, x, x2, . . . , xn} are replaced with an
algebraic basis in an arbitrary finite-dimensional space. While this particular extended
normed space does not appear to be very rich in structure, remember that it is
just one of many subspaces of 〈C(R), ‖ · ‖∞〉, the continuous functions on the real
line endowed with the extended supremum norm defined by ‖ f ‖∞ = supx∈R | f (x)|.
Moreover, the extended normed space 〈C(R), ‖ · ‖∞〉 is very rich, because the Banach
space C[0, 1] embeds naturally into it, and according to the Banach–Mazur theorem,
C[0, 1] isometrically contains every separable Banach space; see [7, Theorem 5.17].
On the other hand, no nontrivial separable extended normed space exists, as in such
a space there must be a vector subspace other than {0X} whose relative topology is
discrete.

Let A and B be nonempty convex subsets of an extended normed space X. Adopting
terminology from conventional functional analysis, we say that a nonconstant linear
functional φ on X properly separates A and B if supA φ ≤ infB φ and φ assumes at least
two values on A ∪ B; see [9, page 95]. Note that φ is not assumed continuous in the
definition. Equivalently, there exists α ∈ R such that A ⊆ {x : φ(x) ≤ α}, B ⊆ {x : φ(x) ≥
α}, and either A ∩ {x : φ(x) < α} , ∅ or B ∩ {x : φ(x) > α} , ∅, or both. Of course,
{x : f (x) = α} is then called a properly separating hyperplane for A and B.

We adopt the following additional notation relative to a nonempty subset A of an
extended normed space X:

• int(A) is the interior of A with respect to the norm topology;
• A is the closure of A with respect to the norm topology;
• conv(A) is the convex hull of A;
• span(A) is the smallest linear subspace containing A;
• aff(A) is the affine hull of A, that is, the smallest flat containing A.
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Given a nonconstant φ ∈ X∗ and α ∈ R, the halfspaces {x : φ(x) ≤ α} and {x :
φ(x) ≥ α} are weakly closed but not weakly open. Otherwise, the connectedness of
X equipped with the locally convex weak topology would be violated. Dually, the
halfspaces {x : φ(x) > α} and {x : φ(x) < α} are weakly open but not weakly closed.
On the other hand, such halfspaces can be strongly closed and strongly open, that
is, strongly clopen, as made precise by our next result, which is anticipated by [3,
Corollary 3.9].

Proposition 2.2. Let X be an extended normed space, and let φ ∈ X∗ be nonconstant.
The following conditions are equivalent:

(a) there exists α ∈ R such that {x : φ(x) > α} is norm closed;
(b) for all α ∈ R, {x : φ(x) > α} is norm closed;
(c) there exists α ∈ R such that {x : φ(x) ≥ α} is norm open;
(d) for all α ∈ R, {x : φ(x) ≥ α} is norm open;
(e) Xfin ⊆ Ker(φ).

Proof. Conditions (a) and (b) are equivalent because translation is a homeomorphism,
as are conditions (c) and (d). Conditions (b) and (d) are equivalent because {x : φ(x) >
α} is the complement of {x : −φ(x) ≥ −α}.

Suppose that condition (e) fails. We can then pick x0 ∈ Xfin with φ(x0) > 0. We
compute

0X ∈ {αx0 : 0 < α ≤ 1} ⊆ {x : φ(x) > 0},

and so condition (b) fails as well.
If condition (e) holds, put E = {x : φ(x) ≥ 0}. Evidently, E =

⋃
x∈E(x + Xfin),

expressing E as a union of norm open sets, so that E is norm open and (c) holds. �

We denote the algebraic dual of X by X′, that is, the collection of all linear
functionals on X. The weakest topology on X making each element of X′ continuous is
a locally convex Hausdorff topology that we call the intrinsic topology of X. If A , ∅,
we denote the interior of A with respect to the relative topology that aff(A) inherits
from the intrinsic topology on X by i-int(A) and call this the intrinsic interior of A; see
[8, page 8]. When A ⊂ Rn endowed with a conventional norm, the intrinsic interior,
i-int(A), is the same as ri(A), the relative interior as defined in [9, page 44]. We
have chosen to use the term ‘intrinsic interior’ because different extended norms will
change the topology of the linear space, even in the finite-dimensional case, but they
will not affect the intrinsic interior. The following is a classical separation theorem for
finite-dimensional spaces.

Theorem 2.3 (See [9], Theorem 11.3). Let A and B be nonempty convex sets in Rn (or
any finite-dimensional real vector space). Then A and B can be separated properly by
some φ ∈ Rn = (Rn)′ if and only if ri(A) ∩ ri(B) = ∅.

The next observation discusses the continuous linear functionals on a finite-
dimensional space.
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Fact 2.4. Let X be a finite-dimensional extended normed space. Then X∗ is just the set
of linear functionals on X. In particular, if X is a finite-dimensional vector space, it
has the same set of continuous linear functionals irrespective of the norm or extended
norm with which it is endowed.

Proof. Let φ be any linear functional on X. Then, Xfin is a conventional finite-
dimensional normed space, and so φ|Xfin is continuous because it is a linear functional
on Xfin. The result follows because [3, Theorem 4.2] shows that φ is continuous if and
only if φ|Xfin is continuous. �

One may think of the above fact in other ways. For example, consider a finite-
dimensional conventional normed space X. Because all conventional norms on X
are equivalent, the norm topology is independent of the particular equivalent norm
in use. Now let ‖ · ‖1 be any extended norm on X. Then ‖ · ‖1 restricted to Xfin can
be extended to an equivalent standard norm, say ‖ · ‖2 on X. Because ‖ · ‖2 ≤ ‖ · ‖1 on
X, any real-valued function that is continuous with respect to ‖ · ‖2 will be continuous
with respect to ‖ · ‖1. Expressed yet another way, the topology generated by ‖ · ‖1 is
stronger than the topology generated by ‖ · ‖2 (or any other equivalent conventional
norm on X), because Xfin is a proper clopen subset of X as soon as the extended norm
is not a conventional norm. In light of Fact 2.4, the following is then a recasting of
Theorem 2.3.

Fact 2.5. Suppose that X is a finite-dimensional extended normed space and suppose
that A and B are nonempty convex subsets of X. Then A and B can be properly
separated by some φ ∈ X∗ if and only if i-int(A) ∩ i-int(B) = ∅.

Proof. Suppose that A and B can be properly separated by φ ∈ X∗. By Fact 2.4, φ is
continuous on X equipped with any conventional norm, and by Theorem 2.3 we have
i-int(A) ∩ i-int(B) = ∅.

Conversely, suppose that i-int(A) ∩ i-int(B) = ∅. By Theorem 2.3, A and B can be
properly separated by a linear functional φ on X. By Fact 2.4, φ ∈ X∗. �

The equivalence in the previous fact would no longer be valid if the intrinsic interior
were replaced by a relative interior considered with respect to the extended norm
topology. Clearly the ‘if’ implication would hold because the extended norm topology
is stronger than the topology of a conventional norm on a finite-dimensional space, but
the following example shows the ‘only if’ implication can fail.

Example 2.6. Let X be R2 equipped with the extended norm ‖ · ‖ defined as follows.
When x = (s, 0) we define ‖x‖ = |s|, and we let ‖x‖ =∞ otherwise. Let

A = {(s, 0) : s ∈ R} and B = {(s, t) : s ∈ R, t ≥ 0}.

Then A = Xfin is a norm clopen convex set, as is any translate of it (see [3]), and

B =
⋃
t≥0

(A + (0, t))
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is a union of norm open sets, so B is a norm open halfspace (in fact B is norm
clopen by local finiteness of the family of translates). Clearly A ∩ B = A, and the
linear functional φ defined by φ(s, t) = t satisfies supA φ = 0 = infB φ < supB φ and so
φ properly separates A and B.

The next observation clarifies relations between intrinsic interior and interior in
extended normed spaces.

Fact 2.7. Let X be a finite-dimensional extended normed space, and suppose that A is
a nonempty convex subset of X.

(a) If int(A) , ∅, then i-int(A) ⊆ i-int(Ā) ⊆ int(A).
(b) There are examples where int(A) properly contains i-int(A).
(c) It is possible to have int(A) = ∅, while necessarily i-int(A) , ∅.

Proof. (a) The first inclusion is obvious. For the second, because interiors, intrinsic
interiors and closures are preserved by translations, we suppose that 0X ∈ int(A). If
i-int(Ā) = {0X}, there is nothing further to do. So suppose that x ∈ i-int(Ā), where
x , 0X . Then span(x) is in the affine hull of Ā, and so we deduce that (1 + α)x ∈ Ā for
some α > 0. Because 0X ∈ int(A), we choose δ > 0 so that δBX ⊂ A. Now choose y ∈ A
such that

‖y − (1 + α)x‖ < αδ and so
∥∥∥∥∥ 1

1 + α
y − x

∥∥∥∥∥ < αδ

1 + α
. (2.1)

Because A is convex, we have that

1
1 + α

y +
δα

1 + α
BX =

1
1 + α

y +
α

1 + α
(δBX) ⊂ A,

and this with (2.1) implies x ∈ int(A) as desired.
(b) For example, let X be as in Example 2.6, and let A = {(s, t) : t ≥ 0}; then

A is an open subset of X, but i-int(A) = {(s, t) : t > 0}; one can create this sort of
example whenever Xfin is a proper subspace of X. Indeed, let h ∈ X \ Xfin and let
A =

⋃
t≥0(th + Xfin). Then int(A) = A while i-int(A) =

⋃
t>0(th + Xfin).

(c) Whenever Xfin , {0X}, one can let A be a nonempty convex subset of Xfin whose
interior is empty. Because A is a nonempty convex subset of a finite-dimensional
vector space, [9, Theorem 6.2] ensures that i-int(A) , ∅. �

The following separation theorem is a consequence of Facts 2.5 and 2.7.

Corollary 2.8. Suppose that X is a finite-dimensional extended normed space. Let A
and B be nonempty convex subsets of X such that int(A) , ∅ and int(A) ∩ B = ∅. Then
A and B can be properly separated by some φ ∈ X∗.

Proof. By Fact 2.7(a) we have i-int(A) ⊆ int(A) and so i-int(A) ∩ B = ∅. Then,
obviously, i-int(A) ∩ i-int(B) = ∅ and so proper separation follows from Fact 2.5. �
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The previous corollary may not be as immediate as one might have expected. The
condition given is natural for conventional normed spaces whether they are finite-
dimensional or infinite-dimensional. However, the subtlety in the extended normed
spaces is that int(A) , ∅ is a weaker condition than in conventional normed spaces.

3. General separation results

Our first observation shows that the separation theorem as given in Corollary 2.8,
while valid in general conventional normed spaces, is not valid in infinite-dimensional
extended normed spaces.

Proposition 3.1. Let X be a real vector space. Then the following are equivalent:

(a) X is infinite-dimensional;
(b) X can be endowed with a nontrivial extended norm such that there exists a

nonempty convex cone C ⊂ X and x0 < C with d(x0,C) = ∞, but {x0} and C
cannot be properly separated by any linear functional on X;

(c) X can be endowed with an extended norm such that there exist disjoint nonempty
convex sets A and B with int(A) , ∅, but A and B cannot be properly separated
by any linear functional on X.

Proof. (a) ⇒ (b). Let {en : n ∈ N} be a countably infinite linearly independent subset
of X, and let Y = span({en : n ∈ N}). Then we equip X with the extended norm

‖x‖ =

|α| if x = αe1,

∞ otherwise.

Now let C be the cone generated by {men + en+1 : m ∈ Z,n ∈ N} ∪ {0X} and let x0 = −e2.
Suppose that φ is any linear functional on X that is not identically zero on Y . Then
φ(en0 ) , 0 for some n0 ∈ N. Now choose integers m1 and m2 with sufficiently large
magnitude and appropriate signs so that

m1φ(en0 ) + φ(en0+1) > φ(x0) and m2φ(en0 ) + φ(en0+1) < φ(x0).

Because m1en0 + en0+1 and m2en0 + en0+1 are both in C, this shows that C and {x0}

cannot be separated properly by the arbitrarily chosen linear functional φ.
Now let v ∈ C. Then v is a linear combination, where all coefficients are positive,

of finitely many of the elements from the generating set for C as describe above.
Then either v = 0X or we can write v =

∑k
j=1 α je j, where necessarily k ≥ 2 and αk > 0.

Thus for each v ∈ C, v − x0 fails to be a multiple of e1, and so ‖v − x0‖ = ∞; thus,
d(x0,C) =∞ as desired.

(b)⇒ (c). Given that (b) holds, we set A = BX + x0 and B = C where C and x0 are
from (b). Thus (c) holds.

(c) ⇒ (a). If such sets exist, then X must be infinite-dimensional according to
Theorem 2.3. �
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At this point we introduce some terminology for linear spaces X not assumed to
be equipped with a topology. By a spur we will mean an absorbing subset E that is
star-shaped with respect to the origin, that is, whenever x , 0X , there exists α > 0 such
that conv{0X , αx} ⊆ E. A point x0 of a convex subset C is called a core point of C if
there exists a spur E with x0 + E ⊆ C. We denote the (convex) set of core points of C
by core(C). Finally, by lin(C) we mean the set of all x ∈ X such that for some cx ∈ C
and for all α ∈ (0, 1] we have αcx + (1 − α)x ∈ C. Note that C ⊆ lin(C).

A natural reason for the failure of separation in Proposition 3.1 is that, unlike the
conventional setting, a nonempty interior does not ensure a nonempty core in extended
normed spaces. The next result, like the strict and strong separation results that follow,
characterizes the ability to continuously separate in terms of the existence of a convex
superset of A that somehow ‘shields’ A from B (see [2, 5]). Indeed, as we will see,
proper separation means that there is a point of A lying simultaneously in both the
interior and in the core of the shield C; strict separation means that A and B separately
have shields C and D that contain A and B respectively in the intersection of their core
and their interior; finally, strong separation means that the shield C for A contains A
‘uniformly’ in the intersection of its core and its interior.

Theorem 3.2. Let A and B be nonempty convex subsets of an extended normed space
X. Then following conditions are equivalent:

(a) there exist φ ∈ X∗ and α ∈ R with A ⊆ {x : φ(x) ≤ α}, B ⊆ {x : φ(x) ≥ α}, and
A ∩ {x : φ(x) < α} , ∅;

(b) there exists a convex superset C of A such that int(C) ∩ core(C) ∩ A , ∅ and
B ∩ core(C) = ∅;

(c) there exists a convex superset C of A such that int(C) , ∅, core(C) ∩ A , ∅, and
B ∩ core(C) = ∅.

Proof. Let us show that (a) ⇒ (b). Pick a0 ∈ A ∩ {x : φ(x) < α}. We will show that
C := {x : φ(x) ≤ α} does the job. Obviously, C is a convex superset of A. By continuity,
{x : φ(x) < α} is an open neighborhood of a0 contained in C, so a0 ∈ int(C). Obviously,
no core point of C can lie on the bounding hyperplane, that is, core(C) ⊆ {x : φ(x) < α}
from which core(C) ∩ B = ∅. That a0 ∈ core(C) only uses linearity of φ is left as an
exercise to the reader.

As the implication (b) ⇒ (c) is trivial, it remains to show that (c) ⇒ (a). Pick
a0 ∈ core(C) ∩ A. We now follow the standard geometric proof of the algebraic
proper separation theorem given in [8] or [10]. First, by the Stone lemma [8, page
7], there exist complementary convex supersets B0 and C0 of B and C, respectively.
Since a0 < lin(B0), the set lin(B0) ∩ lin(C0) must be a hyperplane (see [8, page 14]
or [10, pages 20–21]). We can choose a nonconstant linear functional φ and α ∈ R
with C ⊆ {x : φ(x) ≤ α} and B ⊆ {x : φ(x) ≥ α}, and we must have φ(a0) < α because
a0 ∈ core(C). Finally, φ is bounded above on the nonempty interior of C, from which
continuity follows. �
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Because core and interior play such vital roles in separation, we list some
elementary observations concerning their relations.

Proposition 3.3. Let X be an extended normed space and suppose that A is a nonempty
convex subset of X.

(a) It need not be true that int(A) ⊆ core(A). Moreover, even when X is finite-
dimensional, it may occur that 0X ∈ int(A), span(A) = X and yet 0X < core(A).

(b) It need not be true that core(A) ⊆ int(A).
(c) Suppose that int(A) , ∅. Then core(A) ⊆ core(Ā) ⊆ int(A) (where core(Ā) is

possibly empty).

Proof. (a) Suppose that Xfin is a proper subset of X, and let A = Xfin. Then A is open,
but core(A) = ∅. Moreover, when X is a finite-dimensional space where Xfin is a proper
subspace of X, we write X = Xfin ⊕ span({e1, e2, . . . , en}) where {e1, e2, . . . , en} is a
linearly independent set. Let

A = {z ∈ X : z = x + α1e1 + α2e2 + · · ·αnen, where x ∈ Xfin, αk ≥ 0 for 1 ≤ k ≤ n}.

Then A has the claimed properties.
(b) A standard example is as follows. Let c00 denote the vector space of finitely

supported vectors in c0. That is, x ∈ c00 if x =
∑∞

k=1 αkek where there are only finitely
many αk , 0 and {ek : k ∈ N} is the standard coordinate basis of c0. Let X denote c00

endowed with the inherited standard c0 norm, and let

A =

{
x ∈ X : x =

∞∑
k=1

αkek, |αk| ≤
1
k
∀k ∈ N

}
.

Then A is norm closed and 0X ∈ core(A) but int(A) = ∅. See also Remark 3(b) for
examples where the sets are not closed.

(c) If core(Ā) = ∅ there is nothing further to do. Otherwise, by translation, we may
and do assume that 0X ∈ int(A). Suppose that x ∈ core(Ā). If x = 0X , we are done. If
x , 0X , it follows that x + αx = (1 + α)x ∈ Ā for some α > 0. Following the last part
of proof of Fact 2.7(a) word for word, one can conclude that x ∈ int(A). �

Theorem 3.2 captures a standard version of a proper separation theorem for
conventional normed linear spaces (see [7, Corollary 2.13]). Indeed, if A and B
are nonempty convex subsets of a conventional normed space where int(A) , ∅ and
int(A) ∩ B = ∅, then core(A) = int(A) and so we can apply Theorem 3.2 to properly
separate A and B where we applied part (b), with the set C chosen as A itself. Some
additional observations concerning the conditions in Theorem 3.2 are as follows.

Remark. (a) Proposition 3.1 shows that the conditions int(A) , ∅ and int(A) ∩ B = ∅

are not sufficient for proper separation of convex sets A and B in extended normed
spaces. Thus the condition core(C) ∩ A , ∅ is not redundant in (b) of Theorem 3.2.
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(b) Let X be an infinite-dimensional normed space, and let φ be a discontinuous
linear functional on X. Consider the convex sets

A = {x ∈ X : φ(x) ≤ 1} and B = {x ∈ X : φ(x) > 1}.

Then A and B are disjoint sets, both of which have nonempty core, but no continuous
linear functional can separate A and B. This shows that the condition int(C) , ∅ in
Theorem 3.2 is not redundant.

(c) When X is an extended Banach space, that is, the extended metric determined by
the extended norm is Cauchy complete (equivalently, Xfin is a Banach space [3]) and C
is closed, the condition int(C) , ∅ is redundant in Theorem 3.2. Indeed, by translation
we may assume that 0X ∈ core(C). It then follows from Baire’s theorem applied to
{nC : n ∈ N} that int(C) , ∅. The example just given in (b) shows the assumption that
C is closed is needed here.

We now turn to stronger forms of separation. As is customary, we say that φ strongly
separates A and B if supA φ < infB φ. Choosing α ∈ (supA φ, infB φ), we say that the
hyperplane {x : φ(x) = α} strongly separates A and B. Between proper separation and
strong separation is strict separation [8, page 16]: there exists a nonconstant linear
functional φ and α ∈ R such that for each a ∈ A and b ∈ B, φ(a) < α < φ(b), so that the
hyperplane {x : φ(x) = α} lies strictly between the two sets.

With this terminology in hand, we are ready for a companion strong separation
theorem which must invoke some kind of uniform coreness condition. There is more
than one way to do this. From this, we get necessary and sufficient conditions for a
closed convex set to be the intersection of the weakly closed halfspaces that contain it.

Theorem 3.4. Let A and B be nonempty convex subsets of an extended normed space
X. Then the following conditions are equivalent:

(a) there exists φ ∈ X∗ that strongly separates A and B;
(b) there exist a convex superset C of A disjoint from B, a spur E and µ > 0 such that

both A + E ⊆ C and A + µBX ⊆ C;
(c) there exists a convex superset C of A such that int(C) , ∅ and core(C) ∩ B = ∅

and a spur E such that A + E ⊆ C.

Proof. (a) ⇒ (b). Suppose that φ ∈ X∗ with supA φ = α < β = infB φ. Put C = {x :
φ(x) < β}; we claim that C satisfies condition (b) with respect to A and B. Clearly, A ⊆
C and B ∩ C = ∅. By continuity, there exists µ > 0 such that φ(µBX) ⊆ (α − β, β − α)
and as a result for all x ∈ A + µBX , φ(x) < β. This yields A + µBX ⊆ C. Addressing
the uniform coreness condition, let ∆ consist of a representative taken from each
equivalence class of the equivalence relation on X\{0X} defined by x1 ∼ x2 provided
x1 is a positive multiple of x2. If x ∈ ∆ and φ(x) ≤ 0, let yx = x. If φ(x) > 0, put
yx = (1/2φ(x))(β − α)x. Then with E =

⋃
x∈∆ conv{0X , yx} we have a + E ⊆ C for each

a ∈ A.
(b)⇒ (c). This is trivial.
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(c)⇒ (a). By Theorem 3.2 we can find a nonconstant φ ∈ X∗ where supC φ ≤ infB φ.
Choose x ∈ X with φ(x) > 0 and then λ > 0 such that λx ∈ E. As a + λx ∈ C for each
a ∈ A,

sup
A
φ + λφ(x) ≤ sup

C
φ ≤ inf

B
φ,

and the separation is strong. �

Corollary 3.5. Let X be an extended normed space. Then a proper nonempty subset
B of X is convex and weakly closed if and only if it is the intersection of the weakly
closed halfspaces that contain it.

Proof. Sufficiency is immediate. While necessity follows from the general theory of
locally convex spaces, we can give a self-contained justification. Indeed, suppose that
B is weakly closed and convex where ∅ , B , X. If a0 < B, then by the definition of
the weak topology, we can find {φ1, φ2, . . . , φn} ⊂ X∗ and ε > 0 such that

a0 ∈ {x : ∀ j ≤ n, φ j(a0) − ε < φ(x) < φ j(a0) + ε} ⊆ X\B.

With A = {a0} and C = {x : for all j ≤ n, φ j(a0) − ε < φ(x) < φ j(a0) + ε}, condition
(c) of the last theorem is satisfied with respect to A, B and C, so we can strongly
separate {a0} from B, that is, there exist ψ ∈ X∗ and α ∈ R with B ⊂ {x : ψ(x) ≥ α}
while a0 < {x : ψ(x) ≥ α}. �

Continuity aside, it is well known that convex sets A and B can be strongly separated
by a nonconstant linear functional if and only if there exists an absorbing convex set
V with (A + V) ∩ B = ∅ [8, page 16]. This condition is a consequence of condition (c)
of Theorem 3.4. We intend to show that V = conv( 1

2 E) is adequate to the task. To see
this, note that for each a ∈ A, a + 1

2 E ⊆ core(C) so that by the convexity of the core,

A + V =
⋃
a∈A

(a + V) =
⋃
a∈A

conv
(
a +

1
2

E
)
⊆ core(C).

The classical condition follows from our assumption that core(C) ∩ B = ∅.
Note that when the convex set A is a singleton, condition (c) of Theorem 3.4 reduces

to condition (b) of the preceding proper separation result. Upon reflection, this should
not be surprising, because proper separation as described in condition (a) of Theorem
3.2 becomes strong separation when A is a singleton. For this and related results, we
will use d(A, B) = inf{‖a − b‖ : a ∈ A, b ∈ B} to denote the gap between two nonempty
sets A and B in 〈X, ‖ · ‖〉.

When A is a singleton, we have a more attractive formulation of the condition.

Proposition 3.6. Let B be nonempty convex subset of an extended normed space X and
suppose that a0 < B. Then {a0} and B can be strongly separated by a continuous linear
functional if and only if there exists a convex set D with a0 ∈ core(D) and d(B,D) > 0.
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Proof. If strong separation is possible, by Theorem 3.4, we can find a convex set C
with these properties: (i) for some spur E, a0 + E ⊆ C; (ii) for some ε > 0, a0 + εBX ⊆

C; (iii) B∩ core(C) = ∅. Then it is not hard to see that a0 + conv( 1
3 E) + 1

2εBX ⊆ core(C)
and is thus disjoint from B. Putting D := a0 + conv( 1

3 E), we have d(B,D) > ε/2.
Conversely, if such a D exists, take δ > 0 with d(B,D) > δ. Then C = D + δBX

satisfies condition (c) of Theorem 3.4 with respect to A = {a0} and B. �

If the set B in the last proposition were closed, one might attempt to remove the
positive gap condition. However, this is not possible in general, but it is possible when
X/Xfin is finite-dimensional; see Example 4.3 and Theorem 4.4, respectively. That
said, the result we give remains a characterization and yields the following satisfactory
corollary.

Corollary 3.7. Let B be a (closed) convex subset of an extended normed space. Then
B is the intersection of the weakly closed halfspaces that contain it if and only if for
each a ∈ X\B there exists a convex subset Da with a ∈ core(Da) and d(B,Da) > 0.

For this corollary to have value, one must demonstrate that a norm closed convex set
in an extended normed space need not be an intersection of weakly closed halfspaces.
The next result in this direction addresses this requirement.

Theorem 3.8. Let X be an extended normed space. The following conditions are
equivalent:

(a) X is a conventional normed linear space;
(b) each nonempty norm closed convex subset is the intersection of weakly closed

halfspaces that contain it.

Proof. Only (b)⇒ (a) requires proof. To this end, suppose that X contains vectors of
infinite norm, that is, Xfin , X. Let {bi : i ∈ I} be a distance basis for X as described in
[3], that is, a linearly independent set of vectors such that Xfin ⊕ span({bi : i ∈ I}) = X.
Any two distinct vectors in span({bi : i ∈ I}) lie an infinite distance apart, and as a result,
each nonempty subset of span({bi : i ∈ I}) has no limit points and is thus norm closed
in X. Let B be the set of all positive linear combinations of elements of {bi : i ∈ I}.
Evidently this is a closed convex subset of X. While 0X < B, the origin cannot be
in the core of any convex set disjoint from B as 0X ∈ lin(B). Thus {0X} cannot be
strongly separated from B by a continuous linear functional, that is, each weakly closed
halfspace containing B must contain 0X as well. �

Actually a norm closed convex set in an extended normed space need not even be
the intersection of halfspaces of any kind.

Proposition 3.9. Let X be an extended normed space with dim(X) ≥ 2. Then the
following are equivalent:

(a) X is a conventional space;
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(b) each nonempty norm closed convex proper subset of X is the intersection of
halfspaces that contain it;

(c) each nonempty norm closed convex cone properly contained in X is the
intersection of halfspaces that contain it.

Proof. (a)⇒ (b) follows from conventional theory, and (b)⇒ (c) is trivial, so we show
(c)⇒ (a). Suppose that ‖ · ‖ is not a conventional norm. Fix z ∈ X such that ‖z‖ =∞.By
standard linear algebra we can find a subspace H of codimension one containing Xfin

such that X = H ⊕ {αz : α ∈ R}; note that dim(H) ≥ 1. Define φ ∈ X′ by φ(x) = α where
x = αz + h with h ∈ H. Since φ|Xfin is continuous, φ ∈ X∗. Let C = {x : φ(x) > 0} ∪ {0X}.
As Xfin ⊆ H = Ker(φ), it follows from Proposition 2.2 that C is the union of two norm
closed sets and is thus norm closed. Clearly, C is a convex cone.

Now if {x : ψ(x) > β} or {x : ψ(x) ≥ β} were a halfspace containing C, then it is
a standard exercise in linear algebra to show that ψ = µφ for some µ > 0. There is
therefore no halfspace of any kind containing C not containing H as well. �

The last result fails if dim(X) = 1, because if X is not a conventional normed space,
then the topology of X is discrete, so that each ray in X, whether or not it contains its
endpoint, is norm closed. These are the halfspaces of X, and any proper convex subset
is the intersection of at most two of them. It is also notable that the set C constructed
in the proof of Proposition 3.9 is a norm closed cone that is not weakly closed. The
next result shows that such an example is never possible for closed flats.

Theorem 3.10. Let X be an extended normed space and let N ⊂ X be a norm closed
flat. Then N is weakly closed.

Proof. We may assume that N is a subspace that is neither {0X} nor X. Since the kernel
of each continuous linear functional is weakly closed, it suffices to show that whenever
x < N, there exists φ ∈ X∗ such that N ⊆ Ker(φ) and x < Ker(φ).

Let M = span({x} ∪ N), and define ψ : M → R by ψ(αx + n) = α where n ∈ N and
α ∈ R. We claim that ψ is continuous on M; once this is established, applying Hahn–
Banach as in [3, Theorem 5.7] produces a continuous linear extension φ of ψ with the
desired properties.

Suppose that 〈α jx + n j〉 is norm convergent to αx + n where n, n1, n2, . . . , lie in N.
Put

ε j = ‖(α − α j)x − (n − n j)‖ ( j ∈ N).

Continuity is established if we can show that lim j→∞ α j = α.

If this fails, then by passing to a subsequence, we can assume that, for all j,
|α j − α| ≥ δ > 0. Then ∥∥∥∥∥x −

n − n j

α − α j

∥∥∥∥∥ ≤ ε j

δ
( j ∈ N).

This puts x ∈ N, a contradiction, and the proof is complete. �
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It is also worth noting that any norm compact convex set can be represented as an
intersection of norm closed halfspaces because norm compact sets are weakly closed.
We next characterize convex sets that are intersections of norm closed halfspaces.

Theorem 3.11. Let B be a nonempty proper convex subset of an extended normed space
X. Then B is the intersection of the norm closed halfspaces that contain it if and only
if at each x ∈ X\B, at least one of the following two conditions holds:

(a) there exists a convex set C such that x ∈ int(C) ∩ core(C) and core(C) ∩ B = ∅;
(b) there exists φ ∈ X∗ such that for all w ∈ x + Xfin, for all b ∈ B, φ(w) < φ(b).

Proof. If B is the intersection of norm closed halfspaces, then for each x ∈ X\B, there
exist φ ∈ X∗ and α ∈ R such that either (i) B ⊂ {w : φ(w) ≥ α} and φ(x) < α, or (ii)
B ⊂ {w : φ(w) > α}, Xfin ⊆ Ker(φ) and φ(x) ≤ α (see Proposition 2.2). Clearly, condition
(a) holds if condition (i) holds (take C = {w : φ(w) < α}), and condition (b) holds if (ii)
holds.

Conversely, if (a) holds, by Theorem 3.4 there is a weakly closed halfspace that
contains B but not x. If (b) holds, then Xfin ⊆ Ker(φ), for otherwise φ(x + Xfin) = R. By
Proposition 2.2, B is contained in the norm closed halfspace {w : φ(w) > φ(x)}. �

We now turn to strict separation. The following proposition is the key to our strict
separation result.

Proposition 3.12. Let A and B be nonempty convex subsets of an extended normed
space X. Then following conditions are equivalent:

(a) there exist φ ∈ X∗ and α ∈ R with A ⊆ {x : φ(x) < α} and B ⊆ {x : φ(x) ≥ α};
(b) there exists a convex superset C of A such that A ⊆ int(C) ∩ core(C) and B ∩

core(C) = ∅;
(c) there exists a convex superset C of A such that int(C) , ∅, A ⊆ core(C), and

B ∩ core(C) = ∅.

Proof. (a) ⇒ (b). If such φ and α exist, take C = {x : φ(x) < α}. Clearly (b) ⇒
(c), so we suppose that (c) holds. Then apply Theorem 3.2 to C and B to find a
nonconstant φ ∈ X∗ and α ∈ Rwith C ⊆ {x : φ(x) ≤ α} and B ⊆ {x : φ(x) ≥ α}. Evidently,
A ⊆ core(C)⇒ for all a ∈ A, φ(a) < α. �

Before moving to strict separation, we state a corollary that is interesting in its own
right.

Corollary 3.13. Let A and B be nonempty convex subsets of an extended normed
space X. Then the following conditions are equivalent:

(a) there exists φ ∈ X∗ such that for all (a, b) ∈ A × B, φ(a) < φ(b);
(b) either there exists a convex superset C of A such that int(C) , ∅,A ⊆ core(C), and

B ∩ core(C) = ∅, or there exists a convex superset D of B such that int(D) , ∅,
B ⊆ core(D), and A ∩ core(D) = ∅;
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(c) there exists a convex superset C of A − B such that int(C) , ∅, A − B ⊆ core(C),
and 0X < core(C).

Proof. We just look at the equivalence of conditions (a) and (c). If (a) holds, take
for C the open halfspace {x : φ(x) < 0}. Conversely, if (c) holds, apply the previous
proposition to the convex sets A − B and {0X}. �

Even in conventional linear analysis, the separation statement in the corollary is
weaker than strict separation: in the Euclidean plane, take A = {(s, t) : t ≤ 0} and for B
take the epigraph of the natural exponential function. Amazingly, if we replace ‘or’ by
‘and’ in condition (b) of Corollary 3.13, we obtain what we are after.

Theorem 3.14. Let A and B be nonempty convex subsets of an extended normed space
X. Then the following conditions are equivalent:

(a) there exists φ ∈ X∗ that strictly separates A and B;
(b) there exist convex C and D such that A ⊆ core(C) ∩ int(C), B ⊆ core(D) ∩ int(D),

and core(C) ∩ core(D) = ∅;
(c) there exists a convex superset C of A such that int(C) , ∅, A ⊆ core(C), and

B ∩ core(C) = ∅, and there exists a convex superset D of B such that int(D) , ∅,
B ⊆ core(D), and A ∩ core(D) = ∅.

Proof. (a) ⇒ (b). If {x : φ(x) = α} strictly separates, put C = {x : φ(x) < α} and
D = {x : φ(x) > α}. Clearly (b) ⇒ (c), and so we suppose that (c) holds. Then by
Proposition 3.12 we can find φ ∈ X∗, ψ ∈ X∗, α ∈ R, and β ∈ R such that whenever
a ∈ A and b ∈ B, both

φ(a) < α ≤ φ(b) and ψ(b) < β ≤ ψ(a).

It follows that for each a ∈ A and b ∈ B, (φ − ψ)(a) < α − β < (φ − ψ)(b), and we have
strict separation of A and B by φ − ψ ∈ X∗. �

Alternate approaches to separation involve examining the core and interior of sets
with respect to their spans. While we do not list natural formulations in this direction,
we make the following observation.

Proposition 3.15. Suppose that X is an extended normed space, and suppose that A is
a convex subset of X such that 0X ∈ int(A). Then span(int(A)) = span(A) = span(Ā).

Proof. It suffices to show that Ā ⊂ span(int(A)). So let x ∈ Ā; because 0X ∈ int(A) we
choose δ > 0 so that δBX ⊂ A. Now choose y ∈ A such that ‖y − x‖ < δ. Then

1
2 y + 1

2 (δBX) ⊂ A

because A is convex. Moreover, ‖ 1
2 y − 1

2 x‖ < δ
2 . Therefore, 1

2 x ∈ int(A) and so
x ∈ span(int(A)) as desired. �
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Many of the results in this section seem to suggest that things are business as usual
once one has included a core condition along with the natural interior condition. The
following example is yet another a reminder that additional care is needed in the
extended norm setting.

Example 3.16. In a conventional normed space, whenever A is a closed convex set with
int A , ∅ one has A = int(A); however, this need not be true in an extended normed
space. To see this, let X = R2 with ‖x‖ = |s| when x = (s, 0) and ‖x‖ = ∞ otherwise.
Put A = {(s, t) : 0 ≤ s ≤ 1, s ≤ t ≤ 1}. Let x0 = (0, 0) be the origin. Then x0 ∈ A, but
x0 < int(A) since {x : ‖x − x0‖ < δ} = {(s, t) : |s| < δ, t = 0} 1 A for each δ > 0. Thus
if x ∈ int(A) where x = (s, t), we know that t > 0. Consequently, ‖x − x0‖ = ∞ when
x ∈ int(A) and so x0 < int(A). Thus, the norm closed convex set A satisfies int(A) , ∅
and core(A) , ∅, yet int(A) is a proper subset of A.

4. Finer results concerning separating points and convex sets

Although the conditions in Proposition 3.6, are, of course, necessary and sufficient
for strong separation of points and convex sets, there are natural questions concerning
the possible tightening of the conditions given therein. We state three such natural
questions, all of which will be addressed below, and in doing so some subtle
distinctions between extended and conventional normed spaces will be exposed.

Question 4.1. Let 〈X, ‖ · ‖〉 be an extended normed space. Suppose that A is a nonempty
convex set such that 0X < A and suppose that B is a nonempty norm closed convex set
such that 0X ∈ core(B) and A ∩ B = ∅.

(a) Is there a continuous linear functional that strongly separates {0X} and A? Stated
another way, given convex sets B and C that both miss A with 0X ∈ core(B) and
0X ∈ int(C), is there a third convex set D that misses A such that 0X ∈ core(D)
and 0X ∈ int(D)?

(b) Is it possible to find a spur K with 0X ∈ K and K ∩ A = ∅?
(c) If, additionally, we assume that A is norm closed, is there a continuous linear

functional that strongly separates {0X} and A?

The following example provides negative answers to Questions 4.1(a) and (b).

Example 4.2. Let X be the vector space c00 endowed with the extended norm ‖ · ‖
defined for x =

∑∞
k=1 αkek by

‖x‖ =

max
k∈N
|αk| if α1 = 0,

∞ if α1 , 0.

Then there exist a convex subset A ⊆ X with d(A, 0X) = ∞ and a closed convex set B
with 0X ∈ core(B) and A ∩ B = ∅ and yet {0X} and A cannot be strongly separated by
any linear functional in X∗. Further, 0X ∈ lin(A), so there is no spur containing 0X that
misses Ā.
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Proof. For each n ∈ N, we define xn ∈ X by xn =
∑n

k=1(1/n)ek, and we let A =

conv
(
{x1, x2, x3, . . .}

)
. Then for any x ∈ A, we observe

x =

∞∑
k=1

αkek where α1 > 0 and
∞∑

k=1

αk = 1. (4.1)

Because α1 > 0, we know that ‖x‖ =∞, so d(0X , A) =∞ as desired.
Next, define the (closed) convex set B by

B =

{
x ∈ X : x =

∞∑
k=1

αkek where |αk| ≤
1
4k for k ∈ N

}
.

It is easy to see that 0X ∈ core(B). Indeed, given h ∈ X, we write h =
∑N

k=1 αkek. Now
choose δ > 0 sufficiently small so that

δmax{|αk| : 1 ≤ k ≤ N} < 4−N .

Then 0X + th ∈ B for 0 ≤ t ≤ δ. It follows from (4.1) and the definition of B that
A ∩ B = ∅.

Next let φ ∈ X∗ with ‖φ‖op = M. Then

|φ(xn)| ≤
∣∣∣∣∣1nφ(e1)

∣∣∣∣∣ +

∣∣∣∣∣φ(n−1∑
j=1

1
n

e j

)∣∣∣∣∣
≤

1
n
|φ(e1)| + M ·

1
n
→ 0.

Thus, φ does not strongly separate {0X} and A.
We fix 0 < β < 1, and we will show that βe1 ∈ A. For n > 1/β, we choose 0 < λn < 1

so
λn + (1 − λn)

1
n

= β, that is, λn =
nβ − 1
n − 1

.

Next put un = λnx1 + (1 − λn)xn for xn as defined above; then un ∈ A for n > 1/β. By
definition,

un = λne1 + (1 − λn)
(1
n

e1 +

n∑
k=2

1
n

ek

)
=

(
λn + (1 − λn)

1
n

)
e1 + (1 − λn)

n∑
k=2

1
n

ek = βe1 + (1 − λn)
n∑

k=2

1
n

ek.

Then the sequence 〈un〉n∈N converges to βe1 and so βe1 ∈ A. Consequently, 0X ∈ lin(A)
as desired. This, of course, provides a second rationale for the failure of strong
separation of {0X} from A. �

Thus we have shown that, for a nonempty convex set A in an extended normed
space, unlike the conventional setting, it is more restrictive to require that there is a
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convex set B with 0X ∈ core(B) such that B∩ A = ∅ than to require that d(0X ,A) > 0 and
B ∩ A = ∅. Thus, the negative answer to Question 4.1(a) given above does not ensure
a negative answer to Question 4.1(c). Nevertheless, the following theorem answers
Question 4.1(c), also in the negative, but at the cost of using an infinite-dimensional
quotient X/Xfin. However, Theorem 4.4 shows that the infinite-dimensional quotient is
unavoidable.

Example 4.3. Let X = c00 ⊕ c00 endowed with the norm

‖x‖ =

‖u‖c0 if x = (u, 0X) ∈ c00 ⊕ c00,

∞ otherwise.

Then there are nonempty norm closed convex sets A and B in X such that A ∩ B = ∅,
0X ∈ core(B) and yet {0X} and A cannot be strongly separated by any φ ∈ X∗.

Proof. The proof will have many similarities with Example 4.2, but the construction
will be more delicate in order to control the closure. Notationally, we will write x ∈ X
as

x =

∞∑
n=1

αnen +

∞∑
n=1

βnzn

where αn , 0 for only finitely many n, βn , 0 for only finitely many n, and for x so
expressed,

‖x‖ =

‖x‖c0 = max
1≤n<∞

|αn| when βn = 0 for all n,

∞ otherwise.

So {en : n ∈ N} and {zn : n ∈ N} are the standard coordinate bases of c00 ⊕ {0X} and
{0X} ⊕ c00, respectively ({zn : n ∈ N} is a distance basis as introduced in [3]).

Next, for k ≥ 1, define

x3,k =
1
3

e1 +
1
3

e2 +

(1
3
−

1
3k

)
e3 +

1
k

(1
9

z1 +
1
9

z2 +
1
9

z3

)
Generally, for n ≥ 3 and k ∈ N, define

xn,k =
1
n

e1 +
1
n

e2 + · · · +
1
n

en−1 +

(1
n
−

1
nk

)
en +

1
k

( 1
n2 z1 +

1
n2 z2 + · · · +

1
n2 zn

)
. (4.2)

Notice that the basis coefficients in the definition of the xn,k are all nonnegative and
sum to one. Now let C = conv({x j,k : 3 ≤ j <∞, k ∈ N}) and let A = C.

We define the closed convex set B as

B =

{
x ∈ X : x =

∞∑
i=1

αiei +

∞∑
j=1

βizi, |αi| ≤
1
4i , |βi| ≤

1
4i

}
.

As in the proof of Example 4.2, it is not hard to see that 0X ∈ core(B). It is also
important to note that if x ∈ C, where x =

∑∞
i=1 αiei +

∑∞
j=1 βizi, then

∞∑
i=1

αi +

∞∑
j=1

βi = 1 and βi , 0 for some i ∈ N. (4.3)

Consequently, d(0X ,C) =∞ and so 0X < A.
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Next we show that A ∩ B = ∅. Indeed, suppose that b ∈ B ∩ A. Then there is a
sequence 〈un〉 ⊆ C such that ‖un − b‖ → 0. Write b =

∑m
i=1 αiei +

∑m
i=1 βizi. Then for

all sufficiently large n we must have

un =
∑
i∈∆n

αi,nei +

m∑
i=1

βizi, where ∆n is a finite subset of N,

and the βi are as in the expansion for b, for otherwise ‖un − b‖ =∞. For convenience,
we will assume that this is true for all n in the sequence. Then

un ∈ conv({x j,k : 3 ≤ j ≤ m, k ∈ N}), (4.4)
for if not, then βi > 0 for some i > m. Now consider φ ∈ `1 ⊕ `1 defined by

φ
( ∞∑

i=1

αiei +

∞∑
i=1

βizi

)
=

m∑
i=1

αi.

Then φ is continuous on c00 ⊕ c00, and observe that

φ(x j,k) ≥ 1 −
1
j
≥

2
3

whenever 3 ≤ j ≤ m, (4.5)

and then by (4.4) and (4.5), φ(un) ≥ 2/3 for each n. However,

φ(b) ≤
m∑

j=1

|αi| ≤

m∑
j=1

1
4i <

1
3
.

Because φ is continuous, we conclude that the sequence 〈un〉 cannot converge in norm
to b. This contradiction shows that A ∩ B = ∅.

Finally, we show for any φ ∈ X∗ that infA φ = 0. So let ε > 0 and fix φ ∈ X∗. Then
choose and fix n0 ∈ N, n0 ≥ 3, so large that

‖φ‖op

n0
<
ε

2
. (4.6)

Now we choose m0 ∈ N such that

1
m0

n0∑
j=1

|φ(z j)| <
ε

2
. (4.7)

For n0 and m0 as given above, let xn0,m0 ∈ A be as defined in (4.2). Since
∑n0−1

j=1 e j +

(1 − (1/m0))en0 lies on the surface of the unit ball,

|φ(xn0,m0 )| ≤
∣∣∣∣∣φ(n0−1∑

j=1

1
n0

e j +

( 1
n0
−

1
n0m0

)
en0

)∣∣∣∣∣ +
1

n2
0m0

n0∑
j=1

|φ(z j)|

≤
1
n0
‖φ‖op +

1
n2

0m0

n0∑
j=1

|φ(z j)| <
ε

2
+
ε

2
= ε,

by (4.6) and (4.7). This shows that infA φ = 0, and so A and {0X} cannot be strongly
separated by any φ ∈ X∗. �

We conclude by showing that the infinite-dimensional quotient X/Xfin was
necessary in Example 4.3.
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Theorem 4.4. Let 〈X, ‖ · ‖〉 be an extended normed space such that X/Xfin is finite-
dimensional. Suppose that A is a closed convex subset of X, b < A, and there is a
convex set B with b ∈ core(B) and A ∩ core(B) = ∅. Then b and A can be strongly
separated by some φ ∈ X∗.

Proof. Write X = Xfin ⊕ Z where Z is a finite-dimensional vector space. By translation
we may assume that b = 0X and so 0X ∈ core(B). Because 0X ∈ core(B), there exists

{b1, b2, . . . , bN} a basis of Z, such that ± bi ∈ core(B) for 1 ≤ i ≤ N. (4.8)

Next we let P = conv({±bi}
n
i=1). Then P is a polytope contained in core(B).

Now suppose that d(P, A) > 0. Then we choose 0 < δ < d(P, A) and we let U =

P + δBX . Then U is a convex set such that

U ∩ A = ∅ and 0X ∈ core(U) ∩ int(U).

By Theorem 3.4, {0X} and A can be strongly separated by some φ ∈ X∗. So it remains
to address the case when d(P, A) = 0.

We now suppose that d(P,A) = 0. Then we choose sequences 〈an〉 ⊂ A and 〈pn〉 ⊂ P
such that ‖an − pn‖ → 0. We write an = xn + zn where xn ∈ Xfin and zn ∈ Z. Because
‖zn − pn‖ = ∞ as soon as pn , zn, the only possibility is pn = zn for all large n.
Consequently, ‖xn‖ → 0 and we assume that pn = zn for all n ∈ N.

Let 9 · 9 be a conventional norm on the finite-dimensional vector space Z. By
passing to a subsequence if necessary, we assume that ‖xn‖ ≤ 1 for all n ∈ N and
〈zn〉 converges to some z̄ ∈ P in the 9 · 9-topology on Z. Let C = conv({zn : n ∈ N}).
Then i-int(C) , ∅ (where i-int(C) agrees with the relative interior of C as determined
by Z equipped the conventional norm as in [9]) and so we choose w ∈ i-int(C).
Write w =

∑
i∈∆ λizi as a convex combination where ∆ is a finite subset of N and put

w̃ =
∑

i∈∆ λiai using the same ∆ and λi as used in w. Then

w̃ ∈ A and w̃ = w + u for some u ∈ Xfin. (4.9)

Because 0X ∈ core(B), we fix 0 < λ < 1 so that λw̃ ∈ core(B).
Now put ẑ = (1 − λ)z̄ + λw and ẑn = (1 − λ)zn + λw. Then 9ẑn − ẑ9→ 0. Moreover,

ẑ ∈ i-int(C) because w ∈ i-int(C) and z̄ is in the 9 · 9-closure of C; see [9]. Since
ẑ ∈ i-int(C) we can find αn → 0+ and vn ∈ C so that

(1 − αn)ẑn + αnvn = ẑ = (1 − λ)z̄ + λw for all n ∈ N. (4.10)

Next choose ṽn in a fashion analogous to the choice of w̃, that is, given n, express vn

as some convex combination of the zi, say vn =
∑

i∈∆n
λizi where ∆n is a finite subset of

N; then put ṽn =
∑

i∈∆n
λiai. Thus

ṽn ∈ A and we can write ṽn = vn + un where ‖un‖ ≤ 1; (4.11)

the fact that ‖un‖ ≤ 1 follows because un is a convex combination of elements in BX .
Now let

yn = (1 − αn)[(1 − λ)an + λw̃] + αnṽn.
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Then yn ∈ A for each n because each yn is a convex combination of elements in A.
Moreover, for each n ∈ N,

yn = (1 − αn)[(1 − λ)(xn + zn) + λ(w + u)] + αn(vn + un) [see (4.9), (4.11)]
= (1 − αn)[(1 − λ)zn + λw + (1 − λ)xn + λu] + αnvn + αnun

= (1 − αn)ẑn + αnvn + (1 − αn)[(1 − λ)xn + λu] + αnun [by definition of ẑn]
= (1 − λ)z̄ + λw + (1 − αn)[(1 − λ)xn + λu] + αnun [see (4.10)]. (4.12)

Because ‖xn‖ → 0 and ‖αnun‖ ≤ αn → 0, it follows from (4.12) that 〈yn〉 converges in
norm to

(1 − λ)z̄ + λw + λu = (1 − λ)z̄ + λw̃ ∈ core(B).

This is a contradiction because A is norm closed and A ∩ core(B) = ∅. �
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