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COMPLETENESS OF THE L'-SPACE OF CLOSED VECTOR
MEASURES

by WERNER J. RICKER

(Received 4th April 1988)

The notion of a closed vector measure m, due to I. Kluvanek, is by now well established. Its importance stems
from the fact that if the locally convex space X in which m assumes its values is sequentially complete, then m
is closed if and only if its L1-space is complete for the topology of uniform convergence of indefinite integrals.
However, there are important examples of Jf-valued measures where X is not sequentially complete. Sufficient
conditions guaranteeing the completeness of L.'(m) for closed X-valued measures m are presented without the
requirement that X be sequentially complete.

1980 Math, subject classification (1985 Revision): Primary 28B05, 46G10.

1. Introduction

The notion of a closed vector measure is due to I. Kluvanek [7]. This concept has
been intensively studied by various authors [1, 8, 11] and has turned out to be
fundamental in the study of certain operator algebras [2, 3, 4, 10, 12]. One of the
reasons why closed measures are important is that, modulo certain completeness
hypotheses on the underlying space, their L1-spaces are complete. More precisely, if X
is a locally convex Hausdorff space and m:T.->X is a closed vector measure, Kluvanek
showed that l}{m) is complete for the topology of uniform convergence of indefinite
integrals whenever X is complete or quasicomplete (cf. [8, Theorem IV 4.1] and [10,
Proposition 1]). This is also known to be true if X is merely sequentially complete [2, p.
139]. However, there are important examples of measures which assume their values in
spaces which are not sequentially complete. For instance, spectral measures in dual
Banach spaces X' equipped with their weak-star topology fall into this scheme if the
predual X is not weakly sequentially complete (cf. Section 3). Accordingly, it seems
useful to have available sufficient conditions which guarantee the completeness of l}(m)
for a given closed measure m. The aim of this note is to present such criteria.

More precisely, if m:I.-+X is a vector measure for which the sequential closure X[m\
of the linear span of R(m) = {m(£);£eE} is sequentially complete, then I}{m) is complete
if and only if m is a closed measure. This is a substantial improvement in practice since
X\ni] may be a proper subspace of X, not necessarily closed or dense. Some relevant
examples are discussed in Section 3. The sequential completeness of X[ni] is not a
necessary condition for I}(m) to be complete; see Example 1 in Section 3.
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2. Preliminaries and the main result

In this section we establish the notation to be used and summarize those aspects of
the theory of integration with respect to vector measures that are needed in the sequel;
see [8] for a more comprehensive treatment. The main result is also established.

Let X be a locally convex Hausdorff space and X' be its (continuous) dual space. An
A -̂valued measure is a a-additive map m:Y.-*X whose domain I is a a-algebra of
subsets of some set Q. For each x'eX', the complex-valued measure E-*(jn(E), x"},
Eel., is denoted by <m,x'>. Its variation measure is denoted by |<m,x'>|.

If q is a continuous seminorm on A", let U°q denote the polar of the closed unit ball of
q. Then the q-semivariation of m is the set function q(m) defined by

p { | < > | , } E e l .

For each Eel., the inequalities

(1)

hold [8, Lemma II, 1.1].
A complex-valued, Z-measurable function / on Q is said to be m-integrable if it is

integrable with respect to each measure <m, V>, x'eX', and if, for every Eel,, there
exists an element $Ef dm of X such that

\fdm,x =j/(/{m,.v'>.
, E IE

for each x'eX'. The map fm:l.->X specified by

(fm)(E) = jfdm, Eel.,
£

is called the indefinite integral of / with respect to m. The Orlicz-Pettis lemma implies
that it is a vector measure. The element (fm)(Q) = \af dm is denoted simply by m(/).
The set of all m-integrable functions is denoted by L(m). An m-integrable function is said
to be m-null if its indefinite integral is the zero measure. Two m-integrable functions /
and g are equal m-almost everywhere (m-a.e.) if \f—g\ is m-null.

If/ is an m-integrable function, then for each continuous seminorm q on X we define
q(m)(f) = q{fm)(Q.). The function

f^q(m)(f), feUm), (2)

is then a seminorm on L(m). It is clear from (1) that an equivalent seminorm is given by

(3)
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Denote by x(m) the topology on Ujri) specified by the family of seminorms (2) (or (3))
for every continuous seminorm q on X or, at least for enough continuous seminorms q
determining the topology of X. The resulting locally convex space is not necessarily
Hausdorff. The quotient space of Urn) with respect to the subspace of all m-null
functions is denoted by I}(m). The resulting Hausdorff topology on I}(m) is again
denoted by x(m). It is clear from (3) that x(m) is the topology of uniform convergence on
1 of indefinite integrals.

A set Eel is said to be m-null if %E is m-null. Two sets E,Fe1 are m-equivalent if
|XE~ZF| is m-null. The set of all equivalence classes of 1 with respect to m-equivalence is
denoted by l(m). The set £(m) can be identified with the subset {[x£]m;£eE} of I}(m),
where the square brackets [•]„ signify cosets with respect to m-equivalence. Since

q(m)(E) = q{m)(xE), Eel,

for each continuous seminorm q on X, the topology and uniform structure x(m) has a
natural restriction to £(m) which is again denoted by z(m). The vector measure m is said
to be closed [7] if E(m) is a complete space with respect to the uniform structure x(m).

Let M be a subset of a locally convex Hausdorff space X. The sequential closure of
M is the smallest set in X which contains M and is sequentially closed. The sequential
closure of M is a vector subspace of X whenever M is a vector subspace.

Let m:l-*X be a vector measure and let X[m] denote the sequential closure of the
linear span of R(m) = {m(£);£el}. Equip AT[m] with the relative topology from X. If X
is sequentially complete, then so is X[m].

Theorem 1. Let m\l-*X be a closed vector measure and X be a sequentially complete
space containing X as a dense subspace (for the relative topology). Let m:l->% denote
the measure m considered as taking its values in %. If jE f dm belongs to X, for every
Eel. and every feLl(m), then L\m) = Ll(m) and the space I}{m) is complete.

Proof. It is clear that m is a closed measure. Since the continuous seminorms
determining the topology of X are just extensions of the continuous seminorms
determining the topology of X, it is also clear that L'fmJcL'fm) and that x(m) induces
the topology x(m) on L\m). But, Lx(m) we know to be complete and so it suffices to
show that L\m) = Li(m). Since (Jf)' = X', it follows from the definition of integrability
that any m-integrable function / satisfying jEfdmeX, for each Eel, is
m-integrable. •

Theorem 2. Let X be a locally convex Hausdorff space and m:l-*X be a vector
measure. If X[m] is sequentially complete, then m is a closed measure if and only if i?(m)
is complete.

Proof. The completeness of Ll{m) always implies that m is a closed measure (even if
X[m] is not sequentially complete). This is because l(m) is a closed subset of L\m).

The converse proceeds along the lines of [8, Proposition 1]. So, suppose that m is
closed. Let X denote the completion of X and m be the vector measure defined as in
Theorem 1. By Theorem 1, the proof is complete if L1(m) = L1(m). Let / ^ 0 be
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m-integrable. Choose 2-simple functions sn^0, w=l,2, . . . , such that snf/ pointwise.
The Dominated Convergence Theorem for m implies \Esndm-*\Efdm in X, for each
Eel. However, $Esndm=\Esndm belongs to X\m\, for every Eel and every n = l,2,....
Since X\m~\ is sequentially complete \Efdm belongs to X[m~\^X, for each Eel. Hence
/ is w-integrable. •

3. Some examples

It is straightforward to produce examples of closed measures m:l-*X, with X not
sequentially complete, such that I}{m) is complete. Indeed, let X = Ux V where U is a
Banach space and V is a normed space (but, not complete). Define a vector measure
m.l^X by

m(E) = («(£), 0), EeZ,

where n:Z-»l/ is any vector measure. Then the If-spaces of m and n are isomorphic and
so l}(m) is complete. However, such examples are somewhat artificial since the measure
assumes its values in a sequentially complete, complemented subspace of X.

The following example, suggested by I. Kluvanek, is more illuminating.

Example 1. Let Il = {zeC,|z| = l} be the circle group and Z denote the additive
group of integers. Let X denote the subspace of co(Z) consisting of the Fourier
transforms of elements from I}{TL). Then X is a dense, proper subspace of co(Z) for the
relative topology. In particular, X is not sequentially complete. Let 1 denote the Borel
subsets of Q = n. Then the set function m:l-+X defined by

m(X) = iB, Eel.,

where • denotes the Fourier transform, is tr-additive. Since X is a normed space m is
necessarily closed, [8, Theorem IV 7.1]. For each ^el\T) = X\ let i/̂  denote the
continuous function

neZ

Then the complex measure <w,£> is equal to i^(z)dz, for every £,eX'. In particular, if
<̂° is the element of X' with 1 in the co-ordinate « = 0 and zero elsewhere, then
<m, £°y = dz. Using these observations it can be shown that l?(m) = L1(I1) as linear
spaces and, for fel}(m), the indefinite integral of/ with respect to m is given by

= (fXEf, Eel.

It is then clear that X[ni] = X and so X[ni] is not sequentially complete. Accordingly,
Theorem 2 does not apply. Nevertheless, I}{m) is still complete. This follows from
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Theorem 1, for example, by choosing X = co(Z). The completeness of I}(m) can also be
seen directly. Indeed, the semivariation norm is given by

||/m||(n) = sup j J \f\d\im, O|; ZeX', ||{|| ̂  11,

for every /eL1(wi) = L1(n), from which it follows (cf. (1)) that

Example 2. Let Y be a locally convex space and L[Y) denote the space of all
continuous linear operators of Y into itself. Then LS(Y) denotes L(Y) equipped with the
topology of pointwise convergence on Y. Let P:?,-*LS(Y) be a measure with domain Z a
<7-algebra of subsets of some set £1 Then P is <x-additive if and only if the C-valued set
function

(Py,yy.E-+(P(E)y,y'\ £eZ,

is ff-additive for each ye Y and y'eY'. A measure P:1,-*LXY) is called a spectral
measure if P(fi) = / (the identity operator on Y) and P(EnF) = P(E)P(F), for every
£ , F e I .

The determination of integrability with respect to a spectral measure P:2,-*LS(Y) is
somewhat simpler than for arbitrary vector measures. Namely, a Z-measurable function
/ is P-integrable if and only if it is <Py,/>-integrable, for each ye Y and y'eY', and
there exists an element P(/) in UY), also denoted by \afdP, such that

for all y e Y and y' e Y'. The indefinite integral of / is given by

Suppose that Z is a Banach space and P:?,-*L3(Z) is a spectral measure. Then the
range R(P), of P, is a uniformly bounded subset of L(Z) and the P-integrable functions
are precisely the P-essentially bounded functions. The measure P is a closed measure if
and only if R(P) is a closed subset of LIZ). Separability of Z is a sufficient condition for
P to be a closed measure. All of the above statements concerning spectral measures can
be found in [2].

Let Z' be equipped with its (dual) norm topology. Let LU(Z') denote L(Z') equipped
with the uniform operator topology and let LJ(Z') denote HZ') equipped with the
weak-star operator topology. Furthermore, let LW(Z) denote UZ) with its weak
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operator topology. The adjoint operation renders LW(Z) a dense subspace of L
Although L^iZ') is always quasicomplete, LW(Z) is sequentially complete if and only if
Z is weakly sequentially complete.

We can now formulate our class of examples. An additional feature will be that the
only integrable functions are the bounded ones. For the remainder of this section Z is a
Banach space which is not weakly sequentially complete and which admits a closed
spectral measure P:I.->LS(Z). As noted earlier if Z is separable, then any such P is
necessarily closed. Define

m(E) = P(E), EeX, (4)

in which case m:S-»Lw(Z) is also a spectral measure. For example, we can take Z = c0

with £ the cr-algebra of all subsets of Q = {1,2,...} and P(E) the operator of co-
ordinatewise multiplication by x£, for each E e £.

The example. Let P:2.-*LS(Z) be a closed spectral measure, X = LW(Z) and m.'L^X
be the (spectral) measure defined by (4). Then,

(i) X is not sequentially complete,
(ii) m is a closed measure,

(iii) Ll(m) is a complete space, and
(iv) the m-integrable functions are the m-essentially bounded functions.

That X is not sequentially complete has already been noted.
Since the strong operatopr and weak operator topologies on L(Z) are compatible, by

[11, Proposition 2] m is a closed measure. This establishes property (ii).
Let f:£l->C be an m-integrable function. Then / is also integrable with respect to the

spectral measure P:1.-*LS(Z), with the same indefinite integral as for m, and hence / is
P-essentially bounded. Since the P-null sets and m-null sets coincide it follows that / is
m-essentially bounded. Since P-essentially bounded functions are certainly P-integrable
it follows that m-essentially bounded functions are necessarily m-integrable. This
establishes (iv).

To establish (iii), let Z'a denote Z' equipped with the weak-star topology. Then the
adjoint map S-*S' is an isometry of LU(Z) onto the closed subspace L(Z'a) of La(Z') and
a bicontinuous isomorphism of LW(Z) onto Ls(Z'a). Let Y = Ls(Z'a) and m':I.->Y denote
the measure m'(£) = P(£)', Eel,. Via the adjoint map we can identify X[m] with y[m'].
Since y[m'] is a part of the quasicomplete space L^.{Z') it follows from the Dominated
Convergence Theorem for m' that m!(I}(m'))c.Y\rri~\. Since Ll(m)^Lv(m') we conclude
that m(Ll(m))^X[m]. On the other hand the range R(m) = R(P) is a complete Boolean
algebra of projections on Z. Let <R(P))U denote the closed linear span of R(P) in LU(Z).
By [9, Theorem 2], <R(P)),^(i?(P')>ucy is a closed subspace of LW,(Z') and hence
</?(P)>u is sequentially complete in X. By property (iv) and [5, XVII Theorem 2.10] we
have m(L1(m)) = <R(P)>u. Since X[m]c<R(P)>u (e.g. [5, XVII Corollary 3.17]) it follows
that X\m\=m(Ll(m)) = (R(P)}u and hence X[m\ is sequentially complete. By Theorem
2, Ll(m) is complete which is (iii).

It was noted above that Ls(Z'a) a; LW{Z). Combined with Example 2 this leads to the
scheme mentioned in the introduction.
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Remark. Let P:Y,-*LS(Z) be a closed spectral measure. Then for some hyperstonian
space S, some normal (order continuous) strictly positive regular Borel measure n on S
and an equivalent norm on Z, one has that L°°(S,/i)^<R(P)>u. Moreover for each zeZ
and z'eZ', the linear functional T-*(Tz,z'} is an order continuous linear functional on
L°°(S,/i)^<R(P)>u (e.g. [9, Theorem 1]) and hence belongs to l}(S,n). Conversely,
suppose that f eLl(S,n). Now R(P) is a complete Boolean algebra of projections on Z.
Also if {£ j is a family in Z consisting of sets whose pairwise intersections are /i-null,
then ^(Ean supp(/)) is non-zero for at most countably many a (supp(/) is the support
of/). Therefore by [5, XVII Lemma 3.5] there is a vector in Z whose carrier projection
[5, p. 2266] is the characteristic function of supp(/). Hence by [6, Theorem 4.2] there
exist zeZ and z'eZ' such that the linear functional T-+(Tz,z'} on L^S,/z) =* <K(P)>U

may be identified with fel}(S,n) acting on L°(S, n) as a linear functional. Also, if
zu...,zneZ and z\,...,z'neZ', then there exist elements zsZ and z''eZ' such that
<Tz,z'>=X?=i <7z,-,z;> for all Te<R(P)>u^n°(S,n) [6, Corollary 4.3]. Let m:i:^Lw(Z)
be defined as in (4). By the above discussion and arguments similar to those needed to
establish the inequality (1) one may show that the topology on I}(m) is identifiable with
the 0(Loo(S,n),Li(S,^))-topo\ogy on L°°(S,/x); here U°(S,n) = m(l}{m)) = (R(P)>u is
regarded as a complex Banach lattice. That is, it is the topology on H°(S, n) generated
by the seminorms I/'-><|I/' | , |/ |> for each iAeL°°(S,̂ ) and fixed feL\S,n) [13, II
Exercise 28]. Since L°(S,n) is complete for the O ^ S , n), L\S, /i))-topology [13, II
Exercise 28(b)], this gives an alternative method for describing the topology on L}{m)
and establising the completeness of I}{m). However, since [6, Theorem 3.5] is needed to
prove [6, Theorem 4.2], it is not necessarily a simpler approach.
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