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1. I n t r o d u c t i o n . The Weierstrass transform f(x) of a function <j>(y) is 
denned by 

(1.1) /(*) = £y{~^)4>{y)dy 

where 

k(x) = (^Tj-'e-*2 

whenever this integral exists (7, p. 174). I t is also known as the Gauss t rans
form (11; 12). I ts basic properties have been developed and studied in (7) 
and in part icular it has been shown tha t the symbolic operator 

e-D\ D ^ - f 
ax 

will invert this transform under suitable assumptions and with certain defini
tions of this operator. We propose to s tudy the definition 

(1.2) e-D2f(x) =lim(l-~)nf(x) 

for f(x) in C°°. This formula seems to have been first examined by Pollard (9) 
and later by Rooney (12). In so far as convergence of (1.2) is concerned, we 
will considerably improve the results of (12). 

2. T h e invers ion operator . Along with Rooney (12), we note t h a t (1.2) 
is in reality a summabil i ty of the series arising from the following interpreta
tion of e~D2 

(2.1) e~D2f(x) = X±=Jd-D*f{x) = E A ^ / ( 2 * ) M -

For a general series Y^=ocm the summabil i ty process is defined as 
n n |7 

lim X ak,ncjc = l i m ^ 7 brr^+ï s* 
tt-*x> * = o n^œk=o (n — k)\n 

where 
k • 

CU &k,n — 
^0 l' K'n (n-k)ln* 
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This process has been studied by Amerio (1), Bernstein (3), and Rey-Pastor 
(10). We will refer to this as (S) summability. This follows the definition 
of Amerio. It is in fact regular. We will compare it with the familiar Euler 
(E, q) method defined as follows (6, p. 180), 

lim (q + 1)"" E (lV"~^> 0 < 1 < œ 

for the series mentioned above. 

THEOREM 1. Let ^2^=Qcn be sumrnable (E, q) for q satisfying 

(2.2) (2q + 1) < exp[(2<7 + l ) - 1 + 1], 

then the series is sumrnable (S). 

Let go be the unique root of the equation 

2g0 + 1 = exp[(2g0 + l ) " 1 + 1]. 

Clearly 0 < q < q0. From (6, p. 181), cn — o[(2q + l)w], n-^™. The series 
5^L0cw3w then converges for \z\ < (2q + 1)_1. In particular it converges for 
z = ReiQ for any 6 and R = (2q' + l)"1 , (2q + 1) < (2qf + 1) < (2g0 + 1). 
By a result of Bernstein (3, p. 358), the series Y^^cnz

n is sumrnable (S) up to 
and including the value z — x0, where xo is defined by Xo/R = exp((x0/i^) -1 + l) . 
Clearly (x0/R) = 2g0 + l ; t h a t i s x 0 = i?(2g0 + 1) = (2g0 + l ) / (2q ' + 1 )>1 
so that X^L0£n is sumrnable (5). 

The series is indeed sumrnable to the same value. This along with a different 
proof of Theorem 1 has been shown in (4, p. 78). The number q0 is approxi
mately 1.29 . . . . Rey-Pastor (10) has proven that the series 

oo 

£ (- i)V 
is sumrnable (S) to (1 + a)'1 for — 1 < a < a0, a0 = 2qQ + 1, &o = 3.59 . . . . 
The process diverges for a outside this region. On the other hand, (E, q) sums 
this series to (1 + a)"1 for — 1 < a < 2q + 1 and thus we see that Theorem 
1 is best possible. 

Returning to the definition (1.2), we obtain 

(2 3) (i - £)/<*)=ryi^yi—1)^)^ 
where 

(2,4) Kn{x) = Ê (- D* (l) (inykH,k(x) 

and Hn(x) is the Hermite polynomial defined by 

Hn{x) = ( - 1)V2Z>VX\ 

We begin with 
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LEMMA l. 

Part (a) follows from the orthogonality of Hermite polynomials. On the 
other hand, from Bailey (2), 

«^(s) - SIR^WI
 (i - » -̂»w-

Let u2 = (t + l)/£, multiply both sides by e~nt and integrate from 0 to °° 
to get 

JV«r»(i + 0-fffc(^)* 

and this is part (b). 
Some bounds for Kn(x) are now developed. 

LEMMA 2. (a) Kn(x) = 0(w*), w —»<», uniformly for x in any finite interval. 

(b) Xn(*) = 0[«* exp{ (x2/2) + n - n (1 + 2*2/»)* + » log (J + i (1 + 
(2x2/n)*)} ] uniformly for 0 < x < -4 \A&, 4̂ a ^ constant. 

(c) Kn(x) = (9(?z-ïx~2) + 0(n~y) where y is some positive number and the 
result holds uniformly for 0 < x < ne, e < 1/24. 

(d) |Xn(*)| < (1 + 2*2/n)», |*| > (2n + §)*. 

It is a consequence of a result proved in (13, p. 194) that H2n(x) = 
0[((2n)l/nl)] uniformly for x in any finite interval. Thus by Lemma 1, 

Kn{x) = 0{nh) f Y w ' f è ( l + t)ndt, 
«Jo 

n —-> oo. 
o 

An appeal to a result in (5, p. 37) finishes the proof of part (a). For part (b) 
we use the result, (13, p. 236), 

e~x2/2H2n(x) = 0[2n{{2n)\]h] 

uniformly for all x. Thus 

Kn{x) = Oirfi) f ° > U ) -
«/0 

dt 
Vt(i +1) 

where hn(t) = - nt + (n + 1) log(l + /) + (x2t/2(l + 0) . Kit) has a maxi
mum at / = to, 

i + 1 1 + — 
n 

+ o[1-), 

https://doi.org/10.4153/CJM-1961-048-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1961-048-4


596 G. G. BILODEAU 

uniformly for 0 < x < <». Then K„(x) = 0[»*e*n('o)] and it is easy to show 
that 

K(t0) =n-n(l + ^~J + n log [* + \{l + ~ j \ + | + 0(1) 

uniformly for 0 < x < ^4\/w for any constant A. This is part (b). For the 
more difficult part (c), we use the following asymptotic formula for Hn(x) 
(13, p. 195), 

{ s i n [ ( | + | ) (sin 2</> - 2<*>) + ^ ] + 0 ( » _ l ) } 

for w = (2n + 1)* cos 0 and the order condition holds uniformly for 
/i < 0 < 7r — fjij IJL > 0. Thus, after using Stirling's formula, we get 

Kn(x) = = tzJl^h fVfr*(i + ov,|/2(1+l)(sin 0)-
«/o \A 

sinl (» + l)(sin 20 - 20) + ^ J * + 0 (»""*) J V w ' r è ( l + / ) V 
2 1/2(1+*) 

dt 

with 

x[ Y+lJ = ^n + 1 ^ c o s *• 

The second part is 0(n~*ehn(to)) with Aw(£o) as before and we will now assume 
that 0 < x < n€ for e as yet unspecified but less than \. We split the 
remaining integral into two parts Ix and I2 corresponding respectively to the 
ranges (0, t0 + nô~^), (to + n8~\ o°), to as above and 0 < ô < \. hn(t) is a 
decreasing function in the range defining I2 so that 

and we can show that hn(to + nb~*) < hn(to) — c^25 for some constant c and 
0 < Ô < 1/6. Thus J2 = 0(en-(t0) —en 25 

) and 

Kn(x) = ( - iy 
< ; ) ' ' • 

+ 0(»-V"('o)), 

0 < x < we, 0 < e < | . Now we can also show for the same range of x, 
K{h) = 0{n^-1) + 0(1), n^co so that for 0 < e < f, 

Kn{x) = ( - 1) <?)" ' • + #(»"*), 
where 

r V n U ) ( s i n 0 ) - " s i n 
o 

(» + J) (sin 20 - 20) 
4 J k& 
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with 

x\rh t Y ,A , . a , ,.N . . , „ , .x . *2* = (4» + 1)¥ cos 0, gn(0 = -nt + n log (1 + /) + ; 
+ ^ , . , „ , . , _ , , , 6I IW ,„ , , „ ^ 6 V * , „y , 2 ( 1 + / ) ' 

For 0 < € < 8/2 < 1/24, gn(t) = ( - n*2/2) + 0(nr*-v) uniformly for 
0 < x < n€ where 7 is some small positive number . Also 

(sin 0)~* = 1 + 0(n~l~y), 

sin[(n + J) (sin 20 - 20) + ~ J 

= ( - l)"cos[(4n + l)*xy/t - i(4» + 1)***8/2] + 0(n35~7/4) 

and the last term is 0(n~*~y) for <5 < 1/12. Then we can show that 

1/4 f*vnto+n8 
1/4 nvntQ+n0 

Kn{x) = - V ^ , / 2 «"* 

cos T xy/u — zr—i xuz/2 \du + 0(n y) 
\_ m v 2m J 

uniformly for 0 < x < ne. The upper limit may be replaced by 00 and the 
error is 

0{nh~cn2h). 

We now split up the integral according to the addition formula for the cosine 
function into J\ and J2. J\ corresponds to the integral with the cosines in 
the integrand. Two integrations by parts will show that J\ = 0(n~*x~2) 
+ 0{n~z~y). In a similar way, the second part J2 = 0(n~¥). Combining all 
of these results, we obtain 

Kn (x) = 0(n-*x~2) + 0(nry), n->°o 

uniformly for 0 < x < n\ 
For part (d), we use the bound for Hn(x) developed in (8, p. 158), 

\Hn(x)\ <2**/2\x\n, \x\ > ( » + • * ) * 

so that for |x| > (2n + £)* 

This completes the proof of the lemma. 

3. The main theorem. We begin with a lemma on the roots of a certain 
transcendental equation. 

L E M M A 3. There is one and only one solution to the pair of equations 

https://doi.org/10.4153/CJM-1961-048-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1961-048-4


598 G. G. BILODEAU 

-( l+f) è + iog[è + è(l+gf 
k2 , , L . k2 

k2 

1 + (4 - *) | 

- (1 - A ) j + log\l+f) = 0 

outside of the trivial pair k2 = 0, A = anything. 

The change of variable u = (1 + &2/2)* and the elimination of /I results in 

O - 3)(u -I) * ( 2u 
= log 

2 

1 + M 

and it is easy to see from this that there are only two solutions and that 
u = 1 corresponds to the trivial solution. The important solution (&0

2, A$) is 

AQ = . 7 3 8 . . . , &o = 49.876.. . . 

We now prove our main result. 

THEOREM 2. Suppose A < A0, where Ao is defined in Lemma 3 and that 
»+co 

r 
If, moreover, </>(x0+) and $(x0 —) exist and fix) is the Weierstrass transform 
of 4>, then 

W-KD (-?) i m U - — J /(*) = è[0(*o+) + *(*o - ) ] . 

Let A = | [0(xo+) + <Kx0 — )]• By Lemma 1, we can write 

(i - 2!)"/M - A - £X^F>.(^V<>> - A» 
The integral is decomposed into I\, I2, 1% corresponding respectively to the 
ranges (— °°, Xo — rf), (xo — rj, x0 + ??), (x0 + 77, °°), ?y > 0. Again decompose 
J3 into Iz, I3", I-i" corresponding respectively to (x0 + rj, x0 + k0n

e), 
(XQ -{- kone, Xo •+• ko\/n), (x0 + kQ\/n, 00) with e, &0 as before. Now, by 
Lemma 2, 

J»oo 

e '«VA" , / 4 |*(» + *o) _ A |d M 

where g(«) = — (1 — J4)W2 /4 + n log(l + (M2 /2M)). g(u) has a maximum for 

Then 

(1 - /lo)/ 
. / (o0_±AA\h / *, / 
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Also g'(u) < 0 in the range of integration so that 

F ' 0[é g(kovn) J*oo 

kovn 

e Au '^\<t>(u + XQ) — A\du. 

But 

g(&o ̂ Jn) = n\ - ( l - ^ ) ^ + log( l+ ' S 0 

< n - ( l - ^ o ) f + log(l+f = 0 

and thus I%" = 0(1), w —>°o. On the other hand, by Lemma 2 

JS' = 0(»*) / ( î V ^ /4|<K« + *o) - A\du. 
J kone 

Now 

(3.1) d(u) = n+{A-V ~ - »(l + -J J + « log 

= (J _ ^ 0 ) ^ + A(«). 

4 +èU 
U_ 

2n 

By hypothesis h(ko\/n) = 0 and also h(0) = 0. It is not difficult to show 
that h(u) < 0 for 0 < u < k0\/n. Then from (3.1) 

maxd(tt) < î(^4 - A0)(k0n
e)2. 

Therefore 
nkQVn 

K = 0(»V*Î/4)U-A,)",€) <rA",/4|*(« + *o) - A|rf« 

and this is 0(1). Now by Lemma 2, 

- w 2 /4 
</>(̂  + xo) — A|ûfo 

J» /cow 

^ M 2 / V 2 | 0 ( ^ + XO) - A|d« 

+ 0(0 P 
and this is also o(l), n-^>°°. Thus 73 = 0(1). The proof that I± = 0(1) is 
similar. There remains 72. Since Kn(x) is even, 

(3.2) /2 = / J + X ^ ^ y « ( ^ p 7 [ < / > ( : y ) _ *(*°+)^ 

For the first integral, given <5 > 0 choose y\ such that \§(y) — <K#o+)| < 5 
for Xo < y < Xo + rj. Then 
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and this last integral is split up according to the ranges (0, ft_î), (V~S rj). By 
Lemma 2, 

f \-u2/4\Kn(~)\du = 0(n*) £ \~u2/idu = 0(1), n - > «>. 

Also 

J V w 2 / x(f ) l^ = 0(n-*) J%"M2/V2^ + 0 ( 0 JV*2/4^ 

= 0(0 f uT2du + 0{n~y) = 0(1). 

Thus the first integral in (3.2) is 50(1), ?z—»°°. The same holds true for the 
second integral and therefore 

lim \I2\ < Mb, M a constant. 

This proves the theorem. 
This result should be compared with the theorem on convergence of (2.1). 

The series inverts approximately when A = \ (referring to the A of Theorem 
2). See (11) and (4, p. 12). Not all functions which are Weierstrass transforms 
can be inverted by our inversion formula. For example (7, p. 178), let 

/(*) = eaxi = J + ^ ( ^ f J ! ) ( l + 4a)-Va /1+4a)^ 

for — I < a < oo. The series (2.1) is now 

23rr#2»(V- ax) 
n=o n\ 

e , 

which for x = 0 is 

»(2»)! » 
S ' " 1 ' W) 2 CL 

This is (1 + 4&)~2 for |4a| < 1. It can be shown (4, p. 107) that this series 
is summable (5) to (1 + 4a)-3f for (4a) < exp((l/4a) + 1) and diverges 
otherwise. That is, it diverges for a > .897 . . . . 
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