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Abstract
For 𝑔 ≥ 2 and 𝑛 ≥ 0, let H𝑔,𝑛 ⊂M𝑔,𝑛 denote the complex moduli stack of n-marked smooth hyperelliptic curves
of genus g. A normal crossings compactification of this space is provided by the theory of pointed admissible
Z/2Z-covers. We explicitly determine the resulting dual complex, and we use this to define a graph complex
which computes the weight zero compactly supported cohomology of H𝑔,𝑛. Using this graph complex, we give
a sum-over-graphs formula for the 𝑆𝑛-equivariant weight zero compactly supported Euler characteristic of H𝑔,𝑛.
This formula allows for the computer-aided calculation, for each 𝑔 ≤ 7, of the generating function h𝑔 for these
equivariant Euler characteristics for all n. More generally, we determine the dual complex of the boundary in any
moduli space of pointed admissible G-covers of genus zero curves, when G is abelian, as a symmetric Δ-complex.
We use these complexes to generalize our formula for h𝑔 to moduli spaces of n-pointed smooth abelian covers of
genus zero curves.
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1. Introduction

For integers 𝑔 ≥ 2 and 𝑛 ≥ 0, let H𝑔,𝑛 ⊂M𝑔,𝑛 denote the complex moduli stack of n-marked smooth
hyperelliptic curves of genus g. This space is a smooth Deligne–Mumford stack of dimension 2𝑔+𝑛−1.
The group 𝑆𝑛 acts on H𝑔,𝑛 by permuting the marked points, and the rational cohomology groups with
compact support 𝐻𝑖

𝑐 (H𝑔,𝑛;Q) are 𝑆𝑛-representations in the category of mixed Hodge structures over
Q. In particular, each cohomology group 𝐻𝑖

𝑐 (H𝑔,𝑛;Q) carries a weight filtration

𝑊0𝐻
𝑖
𝑐 (H𝑔,𝑛;Q) ⊂ 𝑊1𝐻

𝑖
𝑐 (H𝑔,𝑛;Q) · · · ⊂ 𝑊4𝑔+2𝑛−2𝐻

𝑖
𝑐 (H𝑔,𝑛;Q) = 𝐻𝑖

𝑐 (H𝑔,𝑛;Q),

which is preserved by the 𝑆𝑛-action. In this paper, we study the 𝑆𝑛-representation defined by the weight
zero piece of this filtration.

When X is a smooth and separated variety or Deligne-Mumford stack, Deligne’s weight spectral
sequence [26, §3.2] computes the associated graded pieces of the weight filtration on the compactly
supported cohomology of X. It identifies the weight zero piece with the reduced cohomology of the dual
complex of any normal crossings compactification of X. We will furnish a normal crossings compactifi-
cation ofH𝑔,𝑛 using the theory of pointed admissibleZ/2Z-covers, as developed by Abramovich–Vistoli
[3], Abramovich–Corti–Vistoli [2] and Jarvis–Kaufmann–Kimura [36], following Harris–Mumford’s
original theory [32]. Denoting the dual complex of the resulting boundary divisor by Θ𝑔,𝑛, we then
study the weight zero compactly supported cohomology of H𝑔,𝑛 via the identification

𝑊0𝐻
𝑖
𝑐 (H𝑔,𝑛;Q) � 𝐻𝑖−1(Θ𝑔,𝑛;Q) (1.1)

mentioned above, where 𝐻∗ denotes reduced cohomology. Along the way, we also explicitly determine
the dual complex of the boundary in any space of pointed admissible G-covers of genus zero curves, for
abelian groups G (Theorem 3.5).

Our main result concerns the 𝑆𝑛-equivariant weight zero compactly supported Euler characteristic

𝜒𝑆𝑛
(
𝑊0𝐻

∗
𝑐 (H𝑔,𝑛;Q)

)
:=

4𝑔+2𝑛−2∑
𝑖=0
(−1)𝑖 ch𝑛

(
𝑊0𝐻

𝑖
𝑐 (H𝑔,𝑛;Q)

)
∈ Λ,

where ch𝑛 (·) denotes the Frobenius characteristic of an 𝑆𝑛-representation: this is an element of the ring

Λ = lim
←−
Q[𝑥1, . . . , 𝑥𝑛]

𝑆𝑛

of symmetric functions, which encodes the character of the representation. See [38] or [45] for more on
symmetric functions and the Frobenius characteristic.

For each 𝑔 ≥ 2, we define

h𝑔 :=
∑
𝑛≥0

𝜒𝑆𝑛
(
𝑊0𝐻

∗
𝑐 (H𝑔,𝑛;Q)

)
to be the generating function for these equivariant Euler characteristics. Note that h𝑔 is an element
of Λ̂, the degree completion of Λ. In Theorem A below, we prove a sum-over-graphs formula for the
generating function h𝑔. The precise definition of the terms in the formula can be found in Section 6.
For now, we only remark that 𝑇<3

2𝑔+2 is a finite set of trees, and given such a tree C, there is a canonically
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associated vertex-weighted graph 𝑃𝐶 which can roughly be understood as a ‘tropical double cover’ of C;
see Section 4 for details on this perspective.

Theorem A. We have

h𝑔 =
∑

𝐶∈𝑇 <3
2𝑔+2

(−1) |𝐸𝐶 |

|Aut(𝑃𝐶 ) |

∑
𝜏∈Aut(𝑃𝐶 )

sgn(𝜏 |𝐸𝐶 )
∏
𝑘≥1
(1 + 𝑝𝑘 )

𝑓 (𝑃𝐶 ,𝜏,𝑘) ,

where 𝐸𝐶 is the set of edges of the tree C, 𝑝𝑘 =
∑
𝑛>0 𝑥

𝑘
𝑛 ∈ Λ̂ is the kth power sum symmetric function,

and 𝑘 · 𝑓 (𝑃𝐶 , 𝜏, 𝑘) is given by the compactly supported Euler characteristic of the set of points in 𝑃𝐶
which have orbit of length k, under the action of 𝜏.

Implementing Theorem A on a computer, we are able to compute h𝑔 explicitly for 2 ≤ 𝑔 ≤ 7; see
Table A.1. The code is available at [14]. Our data allow us to extract the polynomials 𝐹𝑛 (𝑡) ∈ Q[𝑡], for
each 𝑛 ≤ 9, which have the property that 𝐹𝑛 (𝑔) = 𝜒0

𝑐 (H𝑔,𝑛) for each 𝑔 ≥ 2, where

𝜒0
𝑐 (H𝑔,𝑛) :=

4𝑔+2𝑛−2∑
𝑖=0
(−1)𝑖 dimQ𝑊0𝐻

𝑖
𝑐 (H𝑔,𝑛;Q)

denotes the numerical weight zero compactly supported Euler characteristic. See Proposition C in
Section 1.3 below. Also see Figure A.1 in Appendix A for an illustration of Theorem A when 𝑔 = 2; in
this case, 𝑇<3

6 consists of three trees, and their contributions to h2 can be computed by hand.
Our proof of Theorem A relies on our description of the cellular chain complex of Θ𝑔,𝑛 as a graph

complex generated by certain double covers of trees, which are a special case of the theory of graph-
theoretic admissible covers we develop in Section 3. We find that several subcomplexes of this graph
complex are acyclic; the proofs are given in Section 5. As in earlier work onM𝑔,𝑛 [22], one conceptually
important subcomplex is the repeated marking subcomplex (i.e., the subcomplex spanned by graph-
theoretic admissible covers containing a vertex supporting more than one marking). This subcomplex is
acyclic (Theorem 5.5), and after quotienting by it, the resulting chain complex is related to configuration
spaces of distinct points on graph-theoretic admissible covers; see [10, 11] for related work. Since
Theorem A is about Euler characteristics, we may work one graph-theoretic admissible cover at a time,
summing the individual contributions. For each individual graph-theoretic admissible cover, we use
Proposition 6.3, explained more below, to calculate its contribution. This proves Theorem A.

Proposition 6.3 may be useful in other applications, so we mention it briefly here: it gives a formula
for the completed symmetric function∑

𝑛≥0
𝜒𝑆𝑛𝑐 ((Conf𝑛 (𝑋) × Δ◦)/𝐺),

where X is any finite CW complex, Δ◦ is an open simplex, G is a finite group, and G acts on X cellularly
and on Δ◦ by permuting vertices. See Section 6. This proposition is closely inspired by a result of
Gorsky [31, Theorem 2.5] concerning complex quasi-projective varieties X with an action of a finite
group; our specific formulation is a new contribution. In particular, it does not appear in the work of
Chan–Faber–Galatius–Payne on the top weight cohomology of M𝑔,𝑛, where an alternate argument,
which is less geometric, is used [20, Proposition 3.2].

Now let us turn our attention to individual cohomology groups, rather than Euler characteristics.
First, for 𝑛 = 0, 1, 2 and 3, the cohomology of H𝑔,𝑛 was completely computed by Tommasi [46]; see
Section 1.2. The consequences of these computations for the weight zero part of cohomology with
compact supports can be interpreted via our work as statements about chain complexes of graph-
theoretic admissible covers. In Section 5, we prove some of these statements, using the acyclicity results
mentioned above. In particular, we deduce the following facts, first proved by Tommasi:
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Proposition B. For all 𝑔 ≥ 2, we have
1. 𝑊0𝐻

𝑖
𝑐 (H𝑔,𝑛;Q) = 0 for all i, when 𝑛 ≤ 1;

2. When 𝑛 = 2, we have

𝑊0𝐻
2𝑔+1
𝑐 (H𝑔,2;Q) � Q.

As an 𝑆2-representation, we have

𝑊0𝐻
2𝑔+1
𝑐 (H𝑔,2;Q) �

{
triv if 𝑔 is even
sgn if 𝑔 is odd.

Part (1) of Proposition B is established via a spectral sequence argument, similar to the ones we use
for acyclicity of other subcomplexes of Θ𝑔,𝑛. For part (2), we write down an explicit cellular cycle on
Θ𝑔,2 corresponding to the nonzero class in 𝑊0𝐻

2𝑔+1(H𝑔,2;Q); see Figure 11 in Section 5. Tommasi
shows additionally that 𝑊0𝐻

𝑖
𝑐 (H𝑔,2;Q) = 0 for 𝑖 ≠ 2𝑔 + 1, but we do not see how to prove this directly

using our graph complex, nor have we investigated whether we can use our methods to re-deduce
𝑊0𝐻

∗
𝑐 (H𝑔,3;Q) for all g.

1.1. The support of 𝑊0𝐻
∗
𝑐 (H𝑔,𝑛;Q)

It is worth noting that the weight zero compactly supported cohomology of H𝑔,𝑛 is supported in at most
two degrees. Precisely,

𝑊0𝐻
𝑖
𝑐 (H𝑔,𝑛;Q) = 0 unless 𝑖 = 2𝑔 − 2 + 𝑛 or 𝑖 = 2𝑔 − 1 + 𝑛. (1.2)

We now explain the claim (1.2), which follows from an argument we learned from D. Petersen. To
sidestep stack-theoretic issues, let us momentarily replace H𝑔,𝑛 by its coarse moduli space 𝐻𝑔,𝑛; this
is inconsequential on the level of rational cohomology. It is well known that 𝐻𝑔 is affine, as it can be
identified with the quotient M0,2𝑔+2/𝑆2𝑔+2. In general, 𝐻𝑔,𝑛 is not far from affine; as explained by D.
Petersen in a MathOverflow post [24], the affine stratification number [43] of 𝐻𝑔,𝑛 is 1 for all 𝑛 > 0.
By [43, Corollary 4.19] and a suitable comparison theorem for étale cohomology [39, Theorem 21.1],
we may conclude that

𝐻𝑖 (H𝑔,𝑛;Q) = 0 for 𝑖 > 2𝑔 + 𝑛, and 𝐻𝑖
𝑐 (H𝑔,𝑛;Q) = 0 for 𝑖 < 2𝑔 − 2 + 𝑛,

the latter by Poincaré duality. As the dual complexΘ𝑔,𝑛 of the normal crossings compactification ofH𝑔,𝑛

by pointed admissible Z/2Z-covers is a generalized cell complex of dimension 2𝑔 − 2 + 𝑛 (Section 3),
the claim (1.2) follows immediately from (1.1).

Thus, our formula for h𝑔 is a formula for the difference of the two 𝑆𝑛-representations in (1.2) and
can be used to bound the multiplicities of Specht modules appearing in them individually. We have not
investigated whether h𝑔 is, in fact, a cancellation-free formula for this difference.

1.2. Related work on the cohomology of H𝑔,𝑛

Recently, there have been a number of significant advances on the geometry of moduli spaces of pointed
hyperelliptic curves. Canning–Larson study the rational Chow ring of H𝑔,𝑛 – in particular, determining
it completely for 𝑛 ≤ 2𝑔 + 6 [16]. Their results also have implications for rationality of H𝑔,𝑛. More
generally, there has been progress on understanding the birational geometry ofH𝑔,𝑛; see, for example, the
overview and references in that paper. In another direction, Bergström–Diaconu–Petersen–Westerland
[7] compute the stable homology of braid groups with coefficients in (any Schur functor applied to)
the Burau representation. These results have implications for the stable homology of moduli spaces of
hyperelliptic curves with twisted coefficients. They can also be related to the Serre spectral sequence on
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rational cohomology for the fiber bundle Conf𝑛 (𝑆𝑔) → H𝑔,𝑛 → H𝑔, as C. Westerland has explained to
us. Our focus here is the cohomology groups of H𝑔,𝑛 with (untwisted) Q-coefficients, and specifically
the weight zero compactly supported cohomology groups.

The topological Euler characteristic of H𝑔,𝑛 has been computed by Bini [13], but his techniques are
not compatible with the weight filtration. Gorsky [30] calculates the equivariant Euler characteristic

𝜒𝑆𝑛 (H𝑔,𝑛) :=
4𝑔+2𝑛−2∑
𝑖=0
(−1)𝑖 ch𝑛 (𝐻𝑖 (H𝑔,𝑛;Q))

by fibering H𝑔,𝑛 over H𝑔. The fiber of this morphism over a point of H𝑔 representing a curve C is equal
to Conf𝑛 (𝐶)/Aut(𝐶). Gorsky proceeds by stratifying H𝑔 by the 𝑆𝑛-equivariant Euler characteristic of
the fibers and then calculating the Euler characteristic of each stratum. Our techniques are similar in
spirit to Gorsky’s. The 𝑆𝑛-equivariant weight zero compactly supported Euler characteristic of H𝑔,𝑛

is equal to ℎ𝑛 − 𝜒𝑆𝑛 (Θ𝑔,𝑛), where ℎ𝑛 ∈ Λ is the nth homogeneous symmetric function. As explained
above, we first remove an acyclic locus from Θ𝑔,𝑛 and then stratify the remaining space in terms of
configuration spaces of graphs, summing up these contributions to give our formula (Section 6).

1.3. Relation to point-counting

Bergström [6] studies the cohomology of H𝑔,𝑛 via point-counting: for all 𝑔 ≥ 2, he gives an algorithm
to determine the count of F𝑞-points of H𝑔,𝑛 for 𝑛 ≤ 7 and for all prime powers q. Together with the
results of [8], Bergström’s work implies that for odd q, the number of F𝑞-points of H𝑔,𝑛 agrees with a
polynomial 𝑃𝑔,𝑛 (𝑞) for 𝑛 ≤ 9 (there is a different polynomial for even q). By [33, Theorem 6.1.2(3)],
we have an equality

𝑃𝑔,𝑛 (𝑞) =
2𝑔+𝑛−1∑
𝑗=0

𝜒
2 𝑗
𝑐 (H𝑔,𝑛)𝑞

𝑗 ,

where

𝜒𝑘𝑐 (H𝑔,𝑛) :=
4𝑔+2𝑛−2∑
𝑖=0
(−1)𝑖 dimQGr𝑊𝑘 𝐻𝑖

𝑐 (H𝑔,𝑛;Q),

and

Gr𝑊𝑘 𝐻𝑖
𝑐 (H𝑔,𝑛;Q) := 𝑊𝑘𝐻

𝑖
𝑐 (H𝑔,𝑛;Q)/𝑊𝑘−1𝐻

𝑖
𝑐 (H𝑔,𝑛;Q)

is the kth associated graded piece of the weight filtration. In particular, the constant term of 𝑃𝑔,𝑛 (𝑞)
is equal to the weight zero compactly supported Euler characteristic. Bergström’s original work [6] is
𝑆𝑛-equivariant, and we have confirmed that our data agree with his for 𝑛 ≤ 7. He has explained to us
that [6, Theorem 5.2] and [8] imply that for each 𝑛 ≤ 9, there exists a polynomial 𝐹𝑛 (𝑡) ∈ Q[𝑡], with
degree bounded by 𝑛 − 2 if n is even and 𝑛 − 3 if n is odd, such that

𝜒0
𝑐 (H𝑔,𝑛) = 𝐹𝑛 (𝑔)

for all g. With these bounds on the degrees, our formula allows us to compute this polynomial for all
𝑛 ≤ 9, using the data in Table A.3. The polynomials 𝐹𝑛 (𝑡) can certainly be calculated from Bergström’s
work but did not explicitly appear there, so we record them below. In each case, the degree of 𝐹𝑛 (𝑡)
attains the communicated bound.

Proposition C. We have 𝜒0
𝑐 (H𝑔,𝑛) = 0 for 𝑛 ∈ {0, 1, 3}, while 𝜒0

𝑐 (H𝑔,2) = −1. For 4 ≤ 𝑛 ≤ 9, we have
the following:
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𝜒0
𝑐 (H𝑔,4) = 𝑔(1 − 𝑔)

𝜒0
𝑐 (H𝑔,5) = 5𝑔(−1 + 𝑔)

𝜒0
𝑐 (H𝑔,6) =

1
8
𝑔(198 − 203𝑔 + 18𝑔2 − 13𝑔3)

𝜒0
𝑐 (H𝑔,7) =

7
4
𝑔(−78 + 83𝑔 − 18𝑔2 + 13𝑔3)

𝜒0
𝑐 (H𝑔,8) =

1
4
𝑔(3420 − 3784𝑔 + 1355𝑔2 − 1005𝑔3 + 25𝑔4 − 11𝑔5)

𝜒0
𝑐 (H𝑔,9) =

9
4
𝑔(−2700 + 3092𝑔 − 1545𝑔2 + 1195𝑔3 − 75𝑔4 + 33𝑔5).

1.4. Relation to previous work on M𝑔,𝑛

Our calculations are a new step in understanding weight zero compactly supported rational cohomology
of moduli spaces via combinatorics of normal crossings compactifications [1, 15, 21, 22, 20]. In our
calculation of h𝑔, we proceed in a similar fashion to Chan–Faber–Galatius–Payne [20], who calculate
the 𝑆𝑛-equivariant weight zero Euler characteristic of M𝑔,𝑛. They use the dual complex Δ𝑔,𝑛 of the
Deligne–Mumford–Knudsen compactification M𝑔,𝑛 ⊂ M𝑔,𝑛, which can be interpreted as a tropical
moduli space of curves [1]. They express the generating function

z𝑔 :=
∑
𝑛≥0

𝜒𝑆𝑛
(
𝑊0𝐻

∗
𝑐 (M𝑔,𝑛;Q)

)
as a sum over contributions from configuration spaces of graphs. The contribution from each graph is a
sum of monomials in the inhomogeneous power sum symmetric functions 𝑃𝑖 := 1 + 𝑝𝑖 , of degree equal
to the topological Euler characteristic of the graph. A crucial difference between their work and ours,
which has been an unexpected subtlety here, is that they find that the only graphs contributing to their
formula are connected with first Betti number g. As such, their formula for z𝑔 is a Laurent polynomial in
the 𝑃𝑖’s, homogeneous of degree 1− 𝑔, where 𝑃𝑖 has degree i. The ability to focus on graphs with fixed
Euler characteristic is a significant conceptual aid to their work. In contrast, we find that while all of the
graphs contributing to h𝑔 are connected double covers of metric trees, they do not have fixed first Betti
number, so their topological Euler characteristics vary, and indeed for 𝑔 ≥ 3, the formulas for h𝑔 are not
homogeneous in the 𝑃𝑖’s. When 𝑔 = 2, we have H2,𝑛 = M2,𝑛, so h2 = z2 is homogeneous of degree −1.

1.5. Applications to moduli spaces of admissible G-covers in genus zero

While our main focus in this paper is the moduli space H𝑔,𝑛, our techniques are more general. As
mentioned above, Theorem 3.5 in Section 3 contains a description of the dual complex of the boundary
divisor in any moduli space of pointed admissible G-covers of genus zero curves, when G is an abelian
group. We specialize to 𝐺 = Z/2Z in order to study H𝑔,𝑛. We can prove a generalization of Theorem A
to more general moduli spaces of pointed G-covers; see Remarks 5.13 and 6.6, and Theorem D in
Section 6.

2. Pointed admissible G-covers and their moduli

In this section, we recall moduli spaces of pointed admissible G-covers, following [3, 2, 32, 36]. We
determine the connected components of these spaces when 𝑔 = 0 and G is abelian (Proposition 2.4), and
we give a normal crossings compactification (Proposition 2.5). Later, in Section 3, we will determine the
dual complex of this compactification. Ultimately, we will obtain a normal crossings compactification
of H𝑔,𝑛 and the corresponding dual complex as a special case in Section 4.
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2.1. Admissible G-covers

Let G be a finite group, and let 𝑔, 𝑛 ≥ 0 be integers such that 2𝑔 − 2 + 𝑛 > 0. We recall the notion of an
admissible G-cover of nodal curves of type (𝑔, 𝑛) over an arbitrary base scheme T ([36, Definition 2.1],
[2, Definition 4.3.1]). It is the data of an n-marked, stable genus g curve (𝐶, 𝑝1, . . . , 𝑝𝑛) over T, and a
covering of nodal curves 𝜙 : 𝑃→ 𝐶 with an action of G on P leaving 𝜙 invariant, such that

1. 𝜙 is a principal G-bundle away from the nodes and markings of C,
2. The analytic local equations for 𝑃→ 𝐶 → 𝑇 at a point 𝑝 ∈ 𝑃 over a node of C are

Spec 𝐴[𝑧, 𝑤]/(𝑧𝑤 − 𝑡) → Spec 𝐴[𝑥, 𝑦]/(𝑥𝑦 − 𝑡𝑟 ) → Spec 𝐴,

where 𝑡 ∈ 𝐴, 𝑥 = 𝑧𝑟 and 𝑦 = 𝑤𝑟 for some integer 𝑟 > 0.
3. The analytic local equations for 𝑃→ 𝐶 → 𝑇 at a point 𝑝 ∈ 𝑃 over a marked point of C are

Spec 𝐴[𝑧] → Spec 𝐴[𝑥] → Spec 𝐴,

where 𝑥 = 𝑧𝑠 for some integer 𝑠 > 0.
4. If 𝑥 ∈ 𝑃 is a geometric node, then the action of the stabilizer 𝐺𝑥 of x on the tangent spaces of the

two analytic branches at x is balanced: the characters of these two one-dimensional representations
of 𝐺𝑥 are inverse to each other.

Admissible G-covers of type (𝑔, 𝑛) form a Deligne-Mumford stack, denoted Adm𝑔,𝑛 (𝐺); this is a
consequence of the identification of Adm𝑔,𝑛 (𝐺) with the space Bbal

𝑔,𝑛 (𝐺) of balanced twisted G-covers
of type (𝑔, 𝑛) which is proven in [3] to be a Deligne-Mumford stack. We may write G-cover rather than
admissible G-cover for short.

2.2. Admissible covers of smooth curves

Let Adm◦𝑔,𝑛 (𝐺) denote the open substack of G-covers in which the target curve (and hence also the
source curve) is smooth. In this section, we will determine the connected components of Adm◦0,𝑛 (𝐺)
(Proposition 2.1). We will use this result later when determining the connected components of the
corresponding space of pointed admissible G-covers.

There is a forgetful map

𝜋 : Adm◦𝑔,𝑛 (𝐺) →M𝑔,𝑛

sending a G-cover 𝑃 → (𝐶, 𝑝1, . . . , 𝑝𝑛) to the n-pointed curve (𝐶, 𝑝1, . . . , 𝑝𝑛). The morphism 𝜋 is
étale; this property can be deduced from [9, Theorem 5.1.5], as explained in Proposition 6.5.2 of op.
cit. Working over C, the fiber over (𝐶, 𝑝1, . . . , 𝑝𝑛) is identified with the set

Hom(𝜋1 (𝐶 − {𝑝1, . . . , 𝑝𝑛}, 𝑝0), 𝐺)/𝐺, (2.1)

where G acts by conjugation, and 𝑝0 ∈ 𝐶 − {𝑝1, . . . , 𝑝𝑛} is any choice of basepoint. There are no
other restrictions on the set (2.1); in particular, the source curves P are not required to be connected.
An element of the set (2.1) specifies a G-cover of the punctured curve 𝐶 − {𝑝1, . . . , 𝑝𝑛}, which can be
extended uniquely over the punctures. Then the data of the morphism 𝜋 is equivalent to the data of the
action of 𝜋1 of the base space M𝑔,𝑛 on the fiber (2.1) above. We shall now consider this action in the
case 𝑔 = 0, when the action may be understood via the classical Hurwitz theory of P1. We denote by

𝜀ni
𝑛 (𝐺) := {(𝑔1, . . . , 𝑔𝑛) ∈ 𝐺

𝑛 : 𝑔1 · · · 𝑔𝑛 = 1}

the set of Nielsen classes. We do not impose that 𝑔1, . . . , 𝑔𝑛 generate G; correspondingly, our source
curves are not required to be connected. The group G acts by conjugation on 𝜀ni

𝑛 (𝐺), and the elements
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of 𝜀ni
𝑛 (𝐺)/𝐺 are called inner Nielsen classes. Recall the following relationship between the set (2.1) to

the set of inner Nielsen classes: choose loops 𝜌1, . . . , 𝜌𝑛 around 𝑝1, . . . , 𝑝𝑛, respectively, based at 𝑝0,
such that 𝜌1, . . . , 𝜌𝑛 generate 𝜋1 (𝐶 − {𝑝1, . . . , 𝑝𝑛}, 𝑝0) subject only to the relation

𝜌1 · · · · · 𝜌𝑛 = 1.

Such a choice identifies the set (2.1) with the inner Nielsen classes.
Now the following diagram of pullback squares relates Adm◦0,𝑛 (𝐺) to Hurwitz spaces of G-covers.

Adm◦0,𝑛 (𝐺)

��

�� H𝐺
P1 ,𝑛

��

�� 𝑈H𝐺
P1 ,𝑛

��

M0,𝑛 �� Conf𝑛 (P1) �� UConf𝑛 (P1).

The spaces above are defined as follows. The configuration spaces (ordered and unordered) of n points
in P1 are denoted Conf𝑛 (P1) and UConf𝑛 (P1), respectively. The space 𝑈H𝐺

P1 ,𝑛
is the moduli space

parametrizing sets 𝑆 ⊂ P1 of n points, together with a ramified G-cover 𝑓 : 𝑃→ P1 whose branch locus
is contained in S. The space H𝐺

P1 ,𝑛
is the ordered version of this space, obtained by pullback. The map

M0,𝑛 → Conf𝑛 (P1) fixes (𝑝1, 𝑝2, 𝑝3) to be (0, 1,∞), for instance.

Proposition 2.1. If G is abelian, then H𝐺
P1 ,𝑛
→ Conf𝑛 (P1), and hence also Adm◦0,𝑛 (𝐺) →M0,𝑛, is a

trivial bundle. As a variety, Adm◦0,𝑛 (𝐺) is isomorphic to M0,𝑛 × 𝜀ni
𝑛 (𝐺).

Proof. For an arbitrary finite group G, the way in which 𝑈H𝐺
P1 ,𝑛

is a covering space over UConf𝑛 (P1)

is classically understood, essentially going back to Hurwitz [35]; see [27, p. 547]. The following is a
complete description. Let 𝑆 = {𝑠1, . . . , 𝑠𝑛}. For an appropriate choice of basis, Hom(𝜋1 (P

1 − 𝑆, 𝑝0), 𝐺)
is identified with 𝜀ni

𝑛 (𝐺). And 𝜋1 (UConf𝑛 (P1)) has a presentation with generators 𝛾1, . . . , 𝛾𝑛−1, where
𝛾𝑖 interchanges points i and 𝑖 + 1. Furthermore, the generators 𝛾𝑖 act on 𝜀ni

𝑛 (𝐺) via

𝛾𝑖 · (𝑔1, . . . , 𝑔𝑛) = (𝑔1, . . . , 𝑔𝑖−1, 𝑔𝑖𝑔𝑖+1𝑔
−1
𝑖 , 𝑔𝑖 , 𝑔𝑖+2, . . . , 𝑔𝑛).

In the case that G is abelian, the action is

𝛾𝑖 · (𝑔1, . . . , 𝑔𝑛) = (𝑔1, . . . , 𝑔𝑖−1, 𝑔𝑖+1, 𝑔𝑖 , 𝑔𝑖+2, . . . , 𝑔𝑛).

In other words, the action of 𝜋1 (UConf𝑛 (P1)) on 𝜀ni
𝑛 (𝐺) factors through 𝜋1 (UConf𝑛 (P1)) → 𝑆𝑛.

Passing to the ordered configuration space, we therefore obtain a trivial action of the spherical braid
group 𝜋1 (Conf𝑛 (P1)) on 𝜀ni

𝑛 (𝐺), proving the claim. �

Remark 2.2. Stack-theoretically, we have

Adm◦0,𝑛 (𝐺) �M0,𝑛 × [𝜀
ni(𝐺)/𝐺] (2.2)

if G is abelian, where G acts trivially on 𝜀ni(𝐺). Under this identification, write

Adm◦0,𝑛 (𝐺; 𝑔1, . . . , 𝑔𝑛) (2.3)

for the connected component of Adm◦0,𝑛 (𝐺) corresponding to the Nielsen class (𝑔1, . . . , 𝑔𝑛); it is
isomorphic to M0,𝑛 × 𝐵𝐺.
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2.3. Pointed admissible covers

We study spaces of pointed admissible covers and determine the connected components of these spaces
in Proposition 2.4. This is an important calculation toward the computation of the connected boundary
strata in Theorem 3.5 since the boundary strata of spaces of pointed admissible covers are quotients of
products of smaller spaces of pointed admissible covers.

Let G be any group, not necessarily abelian. Let M𝐺

𝑔,𝑛 denote the space of n-marked pointed admis-
sible G-covers of genus g [36]. It is a moduli space for nodal admissible G-covers 𝑃→ (𝐶, 𝑝1, . . . , 𝑝𝑛),
together with a choice of a lift 𝑝𝑖 on P of each 𝑝𝑖 . The open substackM𝐺

𝑔,𝑛 is the moduli space of pointed
admissible G-covers in which source and target are smooth. Summarizing, we have a Cartesian square

M𝐺
𝑔,𝑛

𝜋

��

⊂ �� M𝐺

𝑔,𝑛

𝜋

��

Adm◦𝑔,𝑛 (𝐺)
⊂ �� Adm𝑔,𝑛 (𝐺)

which lays out the unfortunate lack of parallelism in the notation for these spaces. The notation comes
from the literature, however.

Proposition 2.3. The morphisms M𝐺
𝑔,𝑛 → Adm◦𝑔,𝑛 (𝐺) and M𝐺

𝑔,𝑛 → Adm𝑔,𝑛 (𝐺) are étale.

For easy reference, we prove Proposition 2.3 below. We note, however, that the argument appears as
part of the proof in [36, Theorem 2.4] of the fact that M𝐺

𝑔,𝑛 is a smooth Deligne-Mumford stack, flat,
proper and quasi-finite over M𝑔,𝑛.

Proof. We verify the second statement, which implies the first. Recall the construction of M𝐺

𝑔,𝑛, which
we summarize following [36]. Let 𝐸 → C = [𝐸/𝐺] denote the universal source curve and stacky target
curves, respectively, over Adm𝑔,𝑛 (𝐺), and let C denote the coarse space of C. For 𝑖 = 1, . . . , 𝑛, let
S𝑖 → C denote the closed substack of Csm whose image in C is the universal 𝑖th marked point; S𝑖 is an
étale gerbe over Adm𝑔,𝑛 (𝐺). Let 𝐸𝑖 = 𝐸 ×C S𝑖 . We have the following diagram, whose top square is
Cartesian and where the morphisms known to be étale are labeled:

𝐸𝑖 ��

ét
��

𝐸

ét
��

S𝑖 ��

ét

��
��

��
��

��
��

��
��

��
C= [𝐸/𝐺]

��

𝐶

��

Adm𝑔,𝑛 (𝐺).

The morphism 𝐸𝑖 → Adm𝑔,𝑛 (𝐺) is étale since it is a composition of 𝐸𝑖 → S𝑖 , which is a pullback of
an étale morphism and hence étale, and the étale gerbe S𝑖 → Adm𝑔,𝑛 (𝐺). Therefore,

M𝐺

𝑔,𝑛 = 𝐸1 ×Adm𝑔,𝑛 (𝐺) · · · ×Adm𝑔,𝑛 (𝐺) 𝐸𝑛

is also étale over Adm𝑔,𝑛 (𝐺). �
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The spaces M𝐺
𝑔,𝑛 and Adm◦𝑔,𝑛 (𝐺) need not be connected, as observed in Remark 2.2. Given

𝑔1, . . . , 𝑔𝑛 ∈ 𝐺, write M𝐺
𝑔,𝑛 (𝑔1, . . . , 𝑔𝑛) for the open and closed substack of M𝐺

𝑔,𝑛 in which the mon-
odromy at the marking 𝑝𝑖 in the source curve is 𝑔𝑖 . We recall the notion of monodromy at a point in the
source curve, following [36, §2.1]: pick a small oriented loop around the point 𝑝𝑖 in the target curve, say
based at a point 𝑞𝑖 near 𝑝𝑖 . Then the loop lifts to d possible paths between the d preimages of 𝑞𝑖 near
𝑝𝑖 , where d temporarily denotes the number of sheets of P meeting at 𝑝𝑖 . Each of these d paths starts
and ends at points x and 𝑔𝑥, respectively, for some well-defined 𝑔 ∈ 𝐺. Indeed, this g is independent
of choice of one of those d paths since they are each of the form 𝑔𝑖𝑥 to 𝑔𝑖+1𝑥 for 𝑖 = 0, . . . , 𝑑 − 1. The
monodromy at 𝑝𝑖 is then defined to be g. (Note that g can depend, a priori, on choice of lift 𝑝𝑖 of 𝑝𝑖 if
G is not abelian. Indeed, the action of any ℎ ∈ 𝐺 moves the previously mentioned path near 𝑝𝑖 from x
to 𝑔𝑥 to a path near ℎ𝑝𝑖 from ℎ𝑥 to ℎ𝑔𝑥 = (ℎ𝑔ℎ−1)ℎ𝑥, so the monodromy at ℎ𝑝𝑖 is ℎ𝑔ℎ−1.)

Proposition 2.4. Let G be an abelian group. Suppose 𝑔1 · · · 𝑔𝑛 = 1, so that M𝐺
0,𝑛 (𝑔1, . . . , 𝑔𝑛) is

nonempty. The connected components of M𝐺
0,𝑛 (𝑔1, . . . , 𝑔𝑛) are in bijection with orbits of functions

{1, . . . , 𝑛} → 𝐺/〈𝑔1, . . . , 𝑔𝑛〉

under left G-translation.

Proof. The restriction of the map M𝐺
0,𝑛

𝜋
−→ Adm◦0,𝑛 (𝐺) to M𝐺

0,𝑛 (𝑔1, . . . , 𝑔𝑛) becomes a surjection

M𝐺
0,𝑛 (𝑔1, . . . , 𝑔𝑛)

𝜋
−→ Adm◦0,𝑛 (𝐺; 𝑔1, . . . , 𝑔𝑛) �M0,𝑛 × 𝐵𝐺,

where the last isomorphism was established in Proposition 2.1. This morphism is étale by Proposition 2.3.
Now let 𝑃 → (𝐶, 𝑝1, . . . , 𝑝𝑛) be any unpointed admissible cover; the fiber of 𝜋 over it is the action

groupoid on all lifts 𝑝1, . . . , 𝑝𝑛 of 𝑝1, . . . , 𝑝𝑛 respectively, with the group G acting by simultaneous
translation of the 𝑝𝑖 . The connected components of M𝐺

0,𝑛 (𝑔1, . . . , 𝑔𝑛) are in bijection with the orbits of
this category under the further action of pure mapping class group Mod0,𝑛. Those orbits are in bijection
with orbits of functions {1, . . . , 𝑛} → 𝜋0 (𝑃) under left G-translation, and 𝜋0 (𝑃) � 𝐺/〈𝑔1, . . . , 𝑔𝑛〉. �

It will be convenient to work with pointed curves labeled by arbitrary finite sets. Thus, let G be a
finite group, S a finite set, and 𝜌 : 𝑆 → 𝐺 any function. For 𝑔 ≥ 0 with 2𝑔 − 2 + |𝑆 | > 0, let

M𝐺

𝑔,𝑆 (𝜌)

denote the space of pointed admissible G-covers of genus g curves with specified monodromy 𝜌. Let
M𝐺

𝑔,𝑆 (𝜌) denote the open subset parametrizing admissible G-covers in which the target curve is smooth.

Proposition 2.5. The space M𝐺

𝑔,𝑆 =
∐
𝜌M

𝐺

𝑔,𝑆 (𝜌) is a normal crossings compactification of
M𝐺

𝑔,𝑆 =
∐
𝜌M𝐺

𝑔,𝑆 (𝜌).

Proof. This follows from the fact that Adm◦𝑔,𝑛 (𝐺) ⊂ Adm𝑔,𝑛 (𝐺) is a normal crossings compactification,

by the proof of [40, §3.23], and M𝐺

𝑔,𝑆 is étale over Adm𝑔,𝑆 (𝐺) (Proposition 2.3). �

3. Boundary complexes of pointed admissible G-covers

In this section, we write down the boundary complex for the normal crossings compactification

M𝐺
0,𝑆 (𝜌) ⊂M𝐺

0,𝑆 (𝜌) (3.1)

when G is abelian (Theorem 3.5). This will be used in Section 4 to provide a normal crossings
compactification of H𝑔,𝑛 and obtain its boundary complex. The boundary complex is governed by
graph-theoretic admissible covers of graphs, which we develop below in §3.1.
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The basic notion of an admissible cover in tropical geometry was established in [17] and [18], and
hyperelliptic graphs and tropical curves were studied in [5] and [19]. In recent work of Len, Ulircsch and
Zakharov, [37], the authors classify harmonic G-covers of a tropical curve for abelian G. More closely
related to this paper, the combinatorics of the stratification of admissible covers spaces by dual graphs
is in [9, §7]. Building on this, Schmitt–van Zelm define admissible G-graphs, which are the graphs with
G-action arising as dual graphs to admissible G-covers. They note that a stratum corresponding to an
admissible G-graph may be disconnected or empty. They also compute the degree of the map from such
a stratum to the moduli space of target curves [44, §3]. Implementations in SageMath are available in
the package admcycles [25]. Closely related, the notion of a graph G-cover associated to a admissible
G-cover was developed by Galeotti [28, 29] – see especially [29, §3.1] – for the purpose of studying
the birational geometry, and singularities, of (coarse spaces of) moduli spaces of genus g curves with a
principal G-bundle. Our definition is a version of these, undertaken in a case when it becomes possible
to explicitly determine the combinatorics of the connected strata of the boundary. In other words, by
putting into place our restrictions on g and G, we are able to give a completely explicit description of
the boundary complex of (3.1), which is likely hard in general. See Remarks 3.6 and 3.7 for further
comments on the general case and for further discussion of the surrounding literature.

3.1. Categories of covers of graphs

Throughout Section 3, let G be a finite abelian group. In this section, we describe the boundary strata
of the compactification

M𝐺
0,𝑆 (𝜌) ↩→M𝐺

0,𝑆 (𝜌),

showing in Theorem 3.5 that they are in correspondence with graph-theoretic admissible G-covers,
which we will now define.

A graph 𝐶 = (𝑉, 𝐻, 𝑖𝐶 , 𝑟𝐶 ) is the data of two finite sets of vertices 𝑉 = 𝑉 (𝐶), and half-edges
𝐻 = 𝐻 (𝐶), together with maps

𝑖𝐶 : 𝐻 → 𝐻, 𝑟𝐶 : 𝐻 → 𝑉

such that 𝑖𝐶 is an involution. We abbreviate 𝑖 = 𝑖𝐶 and 𝑟 = 𝑟𝐶 . We permit i to have fixed points, and let
𝐿 = 𝐿(𝐶) denote the set of fixed elements of i, called legs. View 𝑟𝐶 as the map taking a half-edge to its
incident vertex. The edge set 𝐸 = 𝐸 (𝐶) is the set of pairs {ℎ, 𝑖(ℎ)} for 𝑖(ℎ) ≠ ℎ; view 𝑖𝐶 as the ‘other
half’ map on the half-edges.

A morphism of graphs 𝑓 : 𝐶 → 𝐶 ′ is given by set maps 𝑓𝑉 : 𝑉 → 𝑉 ′ and 𝑓𝐻 : 𝐻 → 𝐻 ′ such that
the relevant squares commute:

𝐻

𝑓𝐻
��

𝑖𝐶 �� 𝐻

𝑓𝐻
��

𝐻 ′
𝑖𝐶′ �� 𝐻 ′

𝐻

𝑓𝐻
��

𝑟𝐶 �� 𝑉

𝑓𝑉
��

𝐻 ′
𝑟𝐶′ �� 𝑉 ′.

For a finite set S, an S-marking of C is an injection 𝑚 = 𝑚𝐶 : 𝑆 → 𝐿(𝐶). It will be convenient not to
require that m is a bijection. A morphism of S-marked graphs (𝐶, 𝑚𝐶 ) → (𝐶

′, 𝑚𝐶′ ) is a morphism of
graphs 𝑓 : 𝐶 → 𝐶 ′ that preserves the S-marking (i.e., 𝑓𝐻 ◦ 𝑚𝐶 = 𝑚𝐶′).

Definition 3.1. Let G be a finite abelian group, and S a finite set. An S-marked, admissible G-cover of
graphs in genus 0 is

1. A morphism 𝑓 : 𝑃 → 𝐶 of S-marked graphs, such that C is a stable S-marked tree: for each vertex
𝑣 ∈ 𝑉 (𝐶), we have |𝑟−1

𝐶 (𝑣) | ≥ 3 and that 𝑚𝑐 is a bijection between S and the legs of C.
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Figure 1. A G-cover of 5-marked graphs, for 𝐺 = Z/4Z = {0, 1, 2, 3}. The labels of legs are boxed to
avoid confusion with the monodromy marking 𝜇 : 𝐻 (𝐶) → Z/4Z.

2. A left action Φ : 𝐺×𝑃→ 𝑃 leaving 𝑃→ 𝐶 invariant, such that 𝑃→ 𝑃/𝐺 is canonically isomorphic
to 𝑃→ 𝐶.

3. A ‘monodromy marking’ 𝜇 : 𝐻 (𝐶) → 𝐺. Thus, every half edge (including legs) of C is assigned an
element of G. If 𝑖(ℎ) ≠ ℎ, we require that 𝜇(𝑖(ℎ)) = 𝜇(ℎ)−1.

4. A function 𝑔 : 𝑉 (𝑃) → Z≥0; we call 𝑔(𝑣) the weight or genus of v.

The above data must satisfy the following:

(a) For every 𝑣 ∈ 𝑉 (𝐶), 𝑓 −1(𝑣) � 𝐺/〈𝜇(ℎ) : ℎ ∈ 𝑟−1(𝑣)〉 as left G-sets, and∏
ℎ∈𝑟−1 (𝑣)

𝜇(ℎ) = 1.

(b) For every ℎ ∈ 𝐻 (𝐶), 𝑓 −1(ℎ) � 𝐺/〈𝜇(ℎ)〉 as left G-sets.
(c) (local Riemann-Hurwitz)For all 𝑣 ∈ 𝑉 (𝑃), writing 𝑤 = 𝑓 (𝑣) and 𝑛𝑤 = 𝑟−1

𝐶 (𝑤), the genus 𝑔(𝑣) of v
is given by

2 − 2𝑔(𝑣) = |〈𝜇(𝑛𝑤 )〉|

(
2 −

∑
ℎ∈𝑛𝑤

|〈𝜇(ℎ)〉| − 1
|〈𝜇(ℎ)〉|

)
.

We will use the boldface notation P → C to indicate a graph-theoretic admissible G-cover, with the
understanding that this includes all of the data above. When we need to refer to the marking functions,
we will write 𝑚𝑃 for the marking of P and 𝑚𝐶 for the marking of C.

It is clear from condition (c) that the genus function g is determined by the monodromy marking
𝜇 as well as the morphism 𝑃 → 𝐶. Moreover, since C is a tree, the data of C and 𝜇, without the S-
marking, actually determine P and Φ up to isomorphism. However, the S-marking on P is not in general
determined by the S-marking on C.

If P → C is an S-marked admissible G-cover of nodal curves, with C a stable S-marked curve
of genus 0, then we obtain a corresponding S-marked admissible G-cover of dual graphs P → C.
The meaning of condition (a) is that the subgroup of G stabilizing the generic point of an irreducible
component of P above a given irreducible component C𝑣 of C is exactly the subgroup of G generated
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by the monodromy elements around the special points (nodes and marked points) on C𝑣 . Thus, each
irreducible component of P above C𝑣 maps to C𝑣 with degree |〈𝜇(𝑟−1

𝐶 (𝑣))〉|. The content here is that
since C𝑣 is rational, 𝜋1 (C𝑣 ) is generated by keyhole loops around the special points. Similarly, the data
of a homomorphism 𝜋1 (C𝑣 ) → 𝐺, for appropriately chosen keyhole loops, are the data of an ordered
tuple of elements of G whose product is the identity. Condition (b) is similar.

Definition 3.2. Let P→ C and P′ → C′ be graph-theoretic S-pointed admissible G-covers.

1. An isomorphism (P → C) → (P′ → C′) is the data of G-equivariant graph isomorphisms
𝜙 : 𝑃→ 𝑃′ and 𝜓 : 𝐶 → 𝐶 ′, compatible with the marking functions 𝑚𝑃 and 𝑚𝐶 , as well as the
monodromy marking 𝜇, which fit into a commutative square.

2. Let 𝑒 ∈ 𝐸 (𝐶) be an edge. The edge-contraction of P → C, denoted (P → C)/𝑒, is obtained by
contracting the edge e in C, together with its preimages in P. The new monodromy marking is
obtained by restricting the previous one.

Definition 3.3. We write Γ𝐺0,𝑆 for the category of all graph-theoretic S-pointed admissible G-covers,
where morphisms are given by compositions of isomorphisms and edge-contractions. Given a function
𝜌 : 𝑆 → 𝐺, we put Γ𝐺0,𝑆 (𝜌) for the full subcategory of Γ𝐺0,𝑆 on those graph-theoretic S-pointed admissible
G-covers P→ C such that the monodromy marking on C extends 𝜌. Precisely, 𝜌 = 𝜇 |𝐿 (𝐶) ◦𝑚𝐶 , where
𝑚𝐶 : 𝑆 → 𝐿(𝐶) is the S-marking on C.

3.2. The dual complex of the boundary

We now state Theorem 3.5 on the boundary complex of the space of pointed admissible covers. Recall
the category of symmetric Δ-complexes (see [21]) (i.e., the category Fun(FIop,Set), where FI is the
category of finite sets with injections). For 𝑞 ≥ −1 an integer, we henceforth write

[𝑞] = {0, . . . , 𝑞}.

This notational convention includes the special case [−1] = ∅. Given 𝑋 : FIop → Set and an integer
𝑞 ≥ −1, write

𝑋𝑞 = 𝑋 ([𝑞])

for the set of q-simplices of X.

Definition 3.4. Fix 𝑔 = 0 and G abelian. For data𝐺, 𝑆 and 𝜌 as above, we define a symmetricΔ-complex

Δ𝐺0,𝑆 (𝜌) : FIop → Set

as follows.
For each 𝑞 ≥ −1, the set Δ𝐺0,𝑆 (𝜌)𝑞 is the set of isomorphism classes of pairs (P→ C, 𝜔), where

1. P→ C is an object of Γ𝐺0,𝑆 (𝜌)
2. 𝜔 : [𝑞] → 𝐸 (𝐶) is a bijection, called an edge-labeling.

An isomorphism of pairs (P → C, 𝜔) → (P′ → C′, 𝜔′) is an isomorphism (P → C) → (P′ → C′)
such that if𝜓 : C→ C′ is the induced isomorphism on targets, we have𝜔′ = 𝜓◦𝜔 as maps [𝑞] → 𝐸 (C′).

For morphisms, given 𝑖 : [𝑞′] ↩→ [𝑞], and given a graph-theoretic admissible cover P→ C as above,
contract the edges 𝐸 (𝐶)−𝜔(𝑖([𝑞′])) to obtain a new object of Γ𝐺0,𝑆 (𝜌) and take the unique edge-labeling
by [𝑞′] which preserves the order of the remaining edges.

Theorem 3.5. Let G be an abelian group, and S a finite set. There is an isomorphism of symmetric
Δ-complexes

Δ𝐺0,𝑆 (𝜌) � Δ (M𝐺
0,𝑆 (𝜌) ⊂M𝐺

0,𝑆 (𝜌)).
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Proof. Let us start with the stratification of the boundary of Adm0,𝑆 (𝐺; 𝜌). The space Adm0,𝑆 (𝐺; 𝜌) is
nonempty if and only if

∏
𝑠∈𝑆 𝜌(𝑠) = 1𝐺 . The boundary complex of Adm◦0,𝑆 (𝐺; 𝜌) ⊂ Adm0,𝑆 (𝐺; 𝜌) is

the complex of trees C with a bijective S-marking 𝑚 : 𝑆 → 𝐿(𝐶), together with a monodromy marking
𝜇 : 𝐻 (𝐶) → 𝐺 extending 𝜌, which must satisfy, for every vertex 𝑣 ∈ 𝑉 (𝐶) and 𝑒 = {ℎ1, ℎ2} ∈ 𝐸 (𝐶),∏

ℎ∈𝑟−1 (𝑣)

𝜇(ℎ) = 1, 𝜇(ℎ1)𝜇(ℎ2) = 1.

The stratum of the boundary indexed by such a triple (𝐶, 𝑚, 𝜇) is indeed connected since it is, up to finite
quotient, isomorphic to a product

∏
𝑣 ∈𝑉 (𝐶) Adm0,𝑛𝑣 (𝐺; 𝜇𝑣 ) of varieties that are themselves connected;

see Equation (2.3). More formally, as a symmetric Δ-complex, the boundary complex has a q-simplex
for every such datum (𝐶, 𝑚, 𝜇) together with an arbitrary bijective edge-labeling 𝜔 : [𝑞] → 𝐸 (𝐶), one
for each isomorphism class of (𝐶, 𝑚, 𝜇, 𝜔).

Suppose

(𝐶, 𝑚 : 𝑆 → 𝐿(𝐶), 𝜇 : 𝐻 (𝐶) → 𝐺)

is a stable S-marked tree with monodromy marking 𝜇 as above. For 𝑣 ∈ 𝐶, write 𝑛𝑣 = 𝑟−1 (𝑣) for the set
of half-edges (including legs) at v, and write

𝐺𝑣 = 〈𝜇(ℎ) : ℎ ∈ 𝑛𝑣〉.

Let 𝜇𝑣 be the restriction of 𝜇 to 𝑛𝑣 . As noted above, (𝐶, 𝑚, 𝜇) indexes a boundary stratum of
Adm0,𝑆 (𝐺; 𝜌). The preimage in M𝐺

0,𝑆 (𝜌) of this stratum is isomorphic to the variety∏
𝑣 ∈𝑉 (𝐶)

(
M𝐺

0,𝑛𝑣 (𝜇𝑣 ) /𝐺
𝐸 (𝐶)

)
, (3.2)

for example, by [41, §2]. Let us explain the action of 𝐺𝐸 (𝐶) in (3.2). For a given edge 𝑒 = {ℎ, ℎ′},
incident to vertices v and 𝑣′, the copy of G indexed by e acts by translating the lifted marked point
indexed by h, respectively ℎ′, in the moduli space M𝐺

0,𝑛𝑣 (𝜇𝑣 ), respectively M𝐺
0,𝑛𝑣′
(𝜇𝑣′ ). (In general, G

would also change the values of the marking functions 𝜇𝑣 (ℎ) and 𝜇𝑣′ (ℎ
′), respectively, by conjugation,

but G is abelian here.)
The variety (3.2) may not be connected, and it remains to describe its connected components. For

each 𝑣 ∈ 𝑉 (𝐶), let

𝑋𝑣 = {Fun(𝑛𝑣 , 𝐺/𝐺𝑣 )}/𝐺,

where the quotient is with respect to the G-action on 𝐺/𝐺𝑣 . From Proposition 2.4, the connected
components of (3.2) are in bijection with

���
∏

𝑣 ∈𝑉 (𝐶)

𝑋𝑣
���/𝐺𝐸 (𝐶) . (3.3)

The last step is a combinatorial identification of (3.3) with the set of isomorphism classes of graph-
theoretic S-pointed admissible G-covers. Let us begin by considering local data at a single vertex
𝑣 ∈ 𝑉 (𝐶). Consider an element 𝑓𝑣 ∈ 𝑋𝑣 , together with the data of 𝜇 |𝑛𝑣 : 𝑛𝑣 → 𝐺. From 𝑓𝑣 and 𝜇 |𝑛𝑣 we
can extract a graph-theoretic 𝑛𝑣 -pointed admissible cover involving graphs with legs but no edges. 𝐶𝑣
is a single vertex, with legs 𝑛𝑣 ; 𝑉 (𝑃𝑣 ) = 𝐺/𝐺𝑣 as a left G-set, and above each leg ℎ ∈ 𝑛𝑣 of C is a set
of legs in 𝑃𝑣 isomorphic to 𝐺/〈𝜇(ℎ)〉, with root map compatible with the map 𝐺/〈𝜇(ℎ)〉 → 𝐺/𝐺𝑣 .
Finally, 𝑃𝑣 has S-marking given by 𝑓𝑣 .
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Continue to fix a stable S-marked tree C and monodromy marking 𝜇 on C. Now, given ( 𝑓𝑣 )𝑣 ∈
∏

𝑋𝑣 ,
we assemble the local picture above into an admissible cover of graphs. For every edge 𝑒 = {ℎ, ℎ′} of
C, with root vertices 𝑣 = 𝑟 (ℎ) and 𝑣′ = 𝑟 (ℎ′), the half-edges of 𝑃𝑣 above h and the half-edges of 𝑃𝑣′
above ℎ′ are each isomorphic to 𝐺/〈𝜇(ℎ)〉 = 𝐺/〈𝜇(ℎ′)〉 as G-sets. There is a unique G-equivariant
bijection between these two sets that sends the chosen lift of h to the chosen lift of ℎ′, and another
choice of lifts of h and ℎ′ produce the same bijection if they are related to the original choices by
the same element of G. Therefore, these identifications glue the half-edges above h and ℎ′ into edges
above e, obtaining a graph-theoretic admissible cover 𝑃 → 𝐶 which was independent of the action of
𝐺𝐸 (𝐶) . It is straightforward to reverse this process, giving an element of the set (3.3) starting from a
graph-theoretic admissible cover. �

Remark 3.6. Theorem 3.5 furnishes an explicit description of the symmetric Δ-complex

Δ (M𝐺
𝑔,𝑛 ⊂M𝐺

𝑔,𝑛) (3.4)

when 𝑔 = 0 and G is abelian. It is sufficiently explicit that it can be programmed, and indeed, we
carry out computer calculations for the results in Appendix A. Without restrictions on G and g, it is
still possible to give a general description of (3.4) using the framework of graphs of groups, roughly,
decorating vertices of graphs with fundamental groups of punctured curves. This idea will appear in
future work by M. Talpo, M. Ulirsch and D. Zakharov; we thank Ulirsch for bringing it to our attention.
This general description is not explicit in the above sense. It involves the very interesting sub-question
of determining the connected components of the spaces M𝐺

𝑔,𝑛 in general; compare with Proposition 2.1.
We also refer to forthcoming work of P. Souza that constructs (3.4) in the case of G cyclic with g
arbitrary and identifies it as the nonarchimedean skeleton of the toroidal pair. Moreover, that work is a
precursor to further work by Y. El Maazouz, P. Helminck, F. Röhrle, P. Souza and C. Yun studying the
homotopy type of boundary complexes of unramified Z/𝑝Z covers for 𝑔 = 2.

Remark 3.7. The graph-theoretic admissible G-covers in this paper (Definition 3.1) are exactly what
are needed for a precise description of the boundary complex (Theorem 3.5). Thus, they are reasonably
expected to be similar to, but distinct from, the spaces of covers of tropical curves appearing in [17], in
[18] and the references therein. The work [18] on tropicalizations of the space of admissible covers is
an important comparison point for this paper. Rather than G-covers, they study the admissible covers
compactification of the Hurwitz space of degree d covers of smooth curves with fixed target genus h
and fixed ramification profiles (and hence fixed source genus g) over n marked branch points in the
target. All of the inverse images of the branch points are also marked. This moduli space is canonically
isomorphic to a cover of a component of the space Admℎ,𝑛 (𝑆𝑑). In [18], the boundary complex, which
may be identified with the link of the skeleton of the Berkovich analytification [1], is compared, but not
identified, with a certain space of tropical admissible covers via a surjective morphism of generalized
cone complexes from the former to the latter. The failure of this surjection to be an isomorphism is due
to multiplicities fully accounted for in [18, §4.2.4] and is related to Remark 3.6 above.

4. Compactifications of H𝑔,𝑛

Let 𝑔 ≥ 2 and 𝑛 ≥ 0. Throughout this section, we will fix

𝑆 = {1, . . . , 𝑛} ∪ {𝑤1, . . . , 𝑤2𝑔+2}

and fix 𝐺 = Z/2Z = {0, 1}. We also define 𝜌 : 𝑆 → Z/2Z by 𝜌(𝑖) = 0 for all 𝑖 ∈ {1, . . . , 𝑛}, and
𝜌(𝑤𝑘 ) = 1 for 𝑘 ∈ {1, . . . , 2𝑔 + 2}. We will discuss how the stack quotient

[MZ/2Z
0,𝑆 (𝜌)/𝑆2𝑔+2]
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Figure 2. Two graph-theoretic admissible G-covers, where 𝐺 = Z/2Z = {0, 1}.

provides a normal crossings compactification of H𝑔,𝑛, and we will give an explicit description of the
dual complex Θ𝑔,𝑛 of this compactification. The description will be in terms of the dual complexes
studied in the previous section. We first consider the case of labeled Weierstrass points and then quotient
out by 𝑆2𝑔+2.

4.1. The complex Θ̃𝑔,𝑛

First, let H̃𝑔,𝑛 denote the moduli stack of hyperelliptic curves of genus g with n distinct marked points
and 2𝑔 + 2 labeled Weierstrass points. The symmetric group on 2𝑔 + 2 letters permutes the labels on
Weierstrass points, and

H𝑔,𝑛 � [H̃𝑔,𝑛/𝑆2𝑔+2] .

In this subsection, we will provide a normal crossings compactification of H̃𝑔,𝑛 and give the corre-
sponding dual complex. Then we will quotient out by 𝑆2𝑔+2 to give a normal crossings compactification
of H𝑔,𝑛.

In H̃𝑔,𝑛, a marked point is allowed to coincide with a Weierstrass point, and two marked points are
allowed to form a conjugate pair under the hyperelliptic involution. Because of this, two types of graphs
will require special attention.

Definition 4.1. We call the following graph-theoretic admissible covers type (1) and type (2), respec-
tively:

1. For distinct 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, the admissible cover of graphs in Figure 2 on the left.
2. For each 𝑖 ∈ {1, . . . , 𝑛} and 𝑤𝑘 ∈ {𝑤1, . . . , 𝑤2𝑔+2}, the admissible cover of graphs in Figure 2 on

the right.

Proposition 4.2. There is an open inclusion

H̃𝑔,𝑛 ↩→MZ/2Z
0,𝑆 (𝜌)

which is a normal crossings compactification, and whose boundary complex Θ̃𝑔,𝑛 is isomorphic to the
subcomplex of

ΔZ/2Z0,𝑆 (𝜌)

on simplices whose vertices are not of type (1) or (2) in Definition 4.1.
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Proof. Let H̃◦𝑔,𝑛 denote the open substack of H̃𝑔,𝑛 in which a marked point may not collide with a
Weierstrass point, and two marked points may not form a conjugate pair. Then

H̃◦𝑔,𝑛 �MZ/2Z
0,𝑆 (𝜌),

where MZ/2Z
0,𝑆 (𝜌) denotes the interior of the moduli space MZ/2Z

0,𝑆 (𝜌) of pointed admissible covers. We
define a partial compactification H∗𝑔,𝑛 of H̃◦𝑔,𝑛, such that

H̃◦𝑔,𝑛 ⊂ H∗𝑔,𝑛 ⊂MZ/2Z
0,𝑆 (𝜌),

and the second inclusion is normal crossings. In MZ/2Z
0,𝑆 (𝜌), define H∗𝑔,𝑛 to be the open complement of

all boundary divisors except for those corresponding to dual graphs of type (1) or (2) (see Definition 4.1).
Since H∗𝑔,𝑛 is the complement of a subset of the boundary divisors, the divisor

MZ/2Z
0,𝑆 (𝜌) \H∗𝑔,𝑛

still has normal crossings. Stabilization gives a canonical isomorphismH∗𝑔,𝑛 � H̃𝑔,𝑛 which is equivariant
with respect to the action of 𝑆𝑛, thus giving the first part of the result.

We now turn our attention to the boundary complex. Denote by ΔZ/2Z0,𝑆 (𝜌) the dual complex of the
compactification

H̃◦𝑔,𝑛 �MZ/2Z
0,𝑆 (𝜌) ⊂MZ/2Z

0,𝑆 (𝜌).

The target graphs of type (1) and (2) in Definition 4.1 have one edge and correspond to vertices in
ΔZ/2Z0,𝑆 (𝜌). Then the boundary complex Θ̃𝑔,𝑛 of the inclusion

H̃𝑔,𝑛 ⊂MZ/2Z
0,𝑆 (𝜌)

is the subcomplex of ΔZ/2Z0,𝑆 (𝜌) determined by those simplices which have no vertices of type (1) or (2)
in Definition 4.1. �

Let us now describe the complex ΔZ/2Z0,𝑆 (𝜌) in more detail. Its q-simplices are given by isomorphism
classes of pairs (P → C, 𝜔), where P → C is an object of the category ΓZ/2Z0,𝑆 (𝜌) (Definition 3.3),
and 𝜔 : [𝑞] → 𝐸 (𝐶) is an edge-labeling. Moreover, on 𝐿(𝐶), the monodromy marking 𝜇 satisfies
𝜇(𝑚𝐶 ( 𝑗)) = 0 if 𝑗 ∈ {1, . . . , 𝑛}, and 𝜇(𝑚𝐶 ( 𝑗)) = 1 if 𝑗 ∈ {𝑤1, . . . , 𝑤2𝑔+2}. We will call the elements of

𝑚𝐶 ({𝑤1, . . . , 𝑤2𝑔+2}) ⊂ 𝐿(𝐶)

the branch legs of C.
Notice that the above conditions on 𝜇 |𝐿 (𝐶) suffice to determine 𝜇 on all other half-edges of C, by

condition (1) of Definition 3.4. Call a vertex 𝑣 ∈ 𝑉 (𝐶) a leaf vertex if it is incident to only one edge. If
a leaf vertex 𝑣 ∈ 𝑉 (𝐶) supports an odd number of branch legs, then the non-leg half edge h incident to
v must satisfy 𝜇(ℎ) = 1. However, if a leaf vertex v supports an even number of branch legs, then the
non-leg half edge h incident to v must satisfy 𝜇(ℎ) = 0. Proceeding inductively, this determines 𝜇 on
all half-edges incident to non-leaf vertices of C as well.
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Figure 3. A {1, 2} ∪ {𝑤1, . . . , 𝑤8}-marked stable tree C, together with the two lifts of 𝑚𝐶 to a marking
𝑚𝑃 . These non-isomorphic lifts are determined by a choice of element in the fiber over each leg marked
by {1, 2} on C, and two such choices define the same graph-theoretic admissible Z/2Z-cover if they
differ by the Z/2Z-action on P.

This discussion implies that given the monodromy data 𝜌 and an S-marked stable tree C, the only
additional data required to determine an object of the category ΓZ/2Z0,𝑆 (𝜌) is a lift of the marking function
𝑚𝐶 : 𝑆 → 𝐿(𝐶) to a function 𝑚𝑃 : 𝑆 → 𝐿(𝑃) such that the diagram

𝐿(𝑃)

��

𝑆

𝑚𝑃
�����������

𝑚𝐶

�� 𝐿(𝐶)

commutes. (Note that the morphism of graphs 𝑃 → 𝐶, without the marking function on P, is already
determined by C and 𝜇.) Moreover, since each branch leg in C has a unique preimage in P, one only
needs to choose, for each 𝑖 ∈ {1, . . . , 𝑛}, a leg in the preimage of 𝑚(𝑖) ∈ 𝐿(𝐶). Two such choices are
equivalent if they differ by the Z/2Z-action on P. See Figure 3 for an example.

4.2. The complex Θ𝑔,𝑛

We now construct a normal crossings compactification of H𝑔,𝑛 and the corresponding dual com-
plex Θ𝑔,𝑛.

By Proposition 4.2, in order to pass from ΔZ/2Z0,𝑆 (𝜌) to Θ̃𝑔,𝑛, we remove all edge-labeled pairs
(P→ C, 𝜔) such that P→ C admits a contraction to covers of type (1) or (2) in Definition 4.1. To that
end, let

ΓZ/2Z,∗0,𝑆 (𝜌)

be the full subcategory of ΓZ/2Z0,𝑆 (𝜌) on those covers which do not admit a contraction to covers of type
(1) or (2).

Definition 4.3. We define the category ΓH
𝑔,𝑛 as follows.

1. The objects are 𝑆2𝑔+2-orbits of objects of ΓZ/2Z,∗0,𝑆 (𝜌). Precisely, the objects are covers P→ C, where
(a) C = (𝐶, 𝑚𝐶 ) is the data of a stable tree C with 2𝑔+2+𝑛 legs, together with an injective function

𝑚𝐶 : {1, . . . , 𝑛} → 𝐿(𝐶).
(b) P = (𝑃, 𝑚𝑃), where P is the unique graph-theoretic admissible Z/2Z-cover of C obtained

by declaring each unmarked leg to have monodromy 1 ∈ Z/2Z and each marked leg to have
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monodromy 0, and 𝑚𝑃 : {1, . . . , 𝑛} → 𝐿(𝑃) is a marking of 𝐿(𝑃) such that 𝑚𝑃 (𝑖) is a leg in
the inverse image of 𝑚𝐶 (𝑖) for all i.

The cover P→ C is required to satisfy the following:
◦ No contraction to type (1): If 𝑣 ∈ 𝑉 (𝐶) has |𝑟−1 (𝑣) | = 3 and 𝑚−1

𝐶 (𝑟
−1(𝑣)) = {𝑖, 𝑗}, then a single

vertex of P supports markings i and j – in other words,

𝑟𝑃 (𝑚𝑃 (𝑖)) = 𝑟𝑃 (𝑚𝑃 ( 𝑗)).

◦ No contraction to type (2): No vertex 𝑣 ∈ 𝑉 (𝐶) satisfies

|𝑟−1 (𝑣) | = 3, |𝐿(𝐶) ∩ 𝑟−1 (𝑣) | = 2, and |𝑚−1
𝐶 (𝑟

−1 (𝑣)) | = 1.

2. The morphisms are compositions of isomorphisms and edge-contractions.

Proposition 4.4. The inclusion H𝑔,𝑛 ⊂ [M
Z/2Z
0,𝑆 (𝜌)/𝑆2𝑔+2] is a normal crossings compactification, and

the boundary complex Θ𝑔,𝑛 has the following explicit description.

1. The set of q-simplices
(
Θ𝑔,𝑛

)
𝑞 is the set of isomorphism classes of pairs (P→ C, 𝜔) where P→ C

is an object of ΓH
𝑔,𝑛, and 𝜔 : [𝑞] → 𝐸 (𝐶) is an edge-labeling.

2. Given an injection 𝜄 : [𝑞′] ↩→ [𝑞], we define 𝜄∗(P → C, 𝜔) ∈
(
Θ𝑔,𝑛

)
𝑞′ by contracting those edges

which are not in the image of 𝜄 and taking the unique induced edge-labeling which preserves the
order of the remaining edges.

Proof. Since the action of 𝑆2𝑔+2 on H̃𝑔,𝑛 ⊂MZ/2Z
0,𝑆 (𝜌) preserves H̃𝑔,𝑛 and sends strata isomorphically

to strata, we have that

H𝑔,𝑛 � [H̃𝑔,𝑛/𝑆2𝑔+2] ⊂ [M
Z/2Z
0,𝑆 (𝜌)/𝑆2𝑔+2]

is a normal crossings compactification with boundary complex equal to

Δ (H̃𝑔,𝑛 ⊂MZ/2Z
0,𝑆 (𝜌))/𝑆2𝑔+2 = Θ̃𝑔,𝑛/𝑆2𝑔+2,

and the described symmetric Δ-complex is precisely the quotient of Θ̃𝑔,𝑛 by 𝑆2𝑔+2. �

As a direct result of Proposition 4.4, we have the following corollary identifying the weight zero
compactly supported cohomology ofH𝑔,𝑛 with the reduced cohomology ofΘ𝑔,𝑛; see [21, Theorem 5.8].

Corollary 4.5. For each i, there are canonical 𝑆𝑛-equivariant isomorphisms

𝑊0𝐻
𝑖
𝑐 (H𝑔,𝑛;Q) � 𝐻𝑖−1(Θ𝑔,𝑛;Q) � 𝐻𝑖−1(Θ𝑔,𝑛;Q)∨,

where 𝐻∗ and 𝐻∗ denote reduced cohomology and homology, respectively.

We now establish some conventions for working with objects of the category ΓH
𝑔,𝑛.

Definition 4.6. Given an object P → C of ΓH
𝑔,𝑛, we define the weight of a vertex 𝑣 ∈ 𝑉 (C) to be the

number of unmarked legs based at v.

The total weight of the vertices of C is 2𝑔 + 2. The weight in this sense should not be confused with
the notion of vertex weights corresponding to genera of irreducible curves. The two notions of vertex
weight are related by the Riemann-Hurwitz formula.

When depicting objects of ΓH
𝑔,𝑛, we adopt the following conventions. Instead of drawing the unmarked

legs of C, we will label each vertex of C with its weight. To avoid confusion with the genera of vertices
in the source graph, we will depict the weight of a vertex in C with the color grey and genera of vertices
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Figure 4. The images of the graph-theoretic admissible Z/2Z-covers in ΓZ/2Z,∗0,𝑆 (𝜌) from Figure 3, under
the functor ΓZ/2Z,∗0,𝑆 (𝜌) → ΓH

𝑔,𝑛. The number of unmarked legs at a vertex of a target tree is indicated by
the weight function. We do not depict any unmarked legs of the source graph since they are determined
by the legs of the target.

with blue. Since each unmarked leg of C has a unique preimage in P, we will not draw those legs of
P. When a leg of C has two preimages in P, so only one is marked, we will suppress the other leg. See
Figure 4 for the images of the ΓZ/2Z,∗0,𝑆 (𝜌) objects from Figure 3 under the functor to ΓH

𝑔,𝑛. See Figure 5
for a complete list of isomorphism classes of ΓH

𝑔,𝑛-objects when 𝑔 = 2 and 𝑛 = 0.

Remark 4.7. We remark on the case 𝑛 = 0. In this case, the symmetric Δ-complex Θ𝑔,0 is isomorphic
to the quotient of the dual complex

Δ0,2𝑔+2 := Δ
(
M0,2𝑔+2 ⊂M0,2𝑔+2

)
(4.1)

by the 𝑆2𝑔+2-action permuting the marked points. The dual complex (4.1) is the moduli space of (2𝑔+2)-
marked tropical curves of genus zero and volume one [22], also known as the space of phylogenetic
trees [4, 12, 42]. The identification

Θ𝑔,0 = Δ0,2𝑔+2/𝑆2𝑔+2

can be seen directly from our description of the category ΓH
𝑔 and holds despite the fact that the morphism

[MZ/2Z
0,2𝑔+2(𝜌)/𝑆2𝑔+2] → [M0,2𝑔+2/𝑆2𝑔+2]

is not an isomorphism or even a Z/2Z-gerbe, due to the possible presence of extra automorphisms, more
than Z/2Z, in the source curves of Z/2Z-admissible covers.

5. Acyclic subcomplexes of Θ𝑔,𝑛
In this section, we will study the cellular chain complex of Θ𝑔,𝑛, establishing Theorem 5.1 below, which
states that several natural subcomplexes are acyclic. This will allow us to prove Proposition B later in
this section. The acyclicity results will be used in Section 6 to obtain Theorem A.
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Figure 5. The set of isomorphism classes of ΓH
𝑔,𝑛-objects for 𝑔 = 2 and 𝑛 = 0.

Theorem 5.1. Fix 𝑔 ≥ 2 and 𝑛 ≥ 0. Then the following subcomplexes of Θ𝑔,𝑛 have vanishing reduced
rational homology:

1. the repeated marking locus Θrep
𝑔,𝑛, namely the subcomplex determined by those ΓH

𝑔,𝑛-objects P→ C
such that there exists 𝑣 ∈ 𝑉 (P) supporting at least two markings from {1, . . . , 𝑛};

2. the weight3 locus Θ≥3
𝑔,𝑛, determined by those ΓH

𝑔,𝑛-objects P→ C such that C has a vertex of weight
at least 3 (Definition 4.6); and

3. the intersection Θrep
𝑔,𝑛 ∩ Θ≥3

𝑔,𝑛.

Remark 5.2. There are stronger statements that are also true, namely that the three subspaces of the
space Θ𝑔,𝑛 corresponding to (1), (2) and (3) are, in fact, contractible. It is possible to convert the proofs
below, of vanishing reduced rational homology to proofs of contractibility, using the vertex property
technique of [22, §4].

5.1. The cellular chain complex of Θ𝑔,𝑛

Following [21, §3], the reduced rational homology of Θ𝑔,𝑛 is computed by the graph complex C (𝑔,𝑛)∗

described as follows. In degree p, C (𝑔,𝑛)𝑝 is spanned by pairs (P → C, 𝜔) where P → C is an object
of ΓH

𝑔,𝑛, and 𝜔 : [𝑝] → 𝐸 (C) is a bijective edge-labeling. These pairs are subject to the relation
(P→ C, 𝜔) = sgn(𝜌) (P→ C, 𝜔 ◦ 𝜌) whenever 𝜌 ∈ 𝑆𝑝+1 = Aut([𝑝]).
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Figure 6. The cover B𝑆 → E𝑆 .

The differential 𝜕 : C (𝑔,𝑛)𝑝 → C (𝑔,𝑛)𝑝−1 is given by the signed sum of edge contractions:

𝜕 (P→ C, 𝜔) =
∑
𝑖∈[𝑝]

(−1)𝑖 (𝛿𝑖)∗(P→ C, 𝜔),

where 𝛿𝑖 : [𝑝 − 1] → [𝑝] is the unique order-preserving injection which misses i.
To prove Theorem 5.1, we will show that the corresponding sub-chain complexes of C (𝑔,𝑛)∗ are acyclic.

Denote by R(𝑔,𝑛)∗ the sub-chain complex of C (𝑔,𝑛)∗ spanned by those pairs (P→ C, 𝜔) such that P has
a vertex v that has at least two markings from {1, . . . , 𝑛}; this is the chain complex which computes
the reduced rational homology of Θrep

𝑔,𝑛. Denote by Q(𝑔,𝑛)∗ the sub-chain complex of C (𝑔,𝑛)∗ spanned by
those pairs (P→ C, 𝜔) where C has at least one vertex v with weight at least 3.

We will show that the chain complexes R(𝑔,𝑛)∗ and Q(𝑔,𝑛)∗ ∩R(𝑔,𝑛)∗ are acyclic for all 𝑔 ≥ 2 and all
𝑛 ≥ 2 (Theorem 5.5), that the chain complex Q(𝑔,𝑛)∗ is acyclic for all 𝑔 ≥ 2 and all 𝑛 ≥ 0 (Theorem 5.9),
and that the chain complex C (𝑔,𝑛)∗ is acyclic for all 𝑔 ≥ 2 and 𝑛 ≤ 1 (Theorem 5.12). Thus, Theorem 5.5
and Theorem 5.9 prove Theorem 5.1, and Theorem 5.12 gives part (1) of Proposition B.

The proofs of these theorems are informed by previous work of Chan–Galatius–Payne on contractibil-
ity criteria for symmetric Δ-complexes [22], as well as work of Conant–Gerlits–Vogtmann [23] on the
acyclicity of the subcomplex of Kontsevich’s graph complex spanned by graphs with cut vertices.

5.2. The homology of Θrep
𝑔,𝑛

It will be useful to isolate specific types of edges of covers with repeated markings.

Definition 5.3. For a ΓH
𝑔,𝑛-object P → C with repeated markings, we say an edge 𝑒 ∈ 𝐸 (C) is a

supporting edge, with support equal to 𝑆 ⊆ [𝑛], if, upon contracting all edges of C which are not equal
to e, as well as their preimages in P, we obtain the cover B𝑆 → E𝑆 depicted in Figure 6. If |𝑆 | = 𝑖, we
will call e an i-supporting edge. Note that, necessarily, 𝑖 ≥ 2.

Definition 5.4. Given a ΓH
𝑔,𝑛-object P → C, we define the supporting edge retraction of P → C to be

the cover obtained by contracting all supporting edges in C and their preimages in P.

Theorem 5.5. For all 𝑔 ≥ 2 and 𝑛 ≥ 2, the chain complexes R(𝑔,𝑛)∗ and R(𝑔,𝑛)∗ ∩Q(𝑔,𝑛)∗ are acyclic.

Proof. We will prove the theorem only for R(𝑔,𝑛)∗ , as the same argument works for R(𝑔,𝑛)∗ ∩Q(𝑔,𝑛)∗ . For
ease of notation, fix 𝑔, 𝑛 ≥ 2 and put

R∗ := R(𝑔,𝑛)∗ .
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First, filter R∗ as follows: let

R≥𝑖∗ ↩→ R∗

be the subcomplex generated by covers which have a k-supporting edge for some 𝑘 ≥ 𝑖. More precisely,
we mean that R≥𝑖∗ is spanned by covers obtained by edge-contraction from covers with supporting edges
of this type. We apply this definition even when 𝑖 = 𝑛 + 1, in which case R≥𝑛+1∗ = 0. Then we have a
filtration

0 = R≥𝑛+1∗ ↩→ R≥𝑛∗ ↩→ · · · ↩→ R≥2
∗ = R∗.

Passing to the associated spectral sequence, it suffices to show that for each 𝑖 = 2, . . . , 𝑛, the successive
quotient chain complexes

R𝑖
∗ := R≥𝑖∗ /R≥𝑖+1∗

are acyclic. These quotient chain complexes are spanned by covers with i-supporting edges and their
edge-contractions but do not include any covers with k-supporting edges or their edge contractions for
any 𝑘 > 𝑖. Now we filter R𝑖

∗. Define

𝐹𝑝R𝑖
∗ ↩→ R𝑖

∗

to be the sub-chain complex spanned by graphs with at most p non-supporting edges. The number of
non-supporting edges cannot increase under edge contraction, so 𝐹𝑝R𝑖

∗ really is a subcomplex. We
obtain an ascending filtration

0 = 𝐹−1R𝑖
∗ ↩→ 𝐹0R𝑖

∗ ↩→ · · · ↩→ R𝑖
∗,

and again by considering the associated spectral sequence, it suffices to show that successive quotients

𝐺 𝑝R𝑖
∗ := 𝐹𝑝R𝑖

∗/𝐹𝑝−1R𝑖
∗

are acyclic, in order to conclude that R𝑖
∗ and hence R∗ is acyclic. For fixed i and p, let 𝐴𝑖, 𝑝 denote the

set of isomorphism classes of ΓH
𝑔,𝑛-objects P → C where |𝐸 (C) | = 𝑝 and which (1) do not have any

supporting edges, (2) admit a contraction from a cover with an i-supporting edge and (3) do not admit a
contraction from any covers with k-supporting edges for 𝑘 > 𝑖. Then we have a direct sum decomposition

𝐺 𝑝R𝑖
∗ =

⊕
P→C∈𝐴𝑖,𝑝

LP→C
∗ ,

where LP→C
∗ is the sub-chain complex consisting of those covers whose supporting edge retraction is

equal to P → C. This direct sum decomposition holds because the differential on 𝐺 𝑝R𝑖
∗ is given by

a signed sum of supporting edge contractions and hence preserves the supporting edge retraction of a
given cover. Next, given P→ C ∈ 𝐴𝑖, 𝑝 , we have a tensor product decomposition

LP→C
∗ � ���

⊗
𝑣 ∈𝑉

rep
𝑖 (P)

(Q
∼
−→ Q)

���[1 − 𝑝],

where 𝑉
rep
𝑖 (P) denotes the set of vertices of P which contain exactly i markings, and the first copy of

Q is in degree 1. This tensor product decomposition holds because a generator of LP→C
∗ is determined

by a choice of subset of those vertices of P which contain i markings: the corresponding generator
is determined by expanding a single i-supporting edge from the image of each chosen vertex in C.
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Figure 7. The cover D→ F.

Figure 8. A cover in ΓH
5,2 and its maximal expansion by 3-ends.

(Since 𝑖 ≥ 2, such an expansion is indeed possible, producing a stable S-marked target tree.) The degree
shift is required to account for the p edges of P → C. Altogether, this shows that LP→C

∗ is a tensor
product of acyclic chain complexes, so LP→C

∗ is itself acyclic, and the proof is complete. �

5.3. The homology of Θ≥3
𝑔,𝑛

We will now show that the chain complexQ(𝑔,𝑛)∗ is acyclic. It will again be convenient to name particular
types of edges.

Definition 5.6. Suppose P→ C is an object of ΓH
𝑔,𝑛, and that C has a vertex of weight at least 3.

1. We say 𝑒 ∈ 𝐸 (C) is a 3-end if upon contracting all edges in C except for e, and their preimages in
P, we obtain the cover D→ F in Figure 7.

2. We say a cover P′ → C′ is a 3-end expansion of P → C if P → C is obtained from P′ → C′ by
contracting a sequence of 3-ends.

It is straightforward to see that for any cover P→ C, the poset of 3-end expansions of P→ C has a
maximal element, as in the following lemma. We omit the proof; see Figure 8 for an example of how
this expansion is constructed.

Lemma 5.7. Let P → C be an object of ΓH
𝑔,𝑛. Then the poset of 3-end expansions of P → C has a

unique maximal element P′ → C′, and this expansion is canonical in the sense that any automorphism
of P→ C lifts to an automorphism of P′ → C′.

Given a ΓH
𝑔,𝑛-object P→ C, let 𝐴(P→ C) be the set of isomorphism classes of covers obtained from

P→ C by contracting 3-ends. We define a chain complex QP→C
∗ as follows: the vector space QP→C

𝑝 is
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spanned by pairs (H → K, 𝜔), where H → K is an element of 𝐴(P → C) with |𝐸 (K) | = 𝑝 + 1, and
𝜔 : [𝑝] → 𝐸 (K) is an edge-labeling. These generators are subject to the usual relation

(H→ K, 𝜔 ◦ 𝜌) = sgn(𝜌) (H→ K, 𝜔)

for 𝜌 ∈ Aut([𝑝]). The differential on QP→C
∗ is given by the signed sum of 3-end contractions; we set it

equal to 0 on any generators which do not have any 3-ends.

Proposition 5.8. Suppose P→ C has a 3-end and is maximal with respect to expanding 3-ends. Then
QP→C
∗ is acyclic.

Proof. First, consider the case where C has no automorphisms. This implies that all 3-end contractions
of C have no automorphisms, since any automorphism of the target tree of a ΓH

𝑔,𝑛-object must lift to an
automorphism of its maximal 3-end expansion. Let 𝑞 + 1 be the number of distinct 3-ends of C. We
can understand QP→C

∗ as a shift of the augmented cellular chain complex of the standard q-simplex 𝜎𝑞 ,
viewed as the space parameterizing assignments of nonnegative lengths to the 𝑞 + 1 distinct 3-ends of
C, such that the lengths sum to one. Note that 𝑞 ≥ 0 by assumption, so that 𝜎𝑞 is nonempty. So in the
automorphism-free case, QP→C

∗ is acyclic.
For the general case, when C and its contractions may have automorphisms, fix a labeling of the edges

of C, and denote the resulting object by C†. This induces a labeling of the edges of each contraction of
C. Let 𝐴(C†) be the set consisting of C† and all of its 3-end contractions. We can make a chain complex
QC,†
∗ which in degree p is spanned by pairs [K, 𝜔] where K is an element of 𝐴(C†) with |K| = 𝑝 + 1,

and 𝜔 : [𝑝] → 𝐸 (K) is a bijection, subject to the usual relations under the action of Aut([𝑝]). Observe
that there is a canonical action of Aut(C) on the chain complex QC,†

∗ , and QP→C
∗ is identified with the

Aut(C)-coinvariants of the complexQC,†
∗ , by the second part of Lemma 5.7. Since Aut(C) is finite, it has

no homology over the rationals. Moreover, QC,†
∗ is acyclic by the first part of the proof. We conclude that

𝐻∗(QP→C
∗ ) = 𝐻∗((QC,†

∗ )Aut(C) ) = (𝐻∗(QC,†
∗ ))Aut(C) = 0,

as desired. �

We now prove that Q(𝑔,𝑛)∗ is acyclic.

Theorem 5.9. For 𝑔 ≥ 2 and 𝑛 ≥ 0, the chain complex Q(𝑔,𝑛)∗ is acyclic.

Proof. Let 𝐹𝑝Q(𝑔,𝑛)∗ denote the subspace spanned by those covers whose target tree has at most p edges
which are not 3-ends. This defines a bounded, increasing filtration of Q(𝑔,𝑛)∗ . The 𝐸0 page

𝐸0
𝑝,𝑞 = 𝐹𝑝Q(𝑔,𝑛)𝑝+𝑞 /𝐹𝑝−1Q(𝑔,𝑛)𝑝+𝑞

of the associated spectral sequence is spanned by covers whose target tree has exactly p edges which
are not 3-ends. The differential 𝜕0 : 𝐸0

𝑝,𝑞 → 𝐸0
𝑝,𝑞−1 is given by a signed sum of 3-end contractions.

Therefore, by Lemma 5.7, the pth column of the 𝐸0 page breaks up into a direct sum of chain complexes
of the formQP→C

∗ , where C has at least one 3-end, and the tree obtained from C by contracting all 3-ends
has p edges. Proposition 5.8 then implies that the 𝐸1 page vanishes, which completes the proof. �

5.4. Calculations on Θ𝑔,𝑛 for 𝑛 ≤ 2

We conclude this section by proving Proposition B. The first part of Proposition B asserts that C (𝑔,𝑛)∗

is acyclic for 𝑛 ≤ 1, and the proof is similar to the one that Q(𝑔,𝑛)∗ is acyclic. Once again, we isolate
particular types of edges:
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Figure 9. The cover J→ K.

Figure 10. A cover P→ C in ΓH
5,2 and the two distinct maximal elements of its poset of 2-end expansions.

When 𝑛 ≤ 1, this poset always has a unique maximal element, as explained in the proof of Lemma 5.11.

Definition 5.10. Let P→ C be a ΓH
𝑔,𝑛-object. An edge 𝑒 ∈ 𝐸 (C) is called a 2-end if upon contracting

all edges of C except for e, and their preimages in P, we obtain the cover J→ K in Figure 9.

The key to the proof of acyclicity of C (𝑔,𝑛)∗ when 𝑛 ≤ 1 is the following lemma.

Lemma 5.11. Let P → C be an object of ΓH
𝑔,𝑛 for 𝑛 ≤ 1. Then the poset of expansions of P → C by

2-ends has a unique maximal element P′ → C′. Moreover, this expansion is canonical in the sense that
any automorphism of P→ C lifts to one of P′ → C′.

Proof. It is clear how to construct the graph C′: for every vertex of C with weight 𝑑 ≥ 2, one expands
�𝑑/2� many 2-ends from v, leaving behind a vertex of weight 𝑑 − 2�𝑑/2� (if 𝑑 = 2, this expansion
should only be performed if it preserves the stability condition – that is, only if the vertex is not already
part of a 2-end). This uniquely determines a cover 𝑃′ but does not determine the marking function on
𝑃′. If 𝑛 = 0, then there is no marking function, so P′ is determined. For 𝑛 = 1, the only ambiguity arises
when v supports the unique marking, and the preimage of v in C′ has 2 preimages in the graph 𝑃′, so
one has to make a choice as to which fiber to mark. However, since 𝑛 = 1, both choices are equivalent,
as they differ by the Z/2Z-action on 𝑃′. Therefore, P′ is also determined when 𝑛 = 1. The statement on
lifting of automorphisms is straightforward to check. The lemma fails when 𝑛 > 1, because, in general,
there is no canonical way of distributing the markings supported at v among the fibers over v in 𝑃′. See
Figure 10 for an example. �

Given Lemma 5.11, the proof of the following theorem is completely analogous to the proof of
Theorem 5.9; we will only outline the necessary steps.

Theorem 5.12. For 𝑔 ≥ 2 and 𝑛 ≤ 1, the chain complex C (𝑔,𝑛)∗ is acyclic.
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Figure 11. A cycle spanning 𝐻2𝑔 (Θ𝑔,2;Q).

Proof. First, define 𝐵(P → C) to be the set of isomorphism classes of ΓH
𝑔,𝑛-objects obtained from

P → C by contracting 2-ends. Then use this to define a chain complex GP→C
∗ analogously to QP→C

∗ ,
where the differential is given by a signed sum of 2-end contractions. The proof that GP→C

∗ is acyclic,
for P → C maximal with respect to expanding 2-ends, is exactly the same as the proof of Proposition
5.8. Finally, one proves the theorem by filtering C (𝑔,𝑛)∗ : set 𝐹𝑝C (𝑔,𝑛)∗ to be the subcomplex of C (𝑔,𝑛)∗

spanned by those covers with at most p edges which are not 2-ends. Then the pth column of the 𝐸0

page of the associated spectral sequence breaks up into a direct sum of complexes of the form GP→C
∗ by

Lemma 5.11, so the 𝐸1 page vanishes, and the result follows. �

Theorem 5.12 gives part (1) of Proposition B. Part (2) states that

𝑊0𝐻
2𝑔+1
𝑐 (H𝑔,2;Q) � Q

and that the corresponding 𝑆2-representation is trivial if g is even and given by the sign representation
if g is odd. We prove this now by writing down an explicit cycle in C (𝑔,2)2𝑔 corresponding to this class.
See Figure 11.

Proof of Proposition B, part (2). We have an isomorphism of 𝑆2-representations

𝑊0𝐻
2𝑔+1
𝑐 (H𝑔,2;Q) � 𝐻2𝑔 (Θ𝑔,2;Q)∨

by Corollary 4.5. We have

𝐻2𝑔 (Θ𝑔,2;Q) = 𝐻2𝑔

(
C (𝑔,2)∗

)
.

Observe that 2𝑔 is the top homological degree of C (𝑔,2) : the maximal number of edges of a stable tree
with 2𝑔 + 4 legs is 2𝑔 + 1. Therefore, any cycle in C (𝑔,2)2𝑔 defines a class in homology. Any target tree
for a cover in C (𝑔,2)2𝑔 must be trivalent, and to be a nonzero element, it cannot have any automorphisms
which act by an odd permutation of the edge set. It is straightforward to conclude that such a tree must
be equal to the tree depicted in Figure 11. This tree C has two covers, depicted in Figure 11. Therefore,
dim C (𝑔,2)2𝑔 = 2, where a basis is given by choosing any edge-labeling of the aforementioned tree. One can
verify directly that neither one of these basis elements forms a cycle on their own, but their difference
does. From this we conclude that 𝐻2𝑔 (C (𝑔,2)∗ ) � Q. To understand the 𝑆2-representation, we note that
when g is even, the transposition in 𝑆2 induces an even permutation on any edge-labeling of the given
tree, and when g is odd, the transposition induces an odd permutation of the edge labels. �
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Remark 5.13. Theorem 5.5 generalizes to other spaces of admissible covers. Fix an integer 𝑁 > 0,
and let G be an abelian group, which we now write additively to be consistent with our notation for
𝐺 = Z/2Z. Let

𝜇 : {𝑤1, . . . , 𝑤𝑁 } → 𝐺

be a function such that the image of 𝜇 generates G, which additionally satisfies

𝑁∑
𝑖=1

𝜇(𝑤𝑖) = 0,

where 0 ∈ 𝐺 denotes the identity element. For any integer 𝑛 ≥ 0, we can extend 𝜇 to a function

{1, . . . , 𝑛} ∪ {𝑤1, . . . , 𝑤𝑁 } → 𝐺

by setting the image of each 𝑖 ∈ {1, . . . , 𝑛} to be 0; for ease of notation, we will also call this extension
𝜇. We set the notation

M𝐺

0,𝑛+𝑁 (𝜇) := M𝐺

0, {1,...,𝑛}∪{𝑤1 ,...,𝑤𝑁 }
(𝜇)

and define M𝐺
0,𝑛+𝑁 (𝜇) similarly. We now define an intermediate locus

M𝐺
0,𝑛+𝑁 (𝜇) ⊂ M̃𝐺

0,𝑛+𝑁 (𝜇) ⊂M𝐺

0,𝑛+𝑁 (𝜇)

in analogy with the space H̃𝑔,𝑛 of n-marked hyperelliptic curves of genus g together with a labeling
of their Weierstrass points, considered in §4.1. Given a graph-theoretic pointed admissible G-cover
P → C ∈ Ob(Γ𝐺0,𝑛+𝑁 (𝜇)), where Γ𝐺0,𝑛+𝑁 (𝜇) is the category defined in Definition 3.3, we say that
P→ C is forbidden if all of the following conditions hold:

(a) |𝐸 (C) | = 1,
(b) If we erase all of the legs labeled by {1, . . . , 𝑛} from C, the resulting {𝑤1, . . . , 𝑤𝑁 }-marked tree is

not stable in the sense of Definition 3.1, and
(c) the source graph P has no vertices supporting repeated markings among {1, . . . , 𝑛}.

Each forbidden cover P→ C corresponds uniquely to a boundary divisor of M𝐺

0,𝑛+𝑁 (𝜇), and we define
M̃𝐺

0,𝑛+𝑁 (𝜇) to be the complement in M𝐺

0,𝑛+𝑁 (𝜇) of those boundary divisors which are not forbidden.
When 𝐺 = Z/2Z = {0, 1}, 𝑁 = 2𝑔 + 2, and 𝜇(𝑤𝑖) = 1 for all i, the forbidden divisors are precisely

those of type (1) and (2) in Definition 4.1, and we have

M̃Z/2Z
0,𝑛+2𝑔+2 (𝜇) � H̃𝑔,𝑛.

For general G and 𝜇, the space M̃𝐺
0,𝑛+𝑁 (𝜇) can be identified with the moduli space of smooth N-pointed

admissible G-covers of P1, with monodromy specified by 𝜇, together with n distinct marked points on
the source curve. This space admits an 𝑆𝑛-action given by permuting the n marked points on the source,
and the isomorphism with M̃𝐺

0,𝑛+𝑁 (𝜇) is 𝑆𝑛-equivariant.
The dual complex Θ̃𝐺0,𝑛+𝑁 (𝜇) of the normal crossings compactification

M̃𝐺
0,𝑛+𝑁 (𝜇) ⊂M𝐺

0,𝑛+𝑁 (𝜇)
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is the subcomplex of Δ𝐺0,𝑛+𝑁 (𝜇) of those simplices which have no forbidden vertices. The analogue
of Theorem 5.5 holds for Θ̃𝐺0,𝑛+𝑁 (𝜇): the subcomplex parameterizing graph-theoretic admissible G-
covers P → C where P has a repeated marking is acyclic. Our proof of Theorem 5.5 carries through
to this setting, mutatis mutandis. In Remark 6.6 below, we explain how this leads to a generalization of
Theorem A for these spaces.

6. A graph sum formula for h𝑔

Recall from the introduction that

h𝑔 =
∑
𝑛≥0

4𝑔−2+2𝑛∑
𝑖=0
(−1)𝑖 ch𝑛𝑊0𝐻

𝑖
𝑐 (H𝑔,𝑛;Q) ∈ Λ̂

denotes the generating function for the weight zero equivariant Euler characteristics of the moduli spaces
H𝑔,𝑛. In this section, we will prove Theorem A, thus establishing our sum-over-graphs formula for h𝑔.
We let 𝑇2𝑔+2 denote the set of isomorphism classes of stable trees with 2𝑔 + 2 unlabeled legs. When
each leg is given monodromy marking equal to 1 ∈ Z/2Z, such a tree C has a unique graph-theoretic
admissible Z/2Z-cover 𝑃𝐶 → 𝐶. Let 𝑇<3

2𝑔+2 denote the subset of 𝑇2𝑔+2 consisting of those trees such that
no vertex supports more than two leaves, and for a tree C, we write 𝐸𝐶 for its set of edges. We restate
Theorem A for convenience.

Theorem A. We have

h𝑔 =
∑

𝐶∈𝑇 <3
2𝑔+2

(−1) |𝐸𝐶 |

|Aut(𝑃𝐶 ) |

∑
𝜏∈Aut(𝑃𝐶 )

sgn(𝜏 |𝐸𝐶 )
∏
𝑘≥1
(1 + 𝑝𝑘 )

𝑓 (𝑃𝐶 ,𝜏,𝑘) ,

where 𝐸𝐶 is the set of edges of the tree C, 𝑝𝑘 =
∑
𝑛>0 𝑥

𝑘
𝑛 ∈ Λ̂ is the kth power sum symmetric function,

and 𝑘 · 𝑓 (𝑃𝐶 , 𝜏, 𝑘) is the compactly supported Euler characteristic of the set of points in 𝑃𝐶 which have
orbit of length k, under the action of 𝜏.

We will prove Theorem A through a series of intermediate results. Throughout this section, we tacitly
replace the symmetric Δ-complex Θ𝑔,𝑛 with its geometric realization.

Lemma 6.1. We have

h𝑔 = −
∑
𝑛≥0

𝜒𝑆𝑛𝑐 (Θ𝑔,𝑛 \ (Θ
rep
𝑔,𝑛 ∪ Θ

≥3
𝑔,𝑛)),

where 𝜒𝑆𝑛𝑐 (·) denotes the 𝑆𝑛-equivariant compactly supported Euler characteristic.

Proof. Via the identification

𝑊0𝐻
𝑖
𝑐 (H𝑔,𝑛;Q) � 𝐻𝑖−1(Θ𝑔,𝑛;Q)∨

of Corollary 4.5, and using that the Frobenius characteristic of a representation of 𝑆𝑛 equals that of its
dual, we can write

h𝑔 =
∑
𝑛≥0

4𝑔−2+2𝑛∑
𝑖=0
(−1)𝑖 ch𝑛 𝐻𝑖−1(Θ𝑔,𝑛;Q)

=
∑
𝑛≥0
−�̃�𝑆𝑛 (Θ𝑔,𝑛),
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where �̃�𝑆𝑛 (·) denotes the 𝑆𝑛-equivariant reduced Euler characteristic. Since Θ𝑔,𝑛 is connected and
compact, and 𝑆𝑛 acts trivially on 𝐻0 (Θ𝑔,𝑛;Q) � Q, we have

−
∑
𝑛≥0

�̃�𝑆𝑛 (Θ𝑔,𝑛) =
∑
𝑛≥0

ℎ𝑛 −
∑
𝑛≥0

𝜒𝑆𝑛𝑐 (Θ𝑔,𝑛),

where ℎ𝑛 ∈ Λ is the nth homogeneous symmetric function, defined as the Frobenius characteristic of
the trivial 𝑆𝑛-representation. By the additivity of the compactly supported Euler characteristic under
stratification, we can write∑

𝑛≥0
𝜒𝑆𝑛𝑐 (Θ𝑔,𝑛) =

∑
𝑛≥0

(
𝜒𝑆𝑛𝑐 (Θ𝑔,𝑛 \ (Θ

rep
𝑔,𝑛 ∪ Θ

≥3
𝑔,𝑛)) + 𝜒𝑆𝑛𝑐 (Θ

rep
𝑔,𝑛 ∪ Θ

≥3
𝑔,𝑛)

)
.

Since the union Θrep
𝑔,𝑛 ∪ Θ≥3

𝑔,𝑛 is compact and connected, with vanishing reduced rational homology by
Theorem 5.1, and 𝑆𝑛 acts trivially on 𝐻0 (Θ

rep
𝑔,𝑛 ∪ Θ≥3

𝑔,𝑛;Q), we have

𝜒𝑆𝑛𝑐 (Θ
rep
𝑔,𝑛 ∪ Θ

≥3
𝑔,𝑛) = ℎ𝑛,

and the proof is complete. �

Lemma 6.2. We have

h𝑔 = −
∑

𝐶∈𝑇 <3
2𝑔+2

∑
𝑛≥0

𝜒𝑆𝑛𝑐

((
Conf𝑛 (𝑃𝐶 ) × (Δ |𝐸𝐶 |−1)◦

)
/Aut(𝑃𝐶 )

)
.

Proof. We can stratify the space

𝑋𝑔,𝑛 := Θ𝑔,𝑛 \ (Θ
rep
𝑔,𝑛 ∪ Θ

≥3
𝑔,𝑛)

by the ΓH
𝑔 -object that arises when we forget the marking function and delete all legs with monodromy

equal to 0, as well as their preimages, and then stabilizing; stabilization process only entails the removal
of 2-valent vertices, because we are outside the locus Θrep

𝑔,𝑛. Such an object is uniquely specified by an
element C of 𝑇<3

2𝑔+2, which determines its covering 𝑃𝐶 . Since we have removed the repeated marking
locus, the stratum corresponding to 𝑃𝐶 → 𝐶 is 𝑆𝑛-equivariantly homeomorphic to(

Conf𝑛 (𝑃𝐶 ) × (Δ |𝐸𝐶 |−1)◦
)
/Aut(𝑃𝐶 ).

Above, (Δ |𝐸𝐶 |−1)◦ denotes the interior of the standard |𝐸𝐶 | − 1 simplex Δ |𝐸𝐶 |−1, viewed as the space
parameterizing metrics ℓ : 𝐸𝐶 → R>0 of total length one. The space Conf𝑛 (𝑃𝐶 ) is the configuration
space of n distinct points on 𝑃𝐶 , and the action of Aut(𝑃𝐶 ) is diagonal: one finds that the morphism
𝑃𝐶 → 𝐶 can be reconstructed from 𝑃𝐶 , so Aut(𝑃𝐶 ) naturally acts on C and hence on |𝐸𝐶 | and(
Δ |𝐸𝐶 |−1)◦. �

We now show how to calculate the terms in the sum, following Gorsky’s calculation of the 𝑆𝑛-
equivariant Euler characteristic of Conf𝑛 (𝑋)/𝐺, where X is an algebraic variety and G is a finite
subgroup of its automorphism group [31].
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Proposition 6.3. Let X be a finite CW complex, and let E be a finite set. Set

Δ◦ =

{
ℓ : 𝐸 → R>0 |

∑
𝑒∈𝐸

ℓ(𝑒) = 1

}
.

Let G be a finite group acting on both X and E, and set

h𝑋,𝐸,𝐺 :=
∑
𝑛≥0

𝜒𝑆𝑛𝑐 ((Conf𝑛 (𝑋) × Δ◦)/𝐺).

Then

h𝑋,𝐸,𝐺 = −
(−1) |𝐸 |

|𝐺 |

∑
𝑔∈𝐺

sgn(𝑔 |𝐸 )
∏
𝑘≥1
(1 + 𝑝𝑘 )

𝜒𝑐 (𝑋𝑘 (𝑔))/𝑘 ,

where 𝑋𝑘 (𝑔) denotes the set of points of X which have orbit of length k under the action of g.

Before proving Proposition 6.3, we need two intermediate lemmas.

Lemma 6.4. Suppose that X is any finite CW complex. Then

𝑓 (𝑡) :=
∑
𝑛≥0

𝜒𝑐 (Conf𝑛 (𝑋))
𝑡𝑛

𝑛!
= (1 + 𝑡)𝜒𝑐 (𝑋 ) .

Proof. We have the identity

𝜒𝑐 (𝑋
𝑛) =

𝑛∑
𝑘=1

𝑆(𝑛, 𝑘)𝜒𝑐 (Conf𝑘 (𝑋)),

where 𝑆(𝑛, 𝑘), the Stirling number of the second kind, counts the number of partitions of n with k parts.
It follows that

𝑔(𝑡) :=
∑
𝑛≥0

𝜒𝑐 (𝑋
𝑛)

𝑡𝑛

𝑛!
= 𝑒𝜒𝑐 (𝑋 )𝑡

is the Stirling transform of f, so that 𝑓 (𝑡) = 𝑔(log(1 + 𝑡)) = (1 + 𝑡)𝜒𝑐 (𝑋 ) , as claimed. �

Lemma 6.5. For any group H acting on a space Y, denote by

[𝑌 ]ℎ

the set of fixed points of ℎ ∈ 𝐻 acting on Y. Then, for X, E and G as above, and 𝜎 ∈ 𝑆𝑛, we have

𝜒𝑐
(
[(Conf𝑛 (𝑋) × Δ◦)/𝐺]𝜎

)
= −
(−1) |𝐸 |

|𝐺 |

∑
𝑔∈𝐺

sgn(𝑔 |𝐸 ) · 𝜒𝑐
(
[Conf𝑛 (𝑋)]𝑔

−1𝜎
)
.

Proof. Define

𝑆 = {(𝑔, ℓ, 𝑦) ∈ 𝐺 × Δ◦ × Conf𝑛 (𝑋) | 𝑔 · (ℓ, 𝑦) = 𝜎 · (ℓ, 𝑦)}.

Then we have a map

𝑆 → [(Conf𝑛 (𝑋) × Δ◦)/𝐺]𝜎 ,
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which takes (𝑔, ℓ, 𝑦) to (𝑦, ℓ). The fibers of this map are all nonempty and have cardinality equal to |𝐺 |,
so

𝜒𝑐
(
[(Conf𝑛 (𝑋) × Δ◦)/𝐺]𝜎

)
=

1
|𝐺 |

𝜒𝑐 (𝑆).

However, the projection 𝑆 → 𝐺 has fiber over 𝑔 ∈ 𝐺 isomorphic to

[Δ◦]𝑔 × [Conf𝑛 (𝑋)]𝑔
−1𝜎 .

Therefore, we have

𝜒𝑐
(
[(Conf𝑛 (𝑋) × Δ◦)/𝐺]𝜎

)
=

1
|𝐺 |

∑
𝑔∈𝐺

𝜒𝑐 ([Δ
◦]𝑔) · 𝜒𝑐

(
[Conf𝑛 (𝑋)]𝑔

−1𝜎
)
.

The proof is finished upon noting that [Δ◦]𝑔 is again an open simplex, whose dimension modulo 2 is
equal to |𝐸 | + sgn(𝑔 |𝐸 ) − 1. �

We can now prove Proposition 6.3.

Proof of Proposition 6.3. We have

h𝑋,𝐸,𝐺 =
∑
𝑛≥0

1
𝑛!

∑
𝜎∈𝑆𝑛

∑
𝑖≥0
(−1)𝑖Tr

(
𝜎 |𝐻 𝑖

𝑐 ( (Conf𝑛 (𝑋 )×Δ◦)/𝐺;Q)

)
𝑝𝑘1 (𝜎)

1 · · · 𝑝𝑘𝑛 (𝜎)𝑛

=
∑
𝑛≥0

1
𝑛!

∑
𝜎∈𝑆𝑛

𝜒𝑐
(
[(Conf𝑛 (𝑋) × Δ◦)/𝐺]𝜎

)
𝑝𝑘1 (𝜎)

1 · · · 𝑝𝑘𝑛 (𝜎)𝑛 ,

by the Lefschetz fixed-point theorem applied to the one-point compactification of (Conf𝑛 (𝑋) × Δ◦)/𝐺,
where we set 𝑘𝑖 (𝜎) to be the number of cycles of length i in 𝜎. Now using Lemma 6.5, we have

h𝑋,𝐸,𝐺 = −
∑
𝑛≥0

1
𝑛!

∑
𝜎∈𝑆𝑛

(−1) |𝐸 |

|𝐺 |

∑
𝑔∈𝐺

sgn(𝑔 |𝐸 ) · 𝜒𝑐
(
[Conf𝑛 (𝑋)]𝑔

−1𝜎
)
𝑝𝑘1 (𝜎)

1 · · · 𝑝𝑘𝑛 (𝜎)𝑛 .

Now the proof follows that of Gorsky [31, Theorem 2.5]: if we set

𝑋𝑘 (𝑔) := {𝑥 ∈ 𝑋 | 𝑥 has orbit of size 𝑘 under 𝑔},

and

𝑋𝑘 (𝑔) = 𝑋𝑘 (𝑔)/(𝑔),

then for fixed ℓ1, . . . , ℓ𝑛 such that
∑𝑛
𝑖=1 𝑖ℓ𝑖 = 𝑛, we have a map

∐
𝜎∈𝑆𝑛

𝑘𝑖 (𝜎)=ℓ𝑖∀𝑖

[Conf𝑛 (𝑋)]𝑔
−1𝜎 →

𝑛∏
𝑖=1

Confℓ𝑖 (𝑋𝑖 (𝑔))/𝑆ℓ𝑖
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which is 𝑛!-to-1, so that

1
𝑛!

∑
𝜎∈𝑆𝑛

𝑘𝑖 (𝜎)=ℓ𝑖∀𝑖

𝜒𝑐

(
[Conf𝑛 (𝑋)]𝑔

−1𝜎
)
=

𝑛∏
𝑖=1

𝜒𝑐 (Confℓ𝑖 (𝑋𝑖 (𝑔)))
ℓ𝑖!

.

Now the proposition follows from Lemma 6.4, upon summing over all possible tuples (ℓ1, . . . , ℓ𝑛). �

Now Theorem A is proved by combining Lemma 6.2 with Proposition 6.3.

Remark 6.6. As explained in Remark 5.13, the repeated marking locus in the dual complex Θ̃𝐺0,𝑛+𝑁 (𝜇)
of the inclusion

M̃𝐺
0,𝑛+𝑁 (𝜇) ⊂M𝐺

0,𝑛+𝑁 (𝜇)

is also acyclic, and M̃𝐺
0,𝑛+𝑁 (𝜇) is naturally identified with the moduli space of smooth N-pointed

admissible covers of P1 with 𝜇-specified monodromy, together with n distinct marked points on the
source curve.

By the acyclicity of the repeated marking locus, we can write a graph sum formula for the generating
function encoding the 𝑆𝑛-equivariant weight zero compactly supported Euler characteristics of these
moduli spaces. Define

h𝐺𝑁 (𝜇) =
∑
𝑛≥0

2𝑁+2𝑛−6∑
𝑖=0

(−1)𝑖 ch𝑛 (𝑊0𝐻
𝑖
𝑐 (M̃𝐺

0,𝑛+𝑁 (𝜇);Q)).

By removing the repeated marking locus from the dual complex and emulating the techniques of this
section, we obtain the following theorem.

Theorem D. We have

h𝐺𝑁 (𝜇) =
∑

P→C∈Ob(Γ𝐺
0,𝑁 (𝜇))

(−1) |𝐸C |

|Aut(P→ C) |
∑

𝜏∈Aut(P→C)
sgn(𝜏 |𝐸C )

∏
𝑘≥1
(1 + 𝑝𝑘 )

𝑓 (P,𝜏,𝑘) ,

where 𝐸C is the set of edges of the tree C, 𝑝𝑘 =
∑
𝑛>0 𝑥

𝑘
𝑛 ∈ Λ̂ is the kth power sum symmetric function,

and 𝑘 · 𝑓 (P, 𝜏, 𝑘) is given by the compactly supported Euler characteristic of the set of points in P which
have orbit of length k, under the action of 𝜏. The first sum is taken over isomorphism classes of objects
in Γ𝐺0,𝑁 (𝜇), which is the category defined in Definition 3.3.

Taking 𝐺 = Z/2Z, 𝑁 = 2𝑔 + 2 and 𝜇 : {𝑤1, . . . , 𝑤𝑁 } → Z/2Z to be the constant function 1 in
Theorem D, we obtain the generating function for the 𝑆𝑛-equivariant weight zero compactly supported
Euler characteristics of the moduli spaces H̃𝑔,𝑛 of n-pointed hyperelliptic curves of genus g, together
with labelings of their Weierstrass points.

A. Calculations for 𝑔 ≤ 7

In this appendix, we present the computational data obtained by implementing Theorem A on a com-
puter. This was implemented in Mathematica using the package IGraph/M [34]. The code for these
computations is available at [14].
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Table A.1. The generating function h𝑔 ∈ Λ̂ for 2 ≤ 𝑔 ≤ 7. Here, 𝑃𝑖 := 1 + 𝑝𝑖 ∈ Λ̂ is the inhomogeneous power sum..

g h𝑔

2
1
12

(
−
𝑃3

1

𝑃2
2
−

2𝑃2
1

𝑃3
+

6𝑃1
𝑃2
−

2𝑃2𝑃3
𝑃6

−
1
𝑃1

)
3 −

𝑃1
4

16𝑃2
3 +

𝑃1
3

8𝑃2
2 −

5𝑃1
2

16𝑃2
2 −

𝑃1
2

8𝑃4
−

1
16𝑃1

2 +
𝑃1𝑃2
4𝑃4

+
𝑃1

2𝑃2
+

1
8𝑃1
−
𝑃2

8𝑃4
−

5
16𝑃2

4 −
9𝑃5

1

160𝑃4
2
+

7𝑃4
1

48𝑃3
2
−
𝑃3

1

8𝑃2
2
−

𝑃3
1

16𝑃3
2
−

𝑃3
1

16𝑃2𝑃4
+

𝑃2
1

16𝑃2
2
+
𝑃2

1
8𝑃4
−

𝑃2
1

10𝑃5
−
𝑃1

2𝑃2
+

7𝑃1

16𝑃2
2
+
𝑃1

6𝑃3
−
𝑃2𝑃1
4𝑃4

+
𝑃1

8𝑃4
+
𝑃3𝑃1
6𝑃6

−

1
8𝑃1
+

7
48𝑃2

1
−

9
160𝑃3

1
+

1
16𝑃2

−
1

16𝑃1𝑃2
+
𝑃2

8𝑃4
−

𝑃2
16𝑃1𝑃4

−
𝑃2𝑃5
10𝑃10

5 −
11𝑃6

1

192𝑃5
2
+

3𝑃5
1

16𝑃4
2
−
𝑃4

1

4𝑃3
2
−

5𝑃4
1

64𝑃4
2
−

𝑃4
1

16𝑃2
2 𝑃4
+
𝑃3

1

8𝑃2
2
+

5𝑃3
1

16𝑃3
2
+

3𝑃3
1

16𝑃2𝑃4
−
𝑃2

1

4𝑃2
2
−

35𝑃2
1

96𝑃3
2
−

𝑃2
1

12𝑃2
3
−

3𝑃2
1

16𝑃2𝑃4
−
𝑃2𝑃

2
1

8𝑃2
4
+

𝑃2
1

12𝑃6
−
𝑃4𝑃

2
1

8𝑃2𝑃8
+

3𝑃1

4𝑃2
2
−
𝑃2𝑃1
4𝑃4

+
3𝑃1
8𝑃4
+
𝑃2

2 𝑃1

4𝑃2
4
+
𝑃4𝑃1
4𝑃8

+
1

8𝑃1
−

1
4𝑃2

1
+

3
16𝑃3

1
−

11
192𝑃4

1
−

1
4𝑃2
+

5
16𝑃1𝑃2

−
5

64𝑃2
1 𝑃2
−

35
96𝑃2

2
−

3
16𝑃4

+
3𝑃2

16𝑃1𝑃4
−

𝑃2

16𝑃2
1 𝑃4
−
𝑃2

2

8𝑃2
4
+

𝑃2
12𝑃6

−
𝑃2𝑃

2
3

12𝑃2
6
−
𝑃4

8𝑃8

6 −
227𝑃7

1

3584𝑃6
2
+
𝑃6

1

4𝑃5
2
−

55𝑃5
1

128𝑃4
2
−

25𝑃5
1

256𝑃5
2
−

9𝑃5
1

128𝑃3
2 𝑃4
+

3𝑃4
1

8𝑃3
2
+

7𝑃4
1

16𝑃4
2
+

𝑃4
1

4𝑃2
2 𝑃4
−
𝑃3

1

8𝑃2
2
−

13𝑃3
1

16𝑃3
2
−

55𝑃3
1

512𝑃4
2
−

11𝑃3
1

32𝑃2𝑃4
−

3𝑃3
1

64𝑃2
2 𝑃4
−

7𝑃3
1

128𝑃2
4
−

𝑃4𝑃
3
1

32𝑃2
2 𝑃8
+

7𝑃2
1

8𝑃2
2
+

5𝑃2
1

16𝑃3
2
+
𝑃2

1
4𝑃4
+

𝑃2
1

8𝑃2𝑃4
+
𝑃2𝑃

2
1

8𝑃2
4
−

𝑃2
1

14𝑃7
−

99𝑃1

64𝑃2
2
+

59𝑃1

128𝑃3
2
+
𝑃2𝑃1
4𝑃4

−
7𝑃1
8𝑃4
+

19𝑃1
64𝑃2𝑃4

−

9𝑃2
2 𝑃1

32𝑃2
4
+

9𝑃2𝑃1

64𝑃2
4
−
𝑃4𝑃1
8𝑃8

+
3𝑃4𝑃1

16𝑃2𝑃8
−

1
8𝑃1
+

3
8𝑃2

1
−

55
128𝑃3

1
+

1
4𝑃4

1
−

227
3584𝑃5

1
+

7
8𝑃2
−

13
16𝑃1𝑃2

+
7

16𝑃2
1 𝑃2
−

25
256𝑃3

1 𝑃2
+

5
16𝑃2

2
−

55
512𝑃1𝑃

2
2
+
𝑃2

4𝑃4
+

1
8𝑃4
−

11𝑃2
32𝑃1𝑃4

−
3

64𝑃1𝑃4
+

𝑃2

4𝑃2
1 𝑃4
−

9𝑃2

128𝑃3
1 𝑃4
+
𝑃2

2

8𝑃2
4
−

7𝑃2
2

128𝑃1𝑃
2
4
−

𝑃4
32𝑃1𝑃8

−
𝑃2𝑃7
14𝑃14

7 −
19𝑃8

1

256𝑃7
2
+

351𝑃7
1

1024𝑃6
2
−

913𝑃6
1

1280𝑃5
2
−

33𝑃6
1

256𝑃6
2
−

11𝑃6
1

128𝑃4
2 𝑃4
+

53𝑃5
1

64𝑃4
2
+

171𝑃5
1

256𝑃5
2
+

185𝑃5
1

512𝑃3
2 𝑃4
−

25𝑃4
1

48𝑃3
2
−

389𝑃4
1

256𝑃4
2
−

43𝑃4
1

256𝑃5
2
−

41𝑃4
1

64𝑃2
2 𝑃4
−

11𝑃4
1

128𝑃3
2 𝑃4
−

𝑃4
1

16𝑃2𝑃
2
4
−

𝑃4𝑃
4
1

32𝑃3
2 𝑃8
+
𝑃3

1

8𝑃2
2
+

15𝑃3
1

8𝑃3
2
+

949𝑃3
1

1024𝑃4
2
+

9𝑃3
1

16𝑃2𝑃4
+

29𝑃3
1

64𝑃2
2 𝑃4
+

55𝑃3
1

256𝑃2
4
+

5𝑃4𝑃
3
1

64𝑃2
2 𝑃8
−

23𝑃2
1

16𝑃2
2
−

213𝑃2
1

128𝑃3
2
−

137𝑃2
1

256𝑃4
2
−

3𝑃2
1

8𝑃4
−

37𝑃2
1

64𝑃2𝑃4
−

21𝑃2
1

64𝑃2
2 𝑃4
−

5𝑃2
1

32𝑃2
4
−

3𝑃2𝑃
2
1

64𝑃2
4
−
𝑃2

2 𝑃
2
1

8𝑃3
4
−
𝑃2

1
16𝑃8

+
𝑃4𝑃

2
1

16𝑃2𝑃8
−

5𝑃4𝑃
2
1

32𝑃2
2 𝑃8
+
𝑃1

2𝑃2
+

57𝑃1

32𝑃2
2
+

199𝑃1

128𝑃3
2
−
𝑃1

6𝑃3
+

𝑃1

8𝑃2
3
+
𝑃2𝑃1
4𝑃4

+
𝑃1

4𝑃4
+

229𝑃1
256𝑃2𝑃4

−
5𝑃2

2 𝑃1

16𝑃2
4
+

25𝑃2𝑃1

64𝑃2
4
+

103𝑃3
2 𝑃1

384𝑃3
4
+

𝑃1
10𝑃5

−
𝑃3𝑃1
6𝑃6

+
𝑃2

3 𝑃1

8𝑃2
6
−
𝑃4𝑃1
4𝑃8

+
5𝑃2𝑃1
32𝑃8

+
5𝑃4𝑃1
16𝑃2𝑃8

+

𝑃5𝑃1
10𝑃10

+
𝑃6𝑃1
12𝑃12

+
1

8𝑃1
−

25
48𝑃2

1
+

53
64𝑃3

1
−

913
1280𝑃4

1
+

351
1024𝑃5

1
−

19
256𝑃6

1
−

23
16𝑃2

+
15

8𝑃1𝑃2
−

389
256𝑃2

1 𝑃2
+

171
256𝑃3

1 𝑃2
−

33
256𝑃4

1 𝑃2
−

213
128𝑃2

2
+

949
1024𝑃1𝑃

2
2
−

43
256𝑃2

1 𝑃
2
2
−

137
256𝑃3

2
−

3𝑃2
8𝑃4
−

37
64𝑃4

+
9𝑃2

16𝑃1𝑃4
+

29
64𝑃1𝑃4

−
41𝑃2

64𝑃2
1 𝑃4
−

11
128𝑃2

1 𝑃4
+

185𝑃2

512𝑃3
1 𝑃4
−

11𝑃2

128𝑃4
1 𝑃4
−

21
64𝑃2𝑃4

−
5𝑃2

32𝑃2
4
−

3𝑃2
2

64𝑃2
4
+

55𝑃2
2

256𝑃1𝑃
2
4
−

𝑃2
2

16𝑃2
1 𝑃

2
4
−
𝑃3

2

8𝑃3
4
−

𝑃2
16𝑃8

+
𝑃4

16𝑃8
+

5𝑃4
64𝑃1𝑃8

−
𝑃4

32𝑃2
1 𝑃8
−

5𝑃4
32𝑃2𝑃8

We compute h𝑔 explicitly for 2 ≤ 𝑔 ≤ 7; see Table A.1. For scale, h5 is computed as a sum over 96
graphs and takes 8 minutes to compute on a home laptop, while h7 is computed as a sum over 2789
graphs and takes just under 3 days to compute on a home laptop. Figure A.1 contains the calculation of
h2 as a sum over three graphs – compare with [20, Example 8.3].

We extract from this data exponential generating functions for the numerical weight zero compactly
supported Euler characteristic by setting 𝑃1 to 1 + 𝑡 and all other 𝑃𝑖 to 1; see Table A.2. We display
these Euler characteristics for 0 ≤ 𝑛 ≤ 10 in Table A.3.
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Figure A.1. The three trees C in 𝑇<3
6 , their associated covers 𝑃𝐶 , and the contribution of 𝑃𝐶 → 𝐶

to h2 as in Theorem A. The generating function h2 is the sum of the three contributions. Note that the
contributions in the second and third rows cancel.

Table A.2. The exponential generating functions for numerical weight zero compactly supported Euler characteristics of H𝑔,𝑛..

g
∑

𝑛≥0
𝑡𝑛

𝑛!

(∑4𝑔+2𝑛−2
𝑖=0 (−1)𝑖 dimQ𝑊0𝐻

𝑖
𝑐 (H𝑔,𝑛;Q)

)
2 −

𝑡2

12(1 + 𝑡)
(
6 + 6𝑡 + 𝑡2)

3 −
𝑡2

16(1 + 𝑡)2
(
8 + 16𝑡 + 12𝑡2 + 4𝑡3 + 𝑡4)

4 −
𝑡2

480(1 + 𝑡)3
(
240 + 720𝑡 + 960𝑡2 + 720𝑡3 + 386𝑡4 + 146𝑡5 + 27𝑡6)

5 −
𝑡2

192(1 + 𝑡)4
(
96 + 384𝑡 + 736𝑡2 + 864𝑡3 + 748𝑡4 + 504𝑡5 + 246𝑡6 + 74𝑡7 + 11𝑡8)

6 −
𝑡2

3584(1 + 𝑡)5
(
1792 + 8960𝑡 + 22400𝑡2 + 35840𝑡3 + 43232𝑡4 + 41888𝑡5 + 32096𝑡6 + 18272𝑡7 + 7268𝑡8 + 1828𝑡9 + 227𝑡10)

7
−

𝑡2

15360(1 + 𝑡)6

(
7680 + 46080𝑡 + 142080𝑡2 + 288000𝑡3 + 446720𝑡4 + 565760𝑡5 + 587520𝑡6 + 485120𝑡7 + 308936𝑡8

+146832𝑡9 + 49551𝑡10 + 10695𝑡11 + 1140𝑡12

)

Table A.3. The weight zero compactly supported Euler characteristic of H𝑔,𝑛 for 2 ≤ 𝑔 ≤ 7, and 0 ≤ 𝑛 ≤ 10..

𝑔
𝑛 0 1 2 3 4 5 6 7 8 9 10

2 0 0 −1 0 −2 10 −60 420 −3360 30240 −302400
3 0 0 −1 0 −6 30 −225 1890 −17640 181440 −2041200
4 0 0 −1 0 −12 60 −579 5586 −59220 684180 −8557920
5 0 0 −1 0 −20 100 −1245 13230 −157500 2022300 −27877500
6 0 0 −1 0 −30 150 −2385 27090 −361080 5099760 −76856850
7 0 0 −1 0 −42 210 −4200 49980 −745920 11460960 −187595730
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