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Abstract

We demonstrate that the phenomenon of popular differences (aka the phenomenon of
large intersections) holds for natural families of polynomial patterns in rings of integers of
number fields. If K is a number field with ring of integers OK and E ⊆OK has positive upper
Banach density d∗(E) = δ > 0, we show, inter alia:

(1) if p(x) ∈ K[x] is an intersective polynomial (i.e., p has a root modulo m for every
m ∈OK) with p(OK) ⊆OK and r, s ∈OK are distinct and nonzero, then for any ε > 0,
there is a syndetic set S ⊆OK such that for any n ∈ S,

d∗ ({x ∈OK : {x, x + rp(n), x + sp(n)} ⊆ E}) > δ3 − ε.

Moreover, if s/r ∈Q, then there are syndetically many n ∈OK such that

d∗ ({x ∈OK : {x, x + rp(n), x + sp(n), x + (r + s)p(n)} ⊆ E}) > δ4 − ε;

(2) if {p1, . . . , pk} ⊆ K[x] is a jointly intersective family (i.e., p1, . . . , pk have a common
root modulo m for every m ∈OK) of linearly independent polynomials with pi(OK) ⊆
OK , then there are syndetically many n ∈OK such that

d∗ ({x ∈OK : {x, x + p1(n), . . . , x + pk(n)} ⊆ E}) > δk+1 − ε.

These two results generalise and extend previous work of Frantzikinakis and Kra [21]
and Franztikinakis [19] on polynomial configurations in Z and build upon recent work
of the authors and Best [2] on linear patterns in general abelian groups. The above
combinatorial results follow from multiple recurrence results in ergodic theory via a ver-
sion of Furstenberg’s correspondence principle. The ergodic-theoretic recurrence theorems
require a sharpening of existing tools for handling polynomial multiple ergodic averages.
A key advancement made in this paper is a new result on the equidistribution of polyno-
mial orbits in nilmanifolds, which can be seen as a far-reaching generalisation of Weyl’s
equidistribution theorem for polynomials of several variables:

(3) let d, k, l ∈N. Let (X, B,μ, T1, . . . , Tl) be an ergodic, connected Zl-nilsystem.
Let {pi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ l} ⊆Q[x1, . . . , xd] be a family of polynomials such that
pi,j

(
Zd

)⊆Z and {1} ∪ {pi,j} is linearly independent over Q. Then the Zd-sequence
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p1,j(n)
j x, . . . ,
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pk,j(n)
j x

)
n∈Zd

is well-distributed in Xk for every x in a

co-meager set of full measure.
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1. Introduction
1·1. Background and main results

Let (X, B,μ, T) be an invertible probability measure-preserving system. A classical result
of Khintchine [31] says that for any A ∈B,

lim
N−M→∞

1

N − M

N−1∑
n=M

μ(A ∩ T−nA) ≥μ(A)2.

As a consequence, for any ε > 0, the set

R =
{

n ∈Z :μ(A ∩ T−nA)>μ(A)2 − ε
}

is syndetic, meaning that it has bounded gaps (equivalently, finitely many translates of R
cover Z). Furstenberg showed in [22] that for any A ∈B and any k ∈N,

lim inf
N−M→∞

1

N − M

N−1∑
n=M

μ(A ∩ T−nA ∩ · · · ∩ T−knA)> 0,

from which it follows that{
n ∈Z :μ(A ∩ T−nA ∩ · · · ∩ T−knA)> c

}
is syndetic for some c> 0. One may ask, for these longer expressions, if c can be made
arbitrarily close to μ(A)k+1. (By considering weakly mixing systems, it is clear that c cannot
exceed μ(A)k+1 in general.) A somewhat surprising answer was given in [6]:

THEOREM 1·1 ([6, theorems 1·2 and 1·3]).

(1) For any ergodic invertible probability measure-preserving system (X, B,μ, T), any
ε > 0, and any A ∈B, the set{

n ∈Z :μ(A ∩ T−nA ∩ T−2nA)>μ(A)3 − ε
}

(1·1)

is syndetic.

(2) For any ergodic invertible probability measure-preserving system (X, B,μ, T), any
ε > 0, and any A ∈B, the set{

n ∈Z :μ(A ∩ T−nA ∩ T−2nA ∩ T−3nA)>μ(A)4 − ε
}

is syndetic.
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Multiple recurrence and popular differences for polynomial patterns 3

(3) There exists an ergodic system (X, B,μ, T) with the following property: for any
integer l ≥ 1, there is a set A = A(l) ∈B of positive measure such that

μ(A ∩ T−nA ∩ T−2nA ∩ T−3nA ∩ T−4nA) ≤ 1

2
μ(A)l

for every integer n �= 0.

In the terminology of [2], Theorem 1·1 shows that the families {n, 2n} and {n, 2n, 3n} have
the large intersections property, while {n, 2n, . . . , kn} does not have the large intersections
property for k ≥ 4. The combinatorial content, via Furstenberg’s correspondence principle,
is that, for arithmetic progression of length 3 and 4, one can find a “popular” common
difference: if E ⊆Z has positive upper Banach density d∗(E) = δ > 0 and ε > 0, then there
exists (syndetically many) n �= 0 such that

d∗ ({x ∈Z : {x, x + n, x + 2n} ⊆ E}) > δ3 − ε,

and there exists (syndetically many) m �= 0 such that

d∗ ({x ∈Z : {x, x + m, x + 2m, x + 3m} ⊆ E}) > δ4 − ε.

A natural question to ask is whether various extensions of Szemerédi’s theorem also admit
large intersections variants.

The polynomial Szemerédi theorem of the second author and Leibman [7] extends
Furstenberg’s result to polynomial configurations. We say that a polynomial p(x) ∈Q[x]
is integer-valued if p(Z) ⊆Z.

THEOREM 1·2 ([7, special case of theorem A]). Let p1, . . . , pk ∈Q[x] be integer-valued
polynomials with zero constant term. Then for any invertible probability measure-preserving
system (X, B,μ, T) and any A ∈B with μ(A)> 0, there exists c> 0 such that the set

R :=
{

n ∈Z :μ
(

A ∩ T−p1(n)A ∩ · · · ∩ T−pk(n)A
)
> c

}
(1·2)

has positive lower density, i.e. lim infN→∞ |R ∩ {1, . . . , N}|/N > 0.

The conclusion of Theorem 1·2 was strengthened in [12, theorem 0·1], where it was shown
that R is syndetic for some c> 0 depending on A.

There is a wider variety of combinatorial configurations in play when polynomials are
introduced, and there is not yet a full classification of which families of polynomials have
the large intersections property. However, large intersections variants of the polynomial
Szemerédi theorem are known for two natural classes of polynomial configurations: inde-
pendent polynomials and polynomials that are integer multiples of a fixed polynomial (for
k = 2, 3). This is summarised by the following two results, which we seek to extend in this
paper:

THEOREM 1·3 ([21, theorem 1·3]). Let p1, . . . , pk ∈Q[x] be linearly independent
integer-valued polynomials with zero constant term. Then for any invertible probability
measure-preserving system, any A ∈B, and any ε > 0, the set{

n ∈Z :μ
(

A ∩ T−p1(n)A ∩ · · · ∩ T−pk(n)A
)
>μ(A)k+1 − ε

}
is syndetic.
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4 ETHAN ACKELSBERG AND VITALY BERGELSON

THEOREM 1·4 ([19, theorem C]). Let p ∈Q[x] be an integer-valued polynomial with
zero constant term, and let a, b ∈Z be nonzero and distinct. Then for any ergodic invertible
probability measure-preserving system, any A ∈B, and any ε > 0, the sets{

n ∈Z :μ
(

A ∩ T−ap(n)A ∩ T−bp(n)A
)
>μ(A)3 − ε

}
and {

n ∈Z :μ
(

A ∩ T−ap(n)A ∩ T−bp(n)A ∩ T−(a+b)p(n)A
)
>μ(A)4 − ε

}
are syndetic.

We have so far stated all results about polynomial multiple recurrence only for polynomi-
als with zero constant term. The essential feature of such families of polynomials is that they
avoid “local obstructions.” To be precise, we say that a family of polynomials {p1, . . . , pk}
is jointly intersective if for every m ∈N, there exists n ∈Z such that pi(n) ∈ mZ for every
i = 1, . . . , k. If a family of polynomials is not jointly intersective, then the set appearing in
(1·2) will be trivial for some rotations on finitely many points. In [11], it was shown that
there are no other obstacles to multiple recurrence:

THEOREM 1·5 ([11, theorem 1·1]). For a family of integer-valued polynomials P =
{p1, . . . , pk} ⊆Q[x], the following are equivalent:

(i) P is jointly intersective;

(ii) for any probability measure-preserving system (X, B,μ, T) and any A ∈B, there
exists c> 0 such that{

n ∈Z :μ
(

A ∩ T−p1(n)A ∩ · · · ∩ T−pk(n)A
)
> c

}
is syndetic.

The proofs of Theorems 1·3 and 1·4 can also be easily modified to apply to families of
jointly intersective polynomials.

The polynomial Szemerédi theorem is in fact known for polynomials of several variables
with zero constant term (see [7, theorem A] for the result with positive lower density and [13,
theorem 0·7] for syndeticity). For polynomials arising from rings of integers, the polynomial
Szemerédi theorem holds for all jointly intersective polynomials. We now make this result
precise. Fix a number field K and denote by OK its ring of integers. By an OK-system, we
will mean a quadruple (X, B,μ, T), where T is a measure-preserving action of (OK , +) on a
probability space (X, B,μ).

Definition 1·6. A family of OK-valued polynomials {p1, . . . , pk} is jointly intersec-
tive if for every finite index subgroup �⊆ (OK , +), there exists ξ ∈OK such that
{p1(ξ ), . . . , pk(ξ )} ⊆�.

Recall that in an abelian group G, a set E ⊆ G is syndetic if finitely many translates of E
cover G. That is, G =⋃m

i=1 (E + gi) for some g1, . . . , gm ∈ G.

THEOREM 1·7 ([14, theorem 1·6]). Let K be a number field with ring of integers OK. Let
p1, . . . , pk ∈OK[x] be jointly intersective polynomials. For any OK-system (X, B,μ, T) and
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any A ∈B, there exists c> 0 such that the set{
n ∈OK :μ

(
A ∩ T−p1(n)A ∩ · · · ∩ T−pk(n)A

)
> c

}
(1·3)

is syndetic.

It is therefore natural to ask whether Khintchine-type recurrence theorems hold for poly-
nomial configurations in rings of integers. That is, under what conditions on the polynomials
{p1, . . . , pk} can the constant c in (1·3) be made arbitrarily close to μ(A)k+1?

In this paper, we provide an answer to this question in natural and important cases by
proving extensions of Theorems 1·3 and 1·4.

THEOREM A. Let K be a number field with ring of integers OK. Let {p1, . . . , pk} ⊆ K[x]
be a jointly intersective family of linearly independent OK-valued polynomials. Then for any
measure-preserving OK-system (X, B,μ, T), A ∈B, and ε > 0, the set{

n ∈OK :μ
(

A ∩ T−p1(n)A ∩ · · · ∩ T−pk(n)A
)
>μ(A)k+1 − ε

}
(1·4)

is syndetic.

THEOREM B. Let K be a number field with ring of integers OK. Let p(x) ∈ K[x] be an OK-
valued intersective polynomial. Let r, s ∈OK be distinct and nonzero. Then for any ergodic
measure-preserving OK-system (X, B,μ, T), A ∈B, and ε > 0, the set{

n ∈OK :μ
(

A ∩ T−rp(n)A ∩ T−sp(n)A
)
>μ(A)3 − ε

}
(1·5)

is syndetic.
Moreover, if s/r ∈Q, then{

n ∈OK :μ
(

A ∩ T−rp(n)A ∩ T−sp(n)A ∩ T−(r+s)p(n)A
)
>μ(A)4 − ε

}
(1·6)

is syndetic.

Note that for a pair of polynomials {p, q} ⊆ K[x] \ {0}, either p and q are linearly indepen-
dent over K or q = cp for some c ∈ K. Thus, we have the following immediate consequence
of Theorems A and B together:

COROLLARY 1·8. Let K be a number field with ring of integers OK. Suppose {p, q} ⊆
K[x] is a jointly intersective pair of OK-valued polynomials. Then for any ergodic measure-
preserving OK-system (X, B,μ, T), any A ∈B, and any ε > 0, the set{

n ∈OK :μ
(

A ∩ T−p(n)A ∩ T−q(n)A
)
>μ(A)3 − ε

}
is syndetic.

Theorem A shows that for independent families of any size, we can achieve Khintchine-
type results. In contrast, Theorem B only demonstrates a Khintchine-type result for
configurations of length three or four and requires ergodicity of the system (for counterex-
amples in the non-ergodic case, see [2, section 11·1]). Moreover, for length four, we have
made additional assumptions, which we discuss below. To complete the picture, we now
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6 ETHAN ACKELSBERG AND VITALY BERGELSON

address what happens for patterns of length five and longer. For concreteness, let us consider
general polynomial families of the form {a1p, . . . , akp}, where ai ∈OK and p(x) ∈ K[x] is
OK-valued. In the simplest case when K =Q and ai = i, a combinatorial construction of
Ruzsa rules out Khintchine-type results when k ≥ 4 (see item 3 of Theorem 1·1 above). In
[2, corollary 12·14], this was generalised to any number field K and any integers ai ∈Z for
k ≥ 4. Furthermore, [2, proposition 12·13] gives a combinatorial criterion for checking the
case k = 4 for any coefficients ai ∈OK . We do not know how to prove the requisite combi-
natorial result, but we believe that Khintchine-type results will fail for any non-trivial family
{a1p, . . . , akp} with k ≥ 4.

Now we turn to the other conditions imposed for the patterns of length four appearing
in Theorem B. The strategy of proof in Theorem B is to reduce to the linear case p(n) = n
and then apply knowledge about linear patterns. General Khintchine-type results for linear
patterns appear in [2] (subsequently improved in [1, 3]), where a similar distinction is made
between patterns of length three and of length four:

THEOREM 1·9 ([2, theorems 1·10 and 1·11]). Let (G, +) be a countable discrete abelian
group. Let

(
X, B,μ, (Tg)g∈G

)
be an ergodic measure-preserving G-system. Let A ∈B and

ε > 0.

(1) suppose ϕ,ψ : G → G are homomorphisms such that the subgroups ϕ(G), ψ(G), and
(ψ − ϕ)(G) have finite index in G. Then{

g ∈ G :μ
(

A ∩ T−1
ϕ(g)A ∩ T−1

ψ(g)A
)
>μ(A)3 − ε

}
is syndetic in G.

(2) suppose r, s ∈Z are distinct and nonzero such that the subgroups rG, sG, (r + s)G,
and (s − r)G have finite index in G. Then{

g ∈ G :μ
(

A ∩ T−1
rg A ∩ T−1

sg A ∩ T−1
(r+s)gA

)
>μ(A)4 − ε

}
is syndetic in G.

The second half of Theorem 1·9 was also proved independently in [37, theorem 1·3]. By
absorbing a constant into the polynomial p in Theorem B, imposing the condition s

r ∈Q is
equivalent to assuming r, s ∈Z, so our assumptions allow us to apply Theorem 1·9 in the
linear case p(n) = n.

In [16], it was shown that, for a related finitary problem, there are automorphisms ϕ andψ
such that ϕ +ψ and ψ − ϕ are also automorphisms but for which a Khintchine-type result
fails:

THEOREM 1·10 ([16, theorem 1·3]). There is an absolute constant c> 0 such that the
following holds. If α ∈ (0, c), then for all sufficiently large n (depending on α), there is a set
A ⊆ (Fn

5)2 with |A| ≥ α · 52n such that

|A ∩ A − (a, b) ∩ A − (b, −a) ∩ A − (a + b, b − a)| ≤ (1 − c)α4 · 52n

for all (a, b) ∈ (Fn
5)2 \ {(0, 0)}.
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The authors of [16] explain the failure of large intersections in Theorem 1·10 as a
consequence of an eigenvalue condition. Namely, for the corresponding matrices

M1 =
(

1 0
0 1

)
and M2 =

(
0 −1
1 0

)
,

the eigenvalues of M1M−1
2 are negatives of each other. They also show that in the absence

of such an eigenvalue condition, a Khintchine-type result holds for patterns

{x, x + M1y, x + M2y, x + (M1 + M2)y}

(see [16, theorem 1·2]).
In our context of rings of integers, we can translate the eigenvalue condition into an alge-

braic criterion. Recall that two algebraic numbers α, β ∈ K are conjugate (over Q) if they
have the same minimal polynomial (over Q). Equivalently, there is a field automorphism
ϕ : K → K such that ϕ(α) = β. If we denote by Mα the Q-linear map Mαx = αx on the Q-
vector space K, then the eigenvalues of Mα are exactly the conjugates of α (this follows
from, e.g., [18, theorem 5·9], which gives a formula for the characteristic polynomial of
Mα). We therefore make the following conjecture:

CONJECTURE 1·11. Let K be a number field with ring of integers OK. Let r, s ∈OK be
distinct and nonzero. The following are equivalent:

(i) for any ergodic measure-preserving OK-system (X, B,μ, T), any A ∈B, any ε > 0,
and any OK-valued intersective polynomial p ∈ K[x], the set{

n ∈OK :μ
(

A ∩ T−rp(n)A ∩ T−sp(n)A ∩ T−(r+s)p(n)A
)
>μ(A)4 − ε

}
is syndetic;

(ii) no two conjugates of s/r over Q are negatives of each other.

1·2. Method

In order to prove Khintchine-type recurrence results such as Theorem A and
Theorem B, it is natural to consider associated multiple ergodic averages. The appropriate
averaging schemes in rings of integers are those arising from Følner sequences. A Følner
sequence in (OK , +) is a sequence of subsets (
N)N∈N of OK such that, for every n ∈OK ,

|(
N + n)
N |
|
N | −→ 0.

Examples of Følner sequences include boxes in OK ∼=Zd with increasing side lengths. We
say that a sequence (un)n∈OK has uniform Cesàro limit u, denoted UC- limn∈OK un = u, if

1

|
N |
∑

n∈
N

un −→ u
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8 ETHAN ACKELSBERG AND VITALY BERGELSON

for every Følner sequence (
N)N∈N in (OK , +). The usefulness of uniform Cesàro limits in
proving Khintchine-type theorems comes from the following routine fact (for a proof, see
[2, lemma 1·9]):

PROPOSITION 1·12. A set S ⊆OK is syndetic if and only if for any Følner sequence
(
N)N∈N in (OK , +), one has

⋃
N∈N 
N ∩ S �= ∅.

Rather than computing the multiple ergodic averages

UC- lim
n∈OK

k∏
i=1

Tpi(n)fi (1·7)

directly for an arbitrary OK-system, we reduce to computing the averages (1·7) in sim-
pler classes of systems. To be precise, we say a system Y = (Y , D, ν, S) is a factor of
X = (X, B,μ, T) if there are full measure subsets X0 ⊆ X and Y0 ⊆ Y and a measure-
preserving map π : X0 → Y0 such that Snπ(x) = π(Tnx) for every x ∈ X0, n ∈OK . There is
a natural correspondence between the factor Y and the T-invariant sub-σ -algebra π−1(D).
This allows us to take conditional expectations, and in a standard abuse of notation, we
write E

[
f | Y

]
:= E

[
f | π−1(D)

]
. The factor Y is characteristic for a family of sequences

{a1(n), . . . , ak(n)}, n ∈OK , if for any f1, . . . , fk ∈ L∞(μ),

UC- lim
n∈OK

(
k∏

i=1

Tai(n)fi −
k∏

i=1

Tai(n)E
[
fi | Y

])= 0

in L2(μ).
The main family of factors that we will deal with is the family of nilfactors (Zr)r∈N

(also called Host–Kra factors from the work of Host and Kra on Z-actions [30]). Assume
for this discussion that T is an ergodic action of OK . The factor Zr is defined to be the
minimal factor that is characteristic for all families {l1n, . . . , lr+1n} with l1, . . . , lr+1 ∈OK

distinct and nonzero. For our purposes, it will suffice to discuss some general properties of
nilfactors.

The tower of factors Z1 ⊆Z2 ⊆ . . . is a sequence of compact extensions. The first factor,
Z1, is the Kronecker factor, which is the smallest factor for which every eigenfunction is
measurable. As a measure-preserving system, it is isomorphic to an action by rotations on
a compact abelian group. The Kronecker factor contains a subfactor that will also be of
interest, namely the rational Kronecker factor, denoted Krat, which is an inverse limit of
finite rotational systems (for a more detailed discussion of the rational Kronecker factor, see
Section 2.1).

The higher-level nilfactors also have the structure of (inverse limits of) “rotational” sys-
tems but on more complex algebraic objects. Let G be an r-step nilpotent Lie group and
� <G a co-compact discrete subgroup. The quotient space X = G/� is called an r-step
nilmanifold. An r-step nilsystem is a system (X, B,μ, T), where X = G/� is an r-step
nilmanifold, μ is the Haar probability measure on X, and T is an (OK , +)-action by nil-
translations, i.e. transformations of the form x �→ ax for some a ∈ G. The nilfactor Zr is an
inverse limit of r-step nilsystems. For Z-actions, this was established by Host and Kra in
[30] and independently by Ziegler in [39]. For our generality of OK-systems, this follows
from [27, theorem 4·1·2].
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By careful application of the van der Corput differencing trick, one can reduce polynomial
expressions to (potentially much longer) linear expressions. This works so long as the poly-
nomials p1, . . . , pk are essentially distinct, meaning that pj − pi is non-constant for every i �=
j. Hence, for any family of essentially distinct polynomial sequences {p1(n), . . . , pk(n)}, n ∈
OK , there is a characteristic factor that is a nilfactor (but the step of the nilfactor may far
exceed k − 1 in general):

THEOREM 1·13 (cf. [14, theorem 5·2]). Let K be a number field with ring of integers
OK. Suppose {p1, . . . , pk} ⊆ K[x] are non-constant and essentially distinct OK-valued poly-
nomials. Then there is an r ∈N such that for any ergodic OK-system (X, B,μ, T) and any
f1, . . . , fk ∈ L∞(μ),

UC- lim
n∈OK

k∏
i=1

Tpi(n)fi = UC- lim
n∈OK

k∏
i=1

Tpi(n)E
[
fi |Zr

]
.

in L2(μ).

For the specific configurations appearing in Theorem A (independent polynomials) and in
Theorem B (multiples of a single polynomial), we can control the step of the characteristic
nilfactors. In order to properly formulate our results, we need one more definition.

Definition 1·14. A family of polynomials {p1, . . . , pk} ⊆ K[x] is independent if for all
(c1, . . . , ck) ∈ Kk \ {0}, the polynomial

∑k
i=1 cipi is non-constant.

Note that the family {p1, . . . , pk} is independent if and only if {1, p1, . . . , pk} is linearly
independent over K. Furthermore, a jointly intersective family {p1, . . . , pk} is independent
if and only if it is linearly independent.

THEOREM C. Let K be a number field with ring of integers OK. Suppose p1, . . . , pk ∈
K[x] are independent and OK-valued. Then for any ergodic measure-preserving OK-system
(X, B,μ, T) and any f1, . . . , fk ∈ L∞(μ),

UC- lim
n∈OK

k∏
i=1

Tpi(n)fi = UC- lim
n∈OK

k∏
i=1

Tpi(n)E
[
fi |Krat

]
,

where the limits are taken in L2(μ).

THEOREM D. Let K be a number field with ring of integers OK. Let p(x) ∈ K[x] be a
non-constant OK-valued polynomial. Then for any ergodic measure-preserving OK-system
(X, B,μ, T), any l1, . . . , lk ∈OK distinct and nonzero, and any f1, . . . , fk ∈ L∞(μ),

UC- lim
n∈OK

k∏
i=1

Tlip(n)fi = UC- lim
n∈OK

k∏
i=1

Tlip(n)E
[
fi |Zk−1

]
,

where the limits are taken in L2(μ). Moreover, if T is totally ergodic, then this limit does not
depend on the polynomial p.

We will prove Theorems C and D via equidistribution results for polynomial sequences
in nilmanifolds, which are of independent interest (see Theorem 3·3 and Proposition 3·12
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10 ETHAN ACKELSBERG AND VITALY BERGELSON

below). After several reductions, the main technical result in the proof of Theorem C is
the following far-reaching generalisation of Weyl’s polynomial equidistribution theorem for
families of independent polynomials in several variables:

THEOREM 1·15 (Theorem 3·8). Let d, l, k, m ∈N. Let {pi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ l} ⊆
Q[x1, . . . , xd] be Z-valued and independent over Q. Let T1, . . . , Tl : Tm →Tm be commut-
ing unipotent affine transformations generating an ergodic Zl-action. Then the polynomial
sequence ⎛⎝ l∏

j=1

T
p1,j(n)
j x, . . . ,

l∏
j=1

T
pk,j(n)
j x

⎞⎠
n∈Zd

is well-distributed in Tmk for all x in a co-meager set of full measure.

The upshot of Theorem C is that we may compute multiple ergodic averages for inde-
pendent polynomials by studying the corresponding averages in a finite rotational system,
where computations are much easier to carry out. Similarly, Theorem D says that in order
to compute multiple ergodic averages for k distinct multiples of a fixed polynomial, we can
make use of the algebraic structure of a (k − 1)-step nilsystem.

From here, we can follow a standard technique to deduce the corresponding Khintchine-
type results. The assumption that the families of polynomials under consideration are jointly
intersective, together with a standard approximation argument, allows us to reduce to the
case that the action T is totally ergodic, i.e. that Krat is trivial. For independent polynomials,
Theorem C guarantees that

UC- lim
n∈OK

μ
(

A ∩ T−p1(n)A ∩ · · · ∩ T−pk(n)A
)

=μ(A)k+1

for totally ergodic T , from which Theorem A immediately follows. The details of this argu-
ment are carried out in Section 4.1. When all of the polynomials involved are multiples of a
fixed polynomial and T is totally ergodic, Theorem D says that the relevant multiple ergodic
average can be reduced to a linear average (corresponding to p(n) = n). We are therefore
able to capitalise on Khintchine-type results for linear averages (see Theorem 1·9 above) and
extend them to the polynomial configurations we consider in Theorem B. The full details of
this argument appear in Section 4.2.

1·3. Notions of largeness

Syndeticity is just one of many notions of largeness that naturally appear in ergodic the-
ory and combinatorics. While it is useful in quantifying the size of subsets, it does not
have all of the properties that one may desire. To illustrate one shortcoming of syndetic-
ity, we return to Szemerédi’s theorem. Consider the family of sets Rk := {Rk(X, A) : X =
(X, B,μ, T) mps, A ∈B,μ(A)> 0}, where

Rk(X, A) :=
{

n ∈Z :μ
(

A ∩ T−nA ∩ · · · ∩ T−knA
)
> 0

}
.

The family Rk has the filter property: for any R, S ∈Rk, we have R ∩ S �= ∅. Indeed, given
two measure-preserving systems X = (X, B,μ, T) and Y = (Y , D, ν, S), one can form the
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product system X × Y and easily verify that

Rk(X, A) ∩ Rk(Y, B) = Rk(X × Y, A × B) ∈Rk.

One may hope that there is a different notion of largeness that captures this filter property.
To discuss one such notion, we introduce the class of IP sets.

Let (xn)n∈N be a sequence in OK . The finite sum set associated to (xn)n∈N is the set

FS ((xn)n∈N) :=
{∑

n∈F

xn : F ⊆N is finite and nonempty

}
.

We say that A ⊆OK is an IP set if A ⊇ FS ((xn)n∈N) for some infinite sequence (xn)n∈N. A
theorem of Hindman [28] asserts that IP sets are partition regular:

THEOREM 1·16 (Hindman’s Theorem [28, theorem 3·1]). Let A be an IP set. If A is
finitely partitioned A =⋃r

i=1 Ci, then for some i0 ∈ {1, . . . , r}, Ci0 is an IP set.

A set E is IP∗ if E ∩ A �= ∅ for every IP set A. It follows from Theorem 1·16 that IP∗ sets
have the filter property. From this point of view, the IP polynomial Szemerédi theorem is
more satisfactory:

THEOREM 1·17 ([13, theorem 0·7]). Let p1, . . . , pk ∈Q[x] be integer-valued polynomi-
als with zero constant term. Then for any ergodic invertible probability measure-preserving
system and any A ∈B, the set{

n ∈Z :μ
(

A ∩ T−p1(n)A ∩ · · · ∩ T−pk(n)A
)
> 0

}
is IP∗.

Remark 1·18. For the linear pattern pi(n) = in, Theorem 1·17 follows from [23, theorem A].

When bounding the size of the intersections from below, the filter property is no longer a
straightforward consequence from considering product systems. Furthermore, IP∗ turns out
to be too strong of a notion of largeness. (Indeed, in a skew-product system on the torus T2,
one can find a set A for which the set (1·1) fails to be IP∗ for small ε > 0.) However, we can
use a slightly weaker notion that retains the filter property. Define the upper Banach density
of a set E ⊆OK by

d∗(E) := sup

{
lim sup
N→∞

|E ∩
N |
|
N | : (
N)N∈N is a Følner sequence in OK

}
.

We say that E is almost IP∗, or AIP∗ for short, if E can be written as E = A \ B, where A is an
IP∗ set and B is a set with d∗(B) = 0. In [14], it was shown that the set (1·3) in Theorem 1·7
is in fact a shift of an AIP∗ set.

In a similar vein, Theorem 1·3 was strengthened in [9]. There, the notion of largeness
used is the even stronger notion of AVIP∗

0, which we define in Section 5.

THEOREM 1·19 ([9, theorem 4·2]). Let p1, . . . , pk ∈Q[x] be linearly independent
integer-valued polynomials with zero constant term. Then for any ergodic invertible
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probability measure-preserving system, any A ∈B, and any ε > 0, the set{
n ∈Z :μ

(
A ∩ T−p1(n)A ∩ · · · ∩ T−pk(n)A

)
>μ(A)k+1 − ε

}
is AVIP∗

0.

In Section 5, we similarly strengthen the conclusions of Theorem A and Theorem B. In
particular, we show that, if T is ergodic, then the sets (1·4), (1·5) and (1·6) are shifts of
AVIP∗

0 sets (see Theorem 5·6 and Theorem 5·7).

1·4. Combinatorial applications

We deduce several combinatorial facts from the ergodic-theoretic theorems above. For
some of the combinatorial results, we have stronger finitary versions. For other combi-
natorial facts derived from ergodic-theoretic results under the assumption of ergodicity,
we cannot easily deduce finitary consequences. This distinction arises from subtleties in
Furstenberg’s correspondence principle, which we discuss in more detail below. The first
version of Furstenberg’s correspondence principle that we will use is as follows:

THEOREM 1·20 ([4, theorem 4·17]). Fix a Følner sequence 
= (
N)N∈N
in OK. Suppose E ⊆OK has positive upper density along 
, i.e. d
(E) :=
lim supN→∞ |E ∩
N |/|
N |> 0. Then there exists an OK-system (X, B,μ, T) and a
set A ∈B with μ(A) = d
(E) such that, for any k ∈N and any n1, . . . , nk ∈OK, one has

d


(
k⋂

i=1

(E − ni)

)
≥μ

(
k⋂

i=1

T−niA

)
. (1·8)

Applying Theorem 1·20 directly alongside Theorem A, we get the following:

THEOREM 1·21. Let K be a number field with ring of integers OK. Let {p1, . . . , pk} ⊆
K[x] be a jointly intersective family of linearly independent OK-valued polynomials. Fix
a Følner sequence 
= (
N)N∈N and suppose E ⊆OK satisfies d
(E)> 0. Then for any
ε > 0, {

n ∈OK : d
 (E ∩ (E − p1(n)) ∩ · · · ∩ (E − pk(n))) > d
(E)k+1 − ε
}

is syndetic.

Taking the natural Følner sequence 
N = {1, . . . , N}d under the isomorphism OK ∼=Zd,
we deduce a related finitary result:

COROLLARY 1·22. Let K be a degree d number field with ring of integers OK ∼=Zd.
Let {p1, . . . , pk} ⊆ K[x] be a jointly intersective family of linearly independent OK-valued
polynomials. For any δ, ε > 0, there exists N = N(δ, ε) ∈N such that: if A ⊆ {1, . . . , N}d

with |A|> δNd, then A contains at least (δk+1 − ε)Nd configurations of the form {x, x +
p1(n), . . . , x + pk(n)} for some n �= 0.

Proof. Let δ, ε > 0, and suppose no such N exists. That is, for some sequence Nm → ∞,
we can find sets Am ⊆ {1, . . . , N}d with |Am|> δNd

m such that
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|Am ∩ (Am − p1(n)) ∩ · · · ∩ (Am − pk(n))| ≤ (δk+1 − ε)Nd
m

for every n �= 0.
By passing to a subsequence if necessary, we may assume

lim
m→∞

∣∣(Am,i1 − n1) ∩ · · · ∩ (Am,ir − nr) ∩ {1, . . . , Nm}d
∣∣

Nd
m

exists for all r ∈N, n1, . . . , nr ∈OK , and i1, . . . , ir ∈ {0, 1}, where Am,0 = Am and Am,1 =
OK \ Am. Then we may define a measure on X = {0, 1}OK by letting

μ
({x ∈ X : xn1 = i1, . . . , xnr = ir}

)= lim
m→∞

∣∣(Am,i1 − n1) ∩ · · · ∩ (Am,ir − nr) ∩ {1, . . . , Nm}d
∣∣

Nd
m

and extending using Kolmogorov’s extension theorem. Note that the shift map (Tnx)(m) =
x(n + m) preserves the measure μ. Taking A = {x ∈ X : x0 = 1}, we have

μ(A) = lim
m→∞

|Am|
Nd

m
≥ δ,

and on the other hand,

μ
(

A ∩ T−p1(n)A ∩ · · · ∩ T−pk(n)A
)

= lim
m→∞

|Am ∩ (Am − p1(n)) ∩ · · · ∩ (Am − pk(n))|
Nd

m

≤ δk+1 − ε

for n �= 0. This contradicts Theorem A.

Note that the system in Theorem 1·20 may not be ergodic. To obtain an inequality similar
to (1·8) while ensuring that the system is ergodic, one needs to allow for replacing the
density along
 by the density along some other Følner sequence depending on the choice of
translates n1, . . . , nk. (An example due to Hindman [29] can be used to show that, for certain
sets E, the measure-preserving system in the conclusion of Theorem 1·20 is necessarily non-
ergodic; see the discussion following theorem 1·3 in [5] for more detail.) Using the notion of
upper Banach density, we can formulate an ergodic version of Furstenberg’s correspondence
principle:

THEOREM 1·23. Suppose E ⊆OK has positive upper Banach density. Then there exists
an ergodic OK-system (X, B,μ, T) and a set A ∈B with μ(A) = d∗(E) such that, for any
k ∈N and any n1, . . . , nk ∈OK, one has

d∗
(

k⋂
i=1

(E − ni)

)
≥μ

(
k⋂

i=1

T−niA

)
.

For Z-actions, Theorem 1·23 appears in [6, proposition 3·1], utilising an observation of
Emmanuel Lesigne based on the original argument of Furstenberg. For a general version in
amenable groups (a class containing all countable abelian groups), see [5, theorem 2·8].

As a consequence, we obtain the following combinatorial version of Theorem 5·7:

THEOREM 1·24. Let K be a number field with ring of integers OK. Let p(x) ∈ K[x] be an
OK-valued intersective polynomial. Let r, s ∈OK be distinct and nonzero. Then for any set
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E ⊆OK with d∗(E)> 0 and any ε > 0, the set{
n ∈OK : d∗ (E ∩ (E − rp(n)) ∩ (E − sp(n))) > d∗(E)3 − ε

}
is AVIP∗

0,+ (in particular, it is syndetic).
Moreover, if s

r ∈Q, then{
n ∈OK : d∗ (E ∩ (E − rp(n)) ∩ (E − sp(n)) ∩ (E − (r + s)p(n))) > d∗(E)4 − ε

}
is AVIP∗

0,+ (in particular, it is syndetic).

As discussed above, the ergodicity assumption in Theorems B and 5·7 precludes us from
easily deducing finitary results along the lines of Corollary 1·22. Nevertheless, we suspect
that a finitary analogue holds, which we formulate below:

CONJECTURE 1·25. Let K be a degree d number field with ring of integers OK ∼=Zd.
Suppose p(x) ∈ K[x] is an OK-valued intersective polynomial.

(1) let r, s ∈OK be distinct and nonzero. For any δ, ε > 0, there exists N = N(ε, δ) ∈N

such that: if A ⊆ {1, . . . , N}d with |A|> δNd, then A contains at least (δ3 − ε)Nd

configurations of the form {x, x + rp(n), x + sp(n)} for some n �= 0.

(2) let r, s ∈OK be distinct and nonzero such that s/r ∈Q (or more generally, no two con-
jugates of s

r are negatives of each other). For any δ, ε > 0, there exists N = N(ε, δ) ∈N

such that: if A ⊆ {1, . . . , N}d with |A|> δNd, then A contains at least (δ4 − ε)Nd

configurations of the form {x, x + rp(n), x + sp(n), x + rp(n) + sp(n)} for some n �= 0.

In the simplest case when K =Q and p(n) = n, Conjecture 1·25 was posed as a question
in [6] and verified in [25, theorem 1·10] and [26, theorem 1·12]. For more general lin-
ear patterns (the case p(n) = n), closely related finitary results were recently established in
[16, 32].

1·5. Outline of the paper

The structure of the paper is as follows. In Section 2, we collect several useful facts that
will be used repeatedly in the proofs of the main theorems. Section 3 is devoted to proving
Theorems C and D on characteristic factors corresponding to the polynomial configurations
of interest via equidistribution results on nilmanifolds. Using the knowledge of characteristic
factors, we prove Khintchine-type results (Theorems A and B in Section 4. Finally, Section 5
handles the refinements of our Khintchine-type theorems to conclude stronger combinatorial
properties about the abundance of combinatorial configurations.

2. Preliminaries
2·1. Rational Kronecker factor

Recall that the Kronecker factor for an ergodic measure-preserving system is spanned by
eigenfunctions. As suggested by the name, the rational Kronecker factor will be spanned by
eigenfunctions with rational eigenvalues. To make this precise, we need to define what it
means for an eigenvalue (a group character) to be rational.

Since the additive group structure for the ring of integers in a degree d extension of Q is
Zd, we say that a character χ : Zd →T is rational if there is an element (q1, . . . , qd) ∈Qd
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such that

χ(n1, . . . , nd) = e2π i(q1n1+···+qdnd). (2·1)

For notational convenience, we will let e : R→T be the function e(x) = e2π ix so that we can
write equation (2·1) in the more compact form

χ(n) = e(q · n)

for the usual dot product · on Rd.
The property of rational characters that we will utilise later on is periodicity. Given a

number field K with ring of integers OK , we say that a character χ : OK →T is periodic,
with period p ∈OK , if for all n, m ∈OK , we have

χ(n + mp) = χ(n).

To translate this back into language where rationality makes sense, take an integral basis
{b1, . . . , bd} so that (OK , +) ∼=⊕d

i=1 Z · bi. Since Ẑd ∼=Td, there is an element α ∈Td so
that

χ

(
d∑

i=1

nibi

)
= e(n · α)

for n ∈Zd. We can then say that χ : OK →T is rational if α ∈Qd/Zd. We now show that
rationality and periodicity coincide:

LEMMA 2·1. A character χ : OK →T is rational if and only if it is periodic.

Proof. Suppose χ is rational, say χ(n) = e(n · q) with q = (q1, . . . , qd) ∈Qd. Choose D ∈
Z so that Dqi ∈Z for every i = 1, . . . , d, and set p := D

(∑d
i=1 bi

)
. We claim that p is a

period for χ . Indeed, given m =∑d
i=1 mibi ∈OK , we have

mp = D

⎛⎝∑
i,j

mibibj

⎞⎠=
∑

k

⎛⎝∑
i,j

mici,j,k

⎞⎠ Dbk,

where ci,j,k ∈Z so that bibj =∑
k ci,j,kbk. Hence, mp · q =∑

k

(∑
i,j mici,j,k

)
Dqk ∈Z, so

χ(mp) = e(mp · q) = 1 for every m ∈OK .

Conversely, suppose χ is periodic with period p ∈OK . Let α ∈Td such that χ(n) =
e(n · α). Since {b1, . . . , bd} is a Q-basis for K, we can write 1/p =∑d

i=1 aibi for some
a1, . . . , ad ∈Q. Let D ∈Z such that Dai ∈Z for every i = 1, . . . , d. Then D/p is a Z-linear
combination of basis elements, so D

p ∈OK . Now let mi = Dp/bi ∈OK . Since χ is p-periodic,
we have

1 = χ(mip) = χ(Dbi) = e(Dαi).

That is, Dαi ∈Z, so αi ∈Q for all i = 1, . . . , d. Thus, χ is rational.
Now we can give our definition:
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Definition 2·2. Let K be a number field, and let OK be its ring of integers. Let X =
(X, B,μ, T) be an ergodic OK-system. The rational Kronecker factor of X, denoted by
Krat(X), is the factor generated by the algebra

span
{
f ∈ L2(μ) : Tnf = χ(n)f for some rational character χ : OK →T

}
.

Building on Lemma 2·1, we can characterize total ergodicity in several equivalent ways:

PROPOSITION 2·3. Let K be a number field with ring of integers OK. Let X = (X, B,μ, T)
be an ergodic OK-system. The following are equivalent:

(i) the rational Kronecker factor Krat(X) is trivial;

(ii) for every r ∈OK \ {0}, (Trn)n∈OK is ergodic;

(iii) for every finite index subgroup �⊆ (OK , +), the action (Tn)n∈� is ergodic.

Proof. Since rOK has finite index in OK , we trivially have the implication (iii) =⇒ (ii).
We will show (i) =⇒ (iii) and (ii) =⇒ (i).

(i) =⇒ (iii). Suppose Krat(X) is trivial. Let �⊆ (OK , +) be a finite index subgroup,
and suppose Tnf = f for every n ∈�. Then the orbit {Tnf : n ∈OK} is finite: it consists
of the elements Tmf for m in a finite set F satisfying �+ F =OK . In particular, the
orbit is (pre-)compact, so f is a linear combination of eigenfunctions, f =∑

i cifi, with
Tnfi = χi(n)fi for some characters χi : OK →T. Since Tnf = f for n ∈�, we have
χi(n) = 1 for n ∈�. Therefore, χi takes only the finitely many values χi(m), m ∈ F. It
follows that χi is rational. But Krat(X) is trivial, so in fact χi = 1. Hence, Tnf = f for
every n ∈OK . Since (Tn)n∈OK is ergodic, we have that f is a constant function. Thus,
(Tn)n∈� is ergodic.

(ii) =⇒ (i). We prove the contrapositive. Suppose Krat(X) is not trivial. Then there
is a non-constant function f ∈ L2(μ) and a rational character χ : OK →T such that
Tnf = χ(n)f for n ∈OK . By Lemma 2·1, χ is periodic, say with period p. That
is, χ(n + pm) = χ(n) for n, m ∈OK . But then Tpnf = χ(pn)f = f for every n ∈OK .
Hence, (Tpn)n∈N is not ergodic, so (ii) fails.

2·2. Nilsystems

PROPOSITION 2·4. Let K be a number field with ring of integers OK. Let (X, B,μ, T) be
an ergodic OK-nilsystem. Then T is totally ergodic if and only if X is connected.

Proof. Write X = G/�. Let a : OK → G be a homomorphism so that Tnx = a(n) · x for
n ∈OK and x ∈ X. Let x0 denote the image of the identity element in X.

Suppose T is totally ergodic, and let X0 be the connected component of x0. Since X is
compact, it is a disjoint union of finitely many translates of X0, say X =⋃k−1

i=0 Xi with Xi =
giX0. Hence, G permutes the components X0, . . . , Xk−1, giving a homomorphism ϕ : G →
Sk, where Sk is the symmetric group on k symbols. This in turn gives a homomorphism
ω= ϕ ◦ a : OK → Sk. Let �= kerω⊆OK . Since Sk is a finite group, � has finite index
in OK . Therefore, (Tn)n∈� acts ergodically on X (see Proposition 2·3(iii)). In particular,
{a(n)x0 : n ∈�} = X. But for n ∈�, we have a(n)Xi = Xi, so a(n)x0 ∈ X0. Thus, X = X0.
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Conversely, suppose X is connected, and let r ∈OK \ {0}. The group rOK has finite
index in OK , so let s0, . . . , sk−1 ∈OK such that

⋃k−1
i=0 (rOK + si) =OK . Let Y :=

{a(rn)x0 : n ∈OK}. Then by ergodicity of T , we have X =⋃k−1
i=0 a(si)Y . We claim that for

0 ≤ i, j ≤ k − 1, the sets a(si)Y and a(sj)Y are either disjoint or identical. Indeed, suppose
x ∈ a(si)Y ∩ a(sj)Y . Then there are sequences (nt)t∈N and (mt)t∈N in OK such that

a(si) lim
t→∞ a(rnt)x0 = a(sj) lim

t→∞ a(rmt)x0 = x.

Let (γt)t∈N and (δt)t∈N be sequences in � and g ∈ G with g� = x so that

a(si) lim
t→∞ a(rnt)γt = a(sj) lim

t→∞ a(rmt)δt = g.

Then

a(sj − si) lim
t→∞ a (r(mt − nt)) x0 = lim

t→∞ γt (a(si)a(rnt)γt)
−1 a(sj)a(rmt)δt�

= lim
t→∞ γtg

−1g� = x0.

It follows that a(sj − si)Y = Y , so multiplying by a(si), we get a(si)Y = a(sj)Y .
But then we have written X as a finite disjoint union of closed sets. Since X is connected,

we must have a(si)Y = X for every i = 0, . . . , k − 1. In particular, Y = X, so (Trn)n∈OK is
ergodic.

2·3. Weyl systems

The results in this paper depend critically on understanding polynomial orbits in Weyl
systems. Following [10], we call a topological dynamical system (X, T) a Weyl system if
X is a compact abelian Lie group and T is a Zd-action by unipotent affine tranformations.
In proving our multiple recurrence results, we will focus our attention on connected Weyl
systems, that is Weyl systems where X is connected (and hence a torus).

The main result on polynomial orbits is the following:

PROPOSITION 2·5. (cf. [10, proposition 3·2]). Let (X, T) be a Zd-Weyl
system and p1, . . . , pm : Zd →Zd polynomials. Then for every x ∈ X, Y :={(

Tp1(n)x, . . . , Tpm(n)x
)

: n ∈Zd
}

is a union of finitely many subtori (Yw)w∈W of
Xm. Moreover, there is a homomorphism ω : Zd → W such that the sequence(
Tp1(n)x, . . . , Tpm(n)x

)
n∈ω−1(w) is well-distributed in Yw for each w ∈ W.

This can be seen via a multivariable version of Weyl’s theorem on polynomial equidis-
tribution in tori (see the explanation of [10, proposition 3·2]) or as a special case of a more
general result due to Leibman:

THEOREM 2·6. ([35, theorem B∗]). Let X = G/� be a nilmanifold. Let g : Zd → G be
a polynomial map, and let x ∈ X. There is a connected closed subgroup H ⊆ G, a homo-
morphism ω : Zd → W onto a finite group W, and a set {xw : w ∈ W} ⊆ X such that the sets
Yw := Hxw, w ∈ W, are closed in X and (g(n)x)n∈ω−1(w) is well-distributed in Yw for every
w ∈ W.

As a consequence, we can deduce a simple criterion for checking that a polynomial
sequence is well-distributed in a torus. First we need some notation. For a sequence
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u : Zd →Tm with polynomial coordinates u(n) = (u1(n), . . . , um(n)), we write

span(u) := spanR
{
(u1(x), . . . , um(x)) : x ∈Rd

}
.

COROLLARY 2·7. Let α1, . . . , αr be rationally independent irrational elements of T. Let
u1, . . . , ur : Zl →Zm be polynomials with zero constant term. Then the sequence

(u1(n)α1 + · · · + ur(n)αr)n∈Zl

is well-distributed in the subtorus span(u1) + · · · + span(ur) (mod 1) of Tm.

Proof. The case d = 1 is handled by [10, corollary 3·3]. The same proof works for general
d ∈N.

2·4. Properties of polynomials

Definition 2·8. The polynomials p1, . . . , pm ∈Q[x1, . . . , xd] are algebraically indepen-
dent (over Q) if, for every nonzero f ∈Q[x1, . . . , xm], the polynomial f (p1, . . . , pm) is
nonzero.

PROPOSITION 2·9. Let K be a number field with ring of integers OK. Let p(x) ∈ K[x]
be a nonconstant OK-valued polynomial. Fix an integral basis {b1, . . . , bd} ⊆OK, and let
p1, . . . , pd ∈Q[x1, . . . , xd] be Z-valued polynomials so that

p

(
d∑

i=1

nibi

)
=

d∑
i=1

pi(n1, . . . , nd)bi.

Then the polynomials p1, . . . , pd are algebraically independent (over Q).

Proof. By [34, chapter I, 11·4], it suffices to check that the Jacobian matrix

J :=

⎛⎜⎜⎝
∂p1
∂x1

· · · ∂pd
∂x1

...
. . .

...
∂p1
∂xd

· · · ∂pd
∂xd

⎞⎟⎟⎠
has full rank.

But the ith row of the Jacobian matrix is given by

∂p

∂xi
(x) = lim

h→0

p(x + hbi) − p(x)

h
=

(
lim
h→0

p(x + hbi) − p(x)

hbi

)
bi = p′(x)bi.

Since p is nonconstant, p′(x) �≡ 0. Moreover, {b1, . . . , bd} is linearly independent over Q,
so the rows of J are linearly independent. Therefore, J has full rank, so p1, . . . pd are
algebraically independent.

PROPOSITION 2·10. Let K be a number field with ring of integers OK, and let
{b1, . . . , bd} be an integral basis in OK. Let {p1, . . . , pk} ⊆ K[x] be an independent fam-
ily of polynomials (over K). For each i = 1, . . . , k, let pi,1, . . . , pi,d ∈Q[x1, . . . , xd] be the
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coordinate polynomials so that

pi

⎛⎝ d∑
j=1

xjbj

⎞⎠=
d∑

j=1

pi,j(x1, . . . , xd)bj.

Then the family {pi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ d} ⊆Q[x1, . . . , xd] is independent (over Q). That is,
for any (ci,j)1≤i≤k,1≤j≤d ∈Qkd \ {0}, the polynomial

∑k
i=1

∑d
j=1 ci,jpi,j is nonconstant.

Proof. First, since {b1, . . . , bd} is linearly independent over Q, the family {bjpi : 1 ≤ i ≤
k, 1 ≤ j ≤ d} ⊆ K[x] is independent over Q.

Now let qi,j ∈Q[x1, . . . , xd] be the b1-coordinate of bjpi. That is,

bjpi

(
d∑

l=1

xlbl

)
= qi,j(x1, . . . , xd)b1 + ri,j(x1, . . . , xd),

where ri,j(x1, . . . , xd) ∈ spanQ{b2, . . . , bd}. We claim that {qi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ d} is inde-
pendent over Q. Suppose not. Then for some (ci,j)1≤i≤k,1≤j≤d ∈Qkd \ {0} and some c ∈Q,
we have

k∑
i=1

d∑
j=1

ci,jqi,j(x1, . . . , xd) = c.

Then

Q

(
d∑

l=1

xlbl

)
:=

k∑
i=1

d∑
j=1

ci,jbjpi

(
d∑

l=1

xlbl

)
= cb1 +

k∑
i=1

d∑
j=1

ci,jri,j(x1, . . . , xd).

Hence, for the polynomial function f
(∑d

l=1 xlbl

)
:= x1 − c, we have f (Q) = 0. By

Proposition 2·9, it follows that Q is constant. But {bjpi : 1 ≤ i ≤ k, 1 ≤ j ≤ d} is independent
over Q, so this is a contradiction.

For 1 ≤ j, l, m ≤ d, let aj,l,m ∈Z so that bjbl =∑d
m=1 aj,l,mbm. By direct computation, we

have

bjpi

(
d∑

l=1

xlbl

)
=

d∑
l=1

pi,l(x1, . . . , xd)
d∑

m=1

aj,l,mbm =
d∑

m=1

(
d∑

l=1

aj,l,mpi,l(x1, . . . , xd)

)
bm.

Thus,

qi,j(x1, . . . , xd) =
d∑

l=1

aj,l,1pi.l(x1, . . . , xd) ∈ spanQ{pi,1, . . . , pi,d}.

Therefore, span
({1} ∪ {qi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ d})⊆ span

({1} ∪ {pi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ d}).
It follows that {pi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ d} is independent over Q.

LEMMA 2·11. Let K be a number field with ring of integers OK. Let {p1, . . . , pk} ⊆ K[x]
be jointly intersective OK-valued polynomials. Let r ∈OK \ {0}. Then there exists ξ ∈OK
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and D ∈OK \ {0} such that

pi (ξ + DOK)⊆ rOK

for i = 1, . . . , k.

Proof. The subgroup rOK has finite index in OK , so there exists ξ ∈OK such that pi(ξ ) ∈
rOK for i = 1, . . . , k.

Fix 1 ≤ i ≤ k. Now write pi(x) = amxm + · · · + a1x + a0 with a0, a1, . . . , am ∈ K. Since pi

is OK-valued, we have a0 = pi(0) ∈OK . Let Di ∈OK so that Diaj ∈OK for all j = 1, . . . , m.
We claim pi(ξ + DirOK) ⊆ rOK . Indeed, for n ∈OK , we have

p (ξ + Dirn)= pi(ξ ) +
m∑

j=1

j∑
l=1

aj

(
j

l

)
(Dirn)lξ j−l

= pi(ξ ) + r ·
m∑

j=1

⎛⎝Diaj

j∑
l=1

(
j

l

)
Dl−1kl−1nlξ l−j

⎞⎠ ∈ rOK .

Taking D = r · lcm(D1, . . . , Dk) completes the proof.

2·5. Eligible collections

Theorem C and Theorem D each establish characteristic factors for certain polynomial
configurations in ergodic systems. In both cases, it is significantly easier to deal with totally
ergodic systems. The notion of eligible collections, introduced by Frantzikinakis in [19] for
Z-valued polynomials, can be utilized to reduce the ergodic case to the simpler case in which
the system is totally ergodic.

Definition 2·12. Let P be a collection of families of k OK-valued polynomials. We say
that P is eligible if for any {p1, . . . , pk} ∈P , we have:

(i) {p1(n) − p1(0), . . . , pk(n) − pk(0)} ∈P ;

(ii) {p1(rn + s), . . . , pk(rn + s)} ∈P for any r, s ∈OK with r �= 0;

(iii) {cp1(n), . . . , cpk(n)} ∈P for any c ∈ K \ {0} such that cpi is OK-valued for i =
1, . . . , k.

PROPOSITION 2·13 (cf. [19, proposition 4·1]). Let P be eligible. Suppose that for some
m ∈N, the nilfactor Zm is characteristic for every P ∈P in totally ergodic systems. Then
Zm is characteristic for every P ∈P in ergodic systems.

Proof. Let (X, B,μ, T) be an ergodic OK-system. Let f1, . . . , fk ∈ L∞(μ), and suppose
E
[
fi |Zm

]= 0 for some i = 1, . . . , k. Without loss of generality, i = 1. We want to show

UC- lim
n∈OK

k∏
i=1

Tpi(n)fi = 0

in L2(μ). Shifting by the constant terms and using property (i), we may assume pi(0) = 0.
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By Theorem 1·13, we may assume that X = G/� is a nilmanifold and T acts by nil-
translations Tnx = a(n)x with a(n) ∈ G. We claim that there exists r ∈OK such that the
(finitely many) ergodic components of the action (Trn)n∈OK

are totally ergodic. Let Z be
the Kronecker factor of (X, T). This is an action by rotations on an abelian Lie group
of the form Za1 × · · · ×Zad ×Tc with a1, . . . , ad ∈N, c ∈N∪ {0}. Set a := ∏d

j=1 aj ∈N.
Letting r = a(b1 + · · · + bd), where {b1, . . . , bd} is an integral basis for OK , we then have
that the ergodic components of (Trn)n∈OK

are totally ergodic (we have trivialized the rational
component of the Kronecker factor).

Since pi(0) = 0 for each i = 1, . . . , k, there exist D ∈OK \ {0} so that the polyno-
mials qi(n) := r−1pi(Dn) are OK-valued by Lemma 2·11. By properties (ii) and (iii),
{q1, . . . , qk} ∈P .

Now, (Trn)n∈OK
has finitely many ergodic components and Zm(Trn) ⊆Zm(Tn), so

E

[
f1 |Z (j)

m

]
= 0, where Z (j)

m is the nilfactor for the jth ergodic component of Trn. Summing

over the finitely many ergodic components of Trn, we thus have

UC- lim
n∈OK

k∏
i=1

Tpi(Dn)fi = UC- lim
n∈OK

k∏
i=1

Tr·qi(n)fi = 0.

Note that by the proof of Lemma 2·11, pi(Dn + s) ≡ pi(s) (mod rOK). Hence,
q(s)

i (n) := r−1(pi(Dn + s) − pi(s)) is OK-valued. Moreover, since P is eligible, we have{
q(s)

1 , . . . , q(s)
k

}
∈P . By assumption, E

[
fi |Zm

]= 0 for some i = 1, . . . , k. It follows that

E
[
Tpi(s)fi |Zm

]= 0, since Zm is T-invariant. Thus, by the argument in the previous
paragraph, we have

UC- lim
n∈OK

k∏
i=1

Tpi(Dn+s)fi = UC- lim
n∈OK

k∏
i=1

Tpi(Dn+s)−pi(s)(Tpi(s)fi)

= UC- lim
n∈OK

k∏
i=1

Tr·q(s)
i (n)(Tpi(s)fi) = 0

for s ∈OK/rOK . This completes the proof.

3. Characteristic factors
3·1. Proof of Theorem C

We want to prove that the rational Kronecker factor, Krat, is characteristic for the
average

UC- lim
n∈OK

k∏
i=1

Tpi(n)fi

when p1, . . . , pk ∈ K[x] are independent OK-valued polynomials.
We will first prove a special case:

THEOREM 3·1. Let K be a number field with ring of integers OK. Suppose p1, . . . , pk ∈
K[x] are independent OK-valued polynomials. If (X, B,μ, T) is a totally ergodic OK-system
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and f1, . . . , fk ∈ L∞(μ), then

UC- lim
n∈OK

k∏
i=1

Tpi(n)fi =
k∏

i=1

∫
X

fi dμ.

Remark 3·2. After a previous version of this paper appeared on arXiv, Best and Ferré
Moragues reproved Theorem 3·1 using a different method (see [17, thoerem 1·6]).

3·1·1. Reduction to Weyl systems

Recall that a sequence (xn)n∈OK in a compact topological space X is well-distributed with
respect to a probability measureμ on X if UC- limn∈OK δxn =μ in the weak-∗ topology. That
is, for any continuous function f : X →C and any Følner sequence (
N)N∈N in (OK , +), one
has

1

|
N |
∑

n∈
N

f (xn) →
∫

X
f dμ.

By Theorem 1·13, Theorem 3·1 is equivalent to the following equidistribution result:

THEOREM 3·3. Let K be a number field with ring of integers OK. Let (X, B,μ, T) be a
totally ergodic OK-nilsystem. Let {p1, . . . , pk} ⊆ K[x] be independent OK-valued polynomi-
als. Then for almost every x ∈ X, the sequence

(
Tp1(n)x, . . . , Tpk(n)x

)
n∈OK

is well-distributed

in Xk.

Having reduced to an equidistribution result on nilmanifolds, we can now make several
more reductions. First, by Proposition 2·4, the nilmanifold in Theorem 3·3 is neces-
sarily connected, since it admits a totally ergodic action by niltranslations. Next, by
Proposition 2·10, we may expand the polynomials p1, . . . , pk in coordinates with respect to
an integral basis in order to obtain an independent family of Z-valued polynomials. Hence,
Theorem 3·3 follows from:

THEOREM 3·4. Let d, k, l ∈N. Let (X, B,μ, T) be an ergodic, connected Zl-nilsystem.
Let {pi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ l} ⊆Q[x1, . . . , xd] be a family of independent Z-valued polyno-
mials. Then the sequence ⎛⎝ l∏

j=1

T
p1,j(n)
j x, . . . ,

l∏
j=1

T
pk,j(n)
j x

⎞⎠
n∈Zd

is well-distributed in Xk for every x in a co-meager set of full measure.

Now we will reduce from a connected nilystem to the case that (X, T) is a Weyl system,
i.e. X is a finite-dimensional torus and T acts by unipotent affine transformations. Let G0 be
the connected component of the identity in G, Z = X/[G0, G0], and π : G → Z the projection
map. The following result of Leibman shows that we can reduce to studying orbits in Z:

THEOREM 3·5 ([35, theorem C]). Let X = G/� be a connected nilmanifold, x ∈ X, and
g : Zd → G a polynomial map. The following are equivalent:
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(i) the orbit
{
g(n)x : n ∈Zd

}
is dense in X;

(ii)
{
g(n)π(x) : n ∈Zd

}
is dense in Z;

(iii) (g(n)x)n∈Zd is well-distributed in X;

(iv) (g(n)π(x))n∈Zd is well-distributed in Z.

LEMMA 3·6 (cf. [20, proposition 2·1]). Without loss of generality, G0 is abelian.

Proof. Use Theorem 3·5 to reduce to the projection onto Z. Now, (G/[G0, G0])0 is an
abelian group, and a factor of a totally ergodic system is totally ergodic.

LEMMA 3·7 (cf. [20, propositions 3·1 and 3·2]). Without loss of generality, (X,T) is a
connected Weyl system.

Proof. To reduce from a connected nilsystem such that G0 is abelian to a connected Weyl
system, see [20, proposition 3·1]. The isomorphism between a niltranslation and a unipotent
affine transformation does not depend on the element of G defining the niltranslation, so the
result still holds for d commuting niltranslations.

We have therefore reduced Theorem 3·1 to the following result about well-distribution of
polynomial orbits for unipotent affine actions on tori:

THEOREM 3·8. Let d, l, k, m ∈N. Let {pi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ l} ⊆Q[x1, . . . , xd] be Z-
valued and independent over Q. Let T1, . . . , Tl : Tm →Tm be commuting unipotent affine
transformations generating an ergodic Zl-action. Then the polynomial sequence⎛⎝ l∏

j=1

T
p1,j(n)
j x, . . . ,

l∏
j=1

T
pk,j(n)
j x

⎞⎠
n∈Zd

is well-distributed in Tmk for all x in a co-meager set of full measure.

3·1·2. Equidistribution of Zl-polynomial sequences

In order to prove Theorem 3·8, we will use two classic results in equidistribution. The
first is a multivariable version of Weyl’s polynomial equidistribution theorem.

LEMMA 3·9 (cf. [38, Satz 20]). Fix d ∈N. Let p(x1, . . . , xd) ∈R[x1, . . . , xd]. If at least
one coefficient of p other than the constant term is irrational, then the Zd-sequence
(p(n1, . . . , nd))n∈Zd is well-distributed mod 1.

Remark 3·10. Weyl proved Lemma 3·9 in the case d = 2, with indications of how to prove
the case of general d, for Følner sequences that are increasing dilations of a fixed set.
Lemma 3·9 in its full generality is today an easy exercise with the help of an appropriate
variant of the van der Corput trick (see, e.g. [13, lemma A6]).

The next lemma allows one to reduce equidistribution in a multidimensional torus to
equidistribution in the circle.
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LEMMA 3·11. Fix d, m ∈N. A Zd-sequence u : Zd →Tm is well-distributed in Tm

if and only if for every c ∈Zm \ {0}, the sequence c · u(n) = c1u1(n) + · · · + cmum(n) is
well-distributed in T.

Proof. See [33, theorem 6·3] for the case d = 1. The same argument works for general
d ∈N.

With these two lemmas at hand, we are now ready to prove Theorem 3·8.

Proof of Theorem 3·8. For each j = 1, . . . , l, we can write Tjx = Ajx + αj for some
unipotent (m × m)-matrix Aj with integer entries and a vector αj ∈Tm. Since the matrices
A1, . . . , Al commute, they are simultaneously triangularisable. That is, there is a matrix P
with rational entries and lower-triangular matrices Bj such that AjP = PBj. Multiplying P by
a common denominator of its entries, we may assume that P has integer entries. Then P is
well-defined as a surjective endomorphism of Tm. (One can show that in general, P cannot
be assumed to be an automorphism.) Let βj ∈Tm such that Pβj = αj, and set Sjx := Bjx + βj.
Then we have TjPx = AjPx + αj = PBjx + Pβj = PSjx. That is, T is a factor of S with factor
map P : Tm →Tm.

Now we check that S is an ergodic Zl-action on Tm. For n = (n1, . . . , nl) ∈Zl, let Sn :=∏l
j=1 S

nj
j and Tn := ∏l

j=1 T
nj
j . Suppose A ⊆Tm is S-invariant. That is, SnA = A for every

n ∈Zl. Applying the factor map P : Tm →Tm, we have PA = PSnA = TnPA, so PA is a T-
invariant set. But T is ergodic by assumption, so μ(PA) ∈ {0, 1}. If μ(PA) = 0, then μ(A) ≤
μ(P−1PA) =μ(A) = 0. On the other hand, if μ(PA) = 1, then μ(A) ≥ 1/| det (P)|.

Assume A is an S-invariant set of minimal positive measure so that S|A : A → A is
ergodic. Let x ∈ A be a generic point for S|A. Then by Proposition 2·5, A differs from the
set Y = {

Snx : n ∈Zl
}

by a null-set, and Y is a subtorus of Tm. But μ(Y) =μ(A)> 0, so
Y =Tm. Thus, for any S-invariant set A of positive measure, we have μ(A) = 1. Therefore,
S is ergodic.

The above argument shows that, without loss of generality, we may assume that the
transformations Tj are of the form

Tjx =
(

x1 + α
(j)
1 , x2 + a(j)

2,1x1 + α
(j)
2 , . . . , xm +

m−1∑
r=1

a(j)
m,rxr + α(j)

m

)

for x = (x1, . . . , xm) ∈Tm.
Let ux(n) := (

Tp1(n)x, . . . , Tpk(n)x
)

for x ∈Tm and n ∈Zd, where Tpi(n) denotes the trans-

formation
∏l

j=1 T
pi,j(n)
j . We now break the proof into two cases, depending on the coefficients

a(j)
s,r.
First consider the case a(j)

s,r = 0 for all 1 ≤ j ≤ l, 2 ≤ s ≤ m, and 1 ≤ r ≤ s − 1. That is,

Tjx =
(

x1 + α
(j)
1 , x2 + α

(j)
2 , . . . , xm + α(j)

m

)
= x + α(j)

is a toral rotation for j = 1, . . . , l. Let α : Zl →Tm be the homomorphism α(n1, . . . , nl) =∑l
j=1 njα

(j). Then for any x ∈Tm, we have

ux(n) = x + (α(p1(n)), . . . , α(pk(n)))= x + u0(n).
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Now let (ci,s)1≤i≤k,1≤s≤m ∈Zmk \ {0}. By Lemma 3·11, it suffices to show

c · u0(n) =
k∑

i=1

ci · α(pi(n))

is well-distributed in T. For each i = 1, . . . , k and n ∈Zl, we have

ci · α(n) =
m∑

s=1

ci,s

l∑
j=1

njα
(j)
s =

l∑
j=1

nj

m∑
s=1

ci,sα
(j)
s .

Letting βi =
(∑m

s=1 ci,sα
(1)
s , . . . ,

∑m
s=1 ci,sα

(l)
s

)
∈Tl, we therefore have

ci · α(n) = βi · n.

Thus,

c · u0(n) =
k∑

i=1

βi · pi(n) =
k∑

i=1

l∑
j=1

βi,jpi,j(n),

which is well-distributed by Lemma 3·9.

Now suppose a(j)
s,r �= 0 for some 1 ≤ j ≤ l, 2 ≤ s ≤ m, and 1 ≤ r ≤ s − 1.

Let x = (x1, . . . , xm) so that {1, x1, . . . , xm} is linearly independent over

Q

({
α

(j)
s : 1 ≤ j ≤ l, 1 ≤ s ≤ m

})
.

Put r0 := max
{

1 ≤ r ≤ m − 1 : a(j)
s,r �= 0 for some 1 ≤ j ≤ l and r + 1 ≤ s ≤ m

}
, and let

S :=
{

r0 + 1 ≤ s ≤ m : a(j)
s,r0 �= 0 for some 1 ≤ j ≤ l

}
. For s ∈ S, let

vs :=
(

a(1)
s,r0

, . . . , a(l)
s,r0

)
∈Zl \ {0}.

We claim that without loss of generality, {vs : s ∈ S} is linearly independent over Q.
Indeed, suppose

∑
s∈S csvs = 0 for some (cs)s∈S ∈ZS \ {0}. Taking s0 := max{s ∈ S : cs �=

0}, we can perform a change of variables

x̃s0 :=
∑
s∈S

csxs.

In the new coordinates, this gives ṽs0 = 0, so S̃ = S \ {s0} and linear dependence is removed.
Moreover, this change of variables is |cs0 |-to-one, so well-distribution in the new coordinates
implies well-distribution in the original system, since orbit closures of polynomial sequences
must be finite unions of subtori (see Proposition 2·5).

Assume now that {vs : s ∈ S} is linearly independent over Q. Let (ci,s)1≤i≤k,1≤s≤m ∈Zmk \
{0}. If ci,s = 0 for 1 ≤ i ≤ k and s ∈ S, then we can reduce to the lower-dimensional torus
consisting of those coordinates not in the set S. Thus, we may assume ci,s �= 0 for some
1 ≤ i ≤ k and s ∈ S. Now expand

c · ux(n) =
m∑

s=1

Ps(n)xs + R(n),
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where Ps is Z-valued for each s = 1, . . . , m and R(n) is linearly independent from
{x1, . . . , xs} over Q for every n ∈Zd. By the restriction on the coordinates of x, we can
compute

Pr0(n) =
k∑

i=1

ci,r0 +
k∑

i=1

∑
s∈S

ci,s (vs · pi(n))

=
k∑

i=1

ci,r0 +
k∑

i=1

l∑
j=1

∑
s∈S

ci,sa
(j)
s,r0

pi,j(n)

= const. +
k∑

i=1

l∑
j=1

di,jpi,j(n),

where (
di,1, . . . , di,l

)=
∑
s∈S

ci,svs

for 1 ≤ i ≤ k. By assumption, (ci,s)1≤i≤k,s∈S �= 0. Since {vs : s ∈ S} is linearly independent
over Q, this implies that di,j �= 0 for some 1 ≤ i ≤ k and 1 ≤ j ≤ l. Therefore, Pr0 (n) is
nonconstant, since {pi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ l} is an independent family. It follows that the
polynomial c · ux(n) has at least one irrational coefficient other than the constant term, so
c · ux(n) is well-distributed in T by Lemma 3·9.

We have shown that c · ux(n) is well-distributed in T for every c ∈Zmk \ {0}. By
Lemma 3·11, it follows that ux(n) is well-distributed in Tmk as desired.

Let E be the set of exceptional points x ∈Tm such that (ux(n))n∈Zd is not well-distributed
in Tmk. The above argument show that if x = (x1, . . . , xm) ∈ E, then

c0 +
m∑

r=1

crxr = 0 (3·1)

for some coefficients

(cr)m
r=0 ∈Q

({
α(j)

s : 1 ≤ j ≤ l, 1 ≤ s ≤ m
})m+1 \ {0}.

For each such choice of coefficients (cr)m
r=0, the equation (3·1) defines a subtorus of dimen-

sion m − 1. Hence, E is contained in a countable union of (m − 1)-dimensional subtori. In
particular, E is both a set of measure zero and meager in Tm.

3·1·3. The general case

Theorem 3·1 says the for totally ergodic systems, the trivial factor is characteristic for
independent polynomials {p1, . . . , pk}. In particular, the Kronecker factor Z =Z1 is charac-
teristic. Now, the collection of all families of independent OK-valued polynomials is clearly
eligible, so by Proposition 2·13, the Kronecker factor is characteristic for independent
polynomials in any ergodic system.

In order to prove Theorem C, it remains only to reduce from the Kronecker factor to the
rational Kronecker factor. We want to prove: if E

[
fi |Krat

]= 0 for some i = 1, . . . , k, then

UC- limn∈OK

∏k
i=1 Tpi(n)fi = 0. Since the Kronecker factor is spanned by eigenfunctions,
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we may assume that fi is an eigenfunction with eigenvalue αi ∈Td for i = 1, . . . , k. That
is, Tnfi = e(n · αi)fi. The condition that E

[
fi |Krat

]= 0 means that αi /∈Qd for some i =
1, . . . , k. Expanding the multiple ergodic average, we have

UC- lim
n∈OK

k∏
i=1

Tpi(n)fi = UC- lim
n∈OK

e

⎛⎝ k∑
i=1

d∑
j=1

pi,j(n)αi,j

⎞⎠ k∏
i=1

fi. (3·2)

Since αi,j /∈Q for some 1 ≤ i ≤ k and 1 ≤ j ≤ d, the polynomial
∑k

i=1
∑d

j=1 pi,j(n)αi,j has an
irrational coefficient other than the constant term. Thus, by Lemma 3·9, the average (3·2) is
equal to 0 as desired.

3·2. Proof of Theorem D

We follow the approach of Frantzikinakis (see [19, theorem A]), modifying as necessary
to upgrade to our multidimensional setting.

The polynomials l1p(n), . . . , lkp(n) are essentially distinct, so the characteristic factor for
the averages

UC- lim
n∈OK

k∏
i=1

Tlip(n)fi (3·3)

is a nilfactor, Zr, for some r ∈Z, by Theorem 1·13. The content of Theorem D is thus to
show that r = k − 1.

We do this in several steps. First, we will show that for totally ergodic systems, the limit
(3·3) does not depend on p. As a consequence, Zk−1 is characteristic for totally ergodic
systems, since it is characteristic when p(n) = n. We then apply Proposition 2·13 to conclude
that Zk−1 is characteristic in any ergodic system.

3·2·1. Totally ergodic systems

For this section, we will assume that (X, B,μ, T) is a totally ergodic OK-system, and we
set out to prove that the limit (3·3) is independent of the choice of polynomial p.

By Theorem 1·13 and a standard approximation argument, we may further assume
that X = G/� is a nilmanifold and T is an action by niltranslations Tnx = a(n)x with
a(n) ∈ G. It therefore suffices to show that the orbits

{(
Tl1p(n)x, . . . , Tlkp(n)x

)
: n ∈OK

}
and

{(
Tl1nx, . . . , Tlknx

)
: n ∈OK

}
are equidistributed for almost every x ∈ X. Equivalently,

letting g(n) := (a(l1n), . . . , a(lkn)) ∈ Gk and x̃ = (x, . . . , x) ∈ Xk, we want to show that
{g(p(n))̃x : n ∈OK} and {g(n)̃x : n ∈OK} are equidistributed for almost every x ∈ X. Now,
by Theorem 3·5, it is enough to show that these sequences have the same closure in Xk.

By Proposition 2·9, any nonconstant polynomial p ∈ K[x] has algebraically indepen-
dent coordinates, so we will prove a related result about Zd-valued polynomials with
algebraically independent coordinates:

PROPOSITION 3·12 (cf. [19, Proposition 2·7]). Let X = G/� be a nilmanifold, g : Zl →
G a polynomial sequence, and x ∈ X. Suppose p : Zd →Zl is a polynomial with algebraically

independent coordinates. If Y := {
g(n)x : n ∈Zl

}
is connected, then

{
g(p(n))x : n ∈Zd

}= Y.

Proof. By Theorem 2·6, Y is a subnilmanifold H/�. Now by Theorem 3·5, we may
replace H by H/[H0, H0] and assume that H0 is abelian. As in Lemma 3·7, we may further

https://doi.org/10.1017/S030500412300049X Published online by Cambridge University Press

https://doi.org/10.1017/S030500412300049X


28 ETHAN ACKELSBERG AND VITALY BERGELSON

reduce to the case that Y =Tm and g(n)x = Tp1(n)
1 · · · Tpk(n)

k x with Ti unipotent affine actions.
The coordinates of

{
g(n)x : n ∈Zl

}
are real polynomials in n ∈Zl, so it remains to show:

if u : Zl →Tm is a sequence with polynomial coordinates and
{
u(n) : n ∈Zl

}=Tm, then{
u(p(n)) : n ∈Zd

}=Tm for every polynomial p : Zd →Zl with algebraically independent
coordinates.

The polynomial u(n) can be decomposed as u(n) = u(0) + u0(n)q + u1(n)α1 + · · · +
ur(n)αr, where q ∈Q, α1, . . . , αr ∈R are linearly independent irrational numbers and
ui : Zl →Zm are polynomials with ui(0) = 0. By Corollary 2·7, the orbit

{
u(n) : n ∈Zl

}
is

dense in Tm if and only if

span(u1) + · · · + span(ur) =Rm.

Thus, it suffices to prove span(ui ◦ p) = span(ui) for each i = 1, . . . , r.
Fix 1 ≤ i ≤ r. Suppose the coordinates of ui ◦ p satisfy a linear relation

∑m
j=1 cjui,j(p(n)) =

0 for some c1, . . . , cm ∈Z, where ui = (ui,1, . . . , ui,m) with ui,j : Zl →Z. Let v : Zl →Z be
the polynomial v(n) := ∑m

j=1 cjui,j(n). Then v ◦ p = 0. But the coordinates of p are alge-
braically independent, so we must have v = 0. That is, the coordinates of ui satisfies the the
same linear relation. Therefore, span(ui ◦ p) = span(ui) as desired.

It remains only to show that Y := {g(n)̃x : n ∈OK} is connected. This is where we use that
the system is totally ergodic. Let Yw = Hxw, w ∈ W, as in Theorem 2·6. Since W is a finite
group, ω−1(0) ⊆Zd has finite index in Zd. Because T is totally ergodic, we therefore have
Y0 = Y , so Y is indeed connected.

In summary, we have shown the following:

THEOREM 3·13. Let K be a number field with ring of integers OK. Let (X, B,μ, T) be
a totally ergodic OK-system. Let p(x) ∈ K[x] be a non-constant OK-valued polynomial. Let
l1, . . . , lk ∈OK be distinct and nonzero. Then

UC- lim
n∈OK

k∏
i=1

Tlip(n)fi = UC- lim
n∈OK

k∏
i=1

Tlinfi.

3·2·2. General case

Now we prove Theorem D. Letting l := gcd (l1, . . . , lk) and replacing l1, . . . , lk by l′i :=
li/l and p by lp, we may assume without loss of generality that l = 1. By [27, theorem
4·1·2], the characteristic factor for {l1n, . . . , lkn} is Zk−1. Thus, by Theorem 3·13, Zk−1

is characteristic for {l1p(n), . . . , lkp(n)} in the case of totally ergodic systems. It is easily
checked that the collection

P := {{l1p(n), . . . , lkp(n)} : p(x) ∈ K[x] is noncontant and OK-valued}
is eligible (see Definition 2·12) under the assumption that l = gcd (l1, . . . , lk) = 1. Hence,
Theorem D follows by Proposition 2·13.

4. Large intersections

Having established characteristic factors for the polynomial multiple ergodic averages of
interest, we now move to deducing the related Khintchine-type theorems.
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4·1. Proof of Theorem A

We want to prove Theorem A, restated here for the convenience of the reader:

THEOREM A. Let K be a number field with ring of integers OK. Let {p1, . . . , pk} ⊆ K[x]
be a jointly intersective family of linearly independent OK-valued polynomials. Then for any
measure-preserving OK-system (X, B,μ, T), A ∈B, and ε > 0, the set{

n ∈OK :μ
(

A ∩ T−p1(n)A ∩ · · · ∩ T−pk(n)A
)
>μ(A)k+1 − ε

}
(1·4)

is syndetic.

We will prove the following stronger statement:

THEOREM 4·1. Let K be a number field with ring of integers OK. Suppose {p1, . . . , pk} ⊆
K[x] is a jointly intersective family of linearly independent OK-valued polynomials. Then
for any measure-preserving OK-system (X, B,μ, T), A ∈B, and ε > 0, there exist ξ ∈OK

and D ∈OK \ {0} such that

UC- lim
n∈OK

μ
(

A ∩ T−p1(ξ+Dn)A ∩ · · · ∩ T−pk(ξ+Dn)A
)
>μ(A)k+1 − ε.

Assuming Theorem 4·1, the set{
n ∈OK :μ

(
A ∩ T−p1(ξ+Dn)A ∩ · · · ∩ T−pk(ξ+Dn)A

)
>μ(A)k+1 − ε

}
is syndetic by Proposition 1·12. Since ξ + DOK is syndetic in OK , Theorem 4·1 follows
immediately.

Proof of Theorem 4·1. First assume that T is ergodic. The rational Kronecker factor Krat is
the inverse limit of the periodic factors Kr := {

f ∈ L2(μ) : Trnf = f for all n ∈OK
}
, r ∈OK .

Note that Kr ⊆Ks if r | s in OK . Thus, we may approximate Krat by Kr for some r ∈OK .
To be precise, there exists r ∈OK such that∥∥E [

1A |Krat
]−E

[
1A |Kr

]∥∥
1 <

ε

k + 1
.

Now, the system
(
X, B,μ, (Trn)n∈OK

)
has finitely many ergodic components. In fact, for

some m ≤ [OK : rOK], X can be partitioned into m disjoint sets X1, . . . , Xm ∈B withμ(Xj) =
1/m such that μ

(
XjT−rnXj

)= 0 and
(
X, B,μj, (Trn)n∈OK

)
is ergodic, where μj(B) = m ·

μ(B ∩ Xj).
By Lemma 2·11, let ξ ∈OK and D ∈OK \ {0} such that pi(ξ + DOK) ⊆ rOK for i =

1, . . . , k. For each i = 1, . . . , k, let qi(x) ∈ K[x] be the OK-valued polynomial qi(x) :=
r−1pi(ξ + Dx). Then by Theorem C,

UC- lim
n∈OK

μ
(

A ∩ T−p1(ξ+Dn)A ∩ · · · ∩ T−pk(ξ+Dn)A
)

= UC- lim
n∈OK

1

m

m∑
j=1

μj

(
A ∩ (Tr)−q1(n)A ∩ · · · ∩ (Tr)−qk(n)A

)

= UC- lim
n∈OK

1

m

m∑
j=1

∫
X
E
[
1A |Krat

] k∏
i=1

(Tr)qi(n)E
[
1A |Krat

]
dμj
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= UC- lim
n∈OK

∫
X
E
[
1A |Krat

] k∏
i=1

Trqi(n)E
[
1A |Krat

]
dμ

>UC- lim
n∈OK

∫
X
E
[
1A |Kr

] k∏
i=1

Trqi(n)E
[
1A |Kr

]
dμ− ε

=
∫

X

(
E
[
1A |Kr

])k+1
dμ− ε

≥
(∫

X
E
[
1A |Kr

]
dμ

)k+1

− ε

=μ(A)k+1 − ε.

Now suppose T is not ergodic. Let μ= ∫
�
μω dρ(ω) be the ergodic decomposition. For

each ω ∈�, let rω ∈OK be minimal (with respect to divisibility) so that∥∥E [
1A |Krat(μω)

]−E
[
1A |Krω

]
(μω)

∥∥
L1(μω) <

ε

2(k + 1)
.

The function ω �→ rω is measurable, so we may define �r := {ω ∈� : rω | r} and let μr :=∫
�r
μω dρ(ω). Then let r ∈OK so that ρ(� \�r)< ε/2.

Note that in the proof of the ergodic case, the numbers ξ and D depend only on r and not
on μ. Thus, for every ω ∈�r, we have

UC- lim
n∈OK

μω

(
A ∩ T−p1(ξ+Dn)A ∩ · · · ∩ T−pk(ξ+Dn)A

)
>μω(A)k+1 − ε

2
.

Now we integrate over �:

UC- lim
n∈OK

μ
(

A ∩ T−p1(ξ+Dn)A ∩ · · · ∩ T−pk(ξ+Dn)A
)

≥ UC- lim
n∈OK

∫
�r

μω

(
A ∩ T−p1(ξ+Dn)A ∩ · · · ∩ T−pk(ξ+Dn)A

)
dρ(ω)

>

∫
�r

(
μω(A)k+1 − ε

2

)
dρ(ω)

≥
∫
�r

μω(A)k+1 dρ(ω) − ε

2

>

∫
�

μω(A)k+1 dρ(ω) − ε

≥
(∫

�

μω(A) dρ(ω)

)k+1

− ε

=μ(A)k+1 − ε.

4·2. Proof of Theorem B

Now we turn to proving Theorem B, restated below:

THEOREM B. Let K be a number field with ring of integers OK. Let p(x) ∈ K[x] be an OK-
valued intersective polynomial. Let r, s ∈OK be distinct and nonzero. Then for any ergodic
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measure-preserving OK-system (X, B,μ, T), A ∈B, and ε > 0, the set{
n ∈OK :μ

(
A ∩ T−rp(n)A ∩ T−sp(n)A

)
>μ(A)3 − ε

}
(1·5)

is syndetic.

Moreover, if s/r ∈Q, then{
n ∈OK :μ

(
A ∩ T−rp(n)A ∩ T−sp(n)A ∩ T−(r+s)p(n)A

)
>μ(A)4 − ε

}
(1·6)

is syndetic.
First we will prove the special case when T is totally ergodic. In this case, by applying

Theorem D, we can compute limits explicitly:

THEOREM 4·2. Let K be a number field with ring of integers OK. Let X = (X, B,μ, T)
be a totally ergodic OK-system. Let Z be a compact abelian group and α : (OK , +) → Z
a homomorphism such that the Kronecker factor of X is isomorphic to the system Z =
(Z, BZ ,μZ , S), where BZ is the Borel σ -algebra, μZ is the Haar probability measure, and S
acts by rotations Snz = z + αn for n ∈OK.

(1) Let r, s ∈OK distinct and nonzero, p(x) ∈ K[x] an OK-valued polynomial, and f1, f2 ∈
L∞(μ). Then

UC- lim
n∈OK

Trp(n)f1(x) · Tsp(n)f2(x) =
∫

Z2
f̃1(z + u)f̃2(z + v) dν(u, v) (4·1)

in L2(μ), where x �→ z is the factor map, f̃ =E
[
f | Z

]
, and ν is the Haar measure on

the subgroup {(αrn, αsn) : n ∈OK} ⊆ Z2.

(2) Let a1, a2 ∈Z \ {0} be coprime, and put a3 = a1 + a2. There is a compact abelian
group H such that the nilfactor (X, Z2,μ, T) is isomorphic to a skew-product system
Z ×σ H, and there exists a function ψ : Z2 → H such that ψ(0, ·) = 0 and t �→ψ(t, ·)
is continuous as a function from Z to the space M(Z, H) of measurable functions
Z → H in the topology of convergence in measure, and integers b1, b2, b3 ∈Z such
that: for any OK-valued polynomial p(x) ∈ K[x] and any f1, f2, f3 ∈ L∞(μ), we have

UC- lim
n∈OK

3∏
i=1

Taip(n)fi(x) =
∫

Z×H2

3∏
i=1

f̃i(z + ait, h + aiu + a2
i v + biψ(t, z)) dt du dv

(4·2)

in L2(μ), where f̃ =E
[
f |Z2

]
.

Proof. Since the system X is totally ergodic, the limits

UC- lim
n∈OK

Trp(n)f1 · Tsp(n)f2 and UC- lim
n∈OK

3∏
i=1

Taip(n)fi

are independent of the choice of the polynomial p by Theorem D. Thus, we may assume
without loss of generality that p(n) = n. The identity (4·1) is then a special case of [2,
theorem 3·1], and (4·2) is a special case of [2, theorem 7·1].
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COROLLARY 4·3. Let K be a number field with ring of integers OK. Let X = (X, B,μ, T)
be a totally ergodic OK-system with Kronecker factor (Z, α).

(1) Let r, s ∈OK distinct and nonzero, p(x) ∈ K[x] an OK-valued polynomial, and
f0, f1, f2 ∈ L∞(μ). Then for any continuous function η : Z2 →C, we have

UC- lim
n∈OK

η
(
αrp(n), αsp(n)

) ∫
X

f0 · Trp(n)f1 · Tsp(n)f2 dμ

=
∫

Z3
η(u, v)f̃0(z)f̃1(z + u)f̃2(z + v) dz dν(u, v) (4·3)

in L2(μ), where x �→ z is the factor map, f̃ =E
[
f | Z

]
, and ν is the Haar measure on

the subgroup {(αrn, αsn) : n ∈OK} ⊆ Z2.

(2) Let a1, a2 ∈Z \ {0} be coprime, and put a0 = 0, a3 = a1 + a2. Let H, ψ , and bi be as
in Theorem 4·2(2). Let p(x) ∈ K[x] be an OK-valued polynomial, and let f0, f1, f2, f3 ∈
L∞(μ). Then for any continuous function η : Z →C,

UC- lim
n∈OK

η
(
αp(n)

) ∫
X

3∏
i=0

Taip(n)fi dμ

=
∫

Z2×H3
η(t)

3∏
i=0

f̃i(z + ait, h + aiu + a2
i v + biψ(t, z)) dz dt dh du dv

(4·4)

in L2(μ), where f̃ =E
[
f |Z2

]
.

Proof.

(1) Since Z2 is a compact abelian group, we may assume by the Stone–Weierstrass
theorem that η(u, v) = λ1(u)λ2(v) for u, v ∈ Z, where λ1, λ2 ∈ Ẑ. Defining

g0(x) = λ1(z)λ2(z)f0(x)

and

gi(x) = λi(z)fi(x)

for i = 1, 2, the formula (4·3) then follows by applying (4·1) to the functions g1, g2

and integrating against g0.

(2) Again, without loss of generality, we may assume η= λ ∈ Ẑ. Since gcd (a1, a2) = 1,
there are integers c1, c2 ∈Z so that c1a1 + c2a2 = 1. Let c3 = 0 and c0 = −(c1 + c2)
so that

3∑
i=0

ci = 0 and
3∑

i=0

ciai = 1.

Then define gi(x) := λ(ciz)fi(x) for i = 0, 1, 2, 3. Applying the formula (4·2) for the
functions g1, g2, g3 and integrating against g0 produces the desired formula (4·1).
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PROPOSITION 4·4. Let K be a number field with ring of integers OK. Let (X, B,μ, T) be
a totally ergodic OK-system, r, s ∈OK distinct and nonzero, and p(x) ∈ K[x] an OK-valued
polynomial. Then for any A ∈B with μ(A)> 0 and any ε > 0, the set{

n ∈OK :μ
(

A ∩ T−rp(n)A ∩ T−sp(n)A
)
>μ(A)3 − ε

}
is syndetic.

Moreover, if s/r ∈Q, then{
n ∈OK :μ

(
A ∩ T−rp(n)A ∩ T−sp(n)A ∩ T−(r+s)p(n)A

)
>μ(A)4 − ε

}
is syndetic.

Remark 4·5. We do not assume that the polynomial p is intersective in Proposition 4·4.
This is because, in the totally ergodic setting, there are no “local obstructions” that need to
be avoided. In order to extend to the ergodic setting, however, we will have to restrict to
intersective polynomials.

Proof of Proposition 4·4. We adapt the method from [19].

First we prove the double recurrence result. Using the formula (4·3) with fi = 1A and
choosing η supported on a small neighborhood of 0, it suffices to show∫

Z
(E

[
1A |Z]

)3 dz ≥μ(A)3.

But this follows immediately from Jensen’s inequality, so{
n ∈OK :μ

(
A ∩ T−rp(n)A ∩ T−sp(n)A

)
>μ(A)3 − ε

}
is syndetic.

Now we move to triple recurrence. Since s
r ∈Q, we can write r = a1k and s = a2k for some

coprime a1, a2 ∈Z and some k ∈ K. Let q(n) = kp(n). Note that a1q(n) = rp(n) and a2q(n) =
sp(n) are OK-valued. Therefore, q is itself OK-valued, since gcd (a1, a2) = 1. Hence, without
loss of generality, we will assume that r and s are coprime integers.

Now put a0 = 0, a1 = r, a2 = s, and a3 = r + s. Applying formula (4·4) with fi = 1A and
choosing the function η to be supported on a small neighbourhood of 0, we want to show∫

Z×H3

3∏
i=0

E
[
1A |Z2

]
(z, h + aiu + a2

i v) dh du dv dz ≥μ(A)4. (4·5)

Fix z ∈ Z, and let Fz : H → [0, 1] be the function Fz(x) =E
[
1A |Z2

]
(z, x). Now we

perform several changes of variables. First, take h = a3x:∫
H3

3∏
i=0

Fz(h + aiu + a2
i v) dh du dv

=
∫

H3
Fz(a3x)Fz (a3 (x + u + a3v)) Fz(a3x + a1u + a2

1v)Fz(a3x + a2u + a2
2v) du dx dv.
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Next, x + u + a3v = y:

=
∫

H3
Fz(a3x)Fz(a3y)Fz(a2x + a1y − a1a2v)Fz(a1x + a2y − a1a2v) dv dx dy.

Now, a1(x + y) − a1a2v = w:

=
∫

H3
Fz(a3x)Fz(a3y)Fz((a2 − a1)x + w)Fz((a2 − a1)y + w) dx dy dw

=
∫

H

(∫
H

Fz(a3x)Fz ((a2 − a1)x + w) dx

)2

dw

Apply Jensen’s inequality:

≥
(∫

H2
Fz(a3x)Fz ((a2 − a1)x + w) dw dx

)2

Finally, let w + (a2 − a1)x = u and a3x = t:

=
(∫

H
Fz(t) dt

)2 (∫
H

Fz(u) du

)2

=
(∫

H
Fz dmH

)4

.

Thus, applying Jensen’s inequality one more time, we have∫
Z×H3

3∏
i=0

E
[
1A |Z2

]
(z, h + aiu + a2

i v) dh du dv dz

=
∫

Z

(∫
H3

3∏
i=0

Fz(h + aiu + a2
i v) dh du dv

)
dz

≥
∫

Z

(∫
H

Fz dmH

)4

dz

≥
(∫

Z

∫
H

Fz dmH dz

)4

=μ(A)4.

That is, the inequality (4·5) holds, so the set{
n ∈OK :μ

(
A ∩ T−rp(n)A ∩ T−sp(n)A ∩ T−(r+s)p(n)A

)
>μ(A)4 − ε

}
is syndetic.

We have proved Theorem B in the case when T is totally ergodic. We will now extend this
to the general case that T is simply ergodic. Theorem D still applies, so by a standard approx-
imation argument, we may assume without loss of generality that T acts by niltranslations.
The Kronecker factor is then a group of the form Za1 × · · · ×Zad ×Tc. As in the proof of
Proposition 2·13, we can therefore find k ∈OK such that the Kronecker factor of

(
Tkn

)
n∈OK

is connected, and hence each of the finitely many ergodic components of
(
Tkn

)
n∈OK

is totally
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ergodic by Proposition 2·4. Let X1, . . . , Xm the atoms of the
(
Tkn

)
n∈OK

-invariant σ -algebra,
and let μj(B) := m ·μ(B ∩ Xj) so that μ has ergodic decomposition μ= (1/m)

∑m
j=1 μj for

the action (Tkn)n∈OK .
By Lemma 2·11, let ξ ∈OK and D ∈OK \ {0} so that p(ξ + DOK) ⊆ kOK . Let q(x) ∈ K[x]

be the OK-valued polynomial q(n) = k−1p(ξ + Dn) for every n ∈OK . Following the argu-
ment in the proof of Proposition 4·4, we can choose a continuous function η concentrated
on a sufficiently small neighborhood of 0 in Z2 with

∫
Z2 η dν = 1 so that

UC- lim
n∈OK

η(αrq(n), αsq(n))μj

(
A ∩ T−krq(n)A ∩ T−ksq(n)A

)
≥μj(A)3

for j = 1, . . . , m. Summing over j = 1, . . . , m and applying Jensen’s inequality, we get

UC- lim
n∈OK

η(αrq(n), αsq(n))μ
(

A ∩ T−krq(n)A ∩ T−ksq(n)A
)

≥μ(A)3

from which it follows that{
n ∈OK :μ

(
A ∩ T−krq(n)A ∩ T−ksq(n)A

)
>μ(A)3 − ε

}
is syndetic in OK .

A similar argument with the ergodic decomposition can be used to show that, if s
r ∈Q,

then {
n ∈OK :μ

(
A ∩ T−krq(n)A ∩ T−ksq(n)A ∩ T−k(r+s)q(n)A

)
>μ(A)4 − ε

}
is also syndetic.

Thus, the sets {
n ∈OK :μ

(
A ∩ T−rp(n)A ∩ T−sp(n)A

)
>μ(A)3 − ε

}
and (if s/r ∈Q){

n ∈OK :μ
(

A ∩ T−rp(n)A ∩ T−sp(n)A ∩ T−(r+s)p(n)A
)
>μ(A)4 − ε

}
are relatively syndetic in ξ + DOK . But ξ + DOK is syndetic in OK , so we are done.

5. Refinements
5·1. Polynomial IP sets

Recall that a set E ⊆OK is IP∗ if it intersects every finite sum set

FS ((xn)n∈N) :=
{∑

n∈F

xn : F ⊆N is finite and nonempty

}
,

where (xn)n∈N is a sequence of distinct elements of OK . Similarly, we say E is IP∗
r if it

intersects every finite sum set of the form

FS(x1, . . . , xr) :=
{

s∑
k=1

xnk : 1 ≤ s ≤ r, n1 < n2 < · · ·< ns

}
,

where x1, . . . , xr ∈OK are distinct and nonzero. Finally, E is called an IP∗
0 set if E is IP∗

r for
some r ∈N. Clearly, every IP∗

0 set is also IP∗, but the converse is not true.
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Now we will define polynomial generalisations of IP and IP0 sets. For a set S, let F (S)
denote the semigroup of finite subsets of S with the union operation.

Definition 5·1. Let (H, +) be an abelian group, and let ϕ : F (S) → H.

(1) We say that ϕ is linear if ϕ(α ∪ β) = ϕ(α) + ϕ(β) whenever α ∩ β = ∅.

(2) For β ∈F (S), the β-derivate of ϕ is the function Dβϕ : F (S \ β) → H given by
Dβϕ(α) = ϕ(α ∪ β) − ϕ(α).

(3) We say ϕ is a polynomial of degree ≤ d if for any disjoint sets β0, . . . , βd ∈F (S), one
has Dβ0Dβ1 · · · Dβdϕ = 0.

Note that an IP set has the form {ϕ(α) : α ∈F (N), α �= ∅} for a linear mapping ϕ : F (S) →
OK with ϕ(∅) = 0. For a polynomial mapping ϕ : F (S) →OK , we call the corresponding
set {ϕ(α) : α ∈F (N), α �= ∅} a VIP set. Similarly, if ϕ : F ({1, . . . , r} →OK is a polyno-
mial mapping of degree ≤ d with ϕ(∅) = 0, we say that {ϕ(α) : α ∈F ({1, . . . , r}), α �= ∅}
is VIPd,r. A set E ⊆OK is VIP∗ if it intersects every VIP set, and E is VIP∗

d,r if it intersects
every VIPd,r set. Finally, E is VIP∗

0 if for any d ∈N, E is VIP∗
d,r for some r ∈N.

As we will see below, VIP∗
0 is an appropriate notion of largeness for nilsequences.

However, for a multi-correlation sequence, which differs from a nilsequence by a nullse-
quence (see Theorem 5·4 below), we need the slightly weaker notion of AVIP∗

0. A set E is
almost-VIP∗

0, or AVIP∗
0 for short, if there is a VIP∗

0 set A such that d∗(A \ E) = 0.
For any notion of largeness discussed so far, we use the added decoration of + in the

subscript to indicate a shift. In particular, (A)VIP∗
0,+ means a shift of an (A)VIP∗

0 set.

5·2. Recurrence in nilmanifolds

THEOREM 5·2 ([8, theorem 0·6]). Let (X, T) be a Zd-nilsystem. Then, for any x0 ∈ X and
any neighbourhood U of x0, the set

RU(x0) :=
{

n ∈Zd : Tnx0 ∈ U
}

is a VIP∗
0 set.

COROLLARY 5·3. Let ϕ : Zd →R be a nilsequence. For any c< sup ϕ, the set

R :=
{

n ∈Zd : ϕ(n)> c
}

is VIP∗
0,+.

Proof. Let ε= sup ϕ − c> 0. Then let (X, T) be a minimal nilsystem, x0 ∈ X, and F ∈
C(X) such that supn∈Zd |ϕ(n) − F(Tnx0)|< ε/2. Note that sup F> sup ϕ − ε/2.

Let U := {x ∈ X : F(x)> sup ϕ − ε/2}. Then U is a nonempty open set. Since (X, T) is
minimal, we have Tmx0 ∈ U for some m ∈Zd. By Theorem 5·2,

S :=
{

n ∈Zd : Tn(Tmx0) ∈ U
}

is VIP∗
0.
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Suppose n ∈ S. Then

ϕ(n + m)> F(Tn+mx0) − ε

2
> sup ϕ − ε= c

Therefore, R ⊇ S + m is VIP∗
0,+.

5·3. Nilsequence-nulsequence decomposition

Let r ∈N. A basic r-step nilsequence is a function ϕ(n) = F(Tnx0), where (X, B,μ, T)
is an r-step nilsystem, F : X →C is a continuous function, and x0 ∈ X. An r-step nilse-
quence is a uniform limit of basic r-step nilsequences. Knowing that a nilfactor is
characteristic for polynomial multiple ergodic averages gives a decomposition of the corre-
sponding multi-correlation sequences. Recall that a function ψ : OK →C is a nullsequence
if UC- limn∈OK |ψ(n)|2 = 0.

THEOREM 5·4. Let K be a number field with ring of integers OK. Let p1, . . . , pk ∈
K[x] be non-constant, essentially distinct, OK-valued polynomials. Then for any ergodic
measure-preserving OK-system (X, B,μ, T) and any f0, f1, . . . , fk ∈ L∞(μ), there is a
decomposition

a(n) :=
∫

X
f0 · Tp1(n)f1 · . . . · Tpk(n)fk dμ= ϕ(n) +ψ(n),

where ϕ is a nilsequence and ψ is a nullsequence.

Proof. First, by [14, theorem 5·2], there exists r ∈N such that

a(n) −
∫

X
E
[
f0 |Zr

] · Tp1(n)E
[
f1 |Zr

] · . . . · Tpk(n)E
[
fk |Zr

]
dμ

is a nullsequence, so we may assume that (X, B,μ, T) is a nilsystem.

Next, up to a uniform approximation in n, we may assume that f0, f1, . . . , fk are contin-
uous functions. Then by [36, theorem 1·3], a(n) is the sum of a (basic) nilsequence and a
nullsequence. Taking a uniform limit gives the desired decomposition.

PROPOSITION 5·5. Let K be a number field with ring of integers OK. Suppose ϕ : OK →
C is a nilsequence, ψ : OK →C is a nullsequence, and a(n) = ϕ(n) +ψ(n). Suppose that
for some c> 0, the set

R(c) := {n ∈OK : a(n)> c}
is syndetic. Then R(c’) is AVIP∗

0,+ for every c′ < c.

Proof. Let c′ < c. Then the set

E :=
{

n ∈OK : |ψ(n)| ≥ c − c′

2

}
has upper Banach density d∗(E) = 0. Therefore, R(c) \ E is still syndetic; in particular,
it is nonempty. But for n ∈ R(c) \ E, we have ϕ(n)> c − (c − c′/2) = (c + c′/2). So, by
Corollary 5·3,
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S :=
{

n ∈OK : ϕ(n)>
c + c′

2

}
is VIP∗

0,+. Finally, since (c + c′)/2 − (c − c′)/2 = c′, we have R(c′) ⊇ S \ E, so R(c’) is
AVIP∗

0,+.

By Theorem 5·4, Proposition 5·5 applies to polynomial multi-correlation sequences in
ergodic systems. We can therefore strengthen the conclusions of Theorems 4·1 and 4·2,
respectively, under the assumption of ergodicity:

THEOREM 5·6. Let K be a number field with ring of integers OK. Let {p1, . . . , pk} ⊆ K[x]
be a jointly intersective family of linearly independent OK-valued polynomials. Then for any
ergodic measure-preserving OK-system (X, B,μ, T), A ∈B, and ε > 0, the set{

n ∈OK :μ
(

A ∩ T−p1(n)A ∩ · · · ∩ T−pk(n)A
)
>μ(A)k+1 − ε

}
is AVIP∗

0,+.

THEOREM 5·7. Let K be a number field with ring of integers OK. Let p(x) ∈ K[x] be
an OK-valued intersective polynomial. Let r, s ∈OK be distinct and nonzero. Then for any
ergodic measure-preserving OK-system (X, B,μ, T), A ∈B, and ε > 0, the set{

n ∈OK :μ
(

A ∩ T−rp(n)A ∩ T−sp(n)A
)
>μ(A)3 − ε

}
is AVIP∗

0,+.

Moreover, if s
r ∈Q, then{

n ∈OK :μ
(

A ∩ T−rp(n)A ∩ T−sp(n)A ∩ T−(r+s)p(n)A
)
>μ(A)4 − ε

}
is AVIP∗

0,+.
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