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MACMAHON’S PARTITION ANALYSIS IX:
K-GON PARTITIONS

GEORGE E. ANDREWS, PETER PAULE AND AXEL RIESE

Dedicated to George Szekeres on the occasion of his 90th birthday

MacMahon devoted a significant portion of Volume II of his famous book Combina-
tory Analysis to the introduction of Partition Analysis as a computational method
for solving combinatorial problems in connection with systems of linear diophantine
inequalities and equations. In a series of papers we have shown that MacMahon’s
method turns into an extremely powerful tool when implemented in computer alge-
bra. In this note we explain how the use of the package Omega developed by the
authors has led to a generalisation of a classical counting problem related to triangles
with sides of integer length.

1. INTRODUCTION

In his famous book Combinatory Analysis {12, Volume II, Section VIII, pp. 91-
170] MacMahon introduced Partition Analysis as a computational method for solving
combinatorial problems in connection with systems of linear diophantine inequalities and
equations.

We shall use MacMahon’s method and the Omega package for a study of a classical
combinatorial problem related to triangles with sides of integer size. We start out by
stating the well-known base case which has been discussed at various places; see for
example [11, 9, 1, 10, 8], and {13, Chapter 4, Exercise 16].

PROBLEM 1. Let ¢3(n) be the number of non-congruent triangles whose sides have
integer length and whose perimeter is n. For instance, t3(9) = 3, corresponding to

3+3+4+3,24+3+4,1+4+4. Find 3 t3(n)g™
n23

Obviously the corresponding generating function is

(1) T3(q) := Zt:;(n) q" = Z* qal+az+as’

n2>3
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where 5_° is the restricted summation over all positive integer triples (a1, as, a3) satisfying
a; € as < a3z and a) + a; > a3.
In order to see how Partition Analysis can be used to compute a closed form rep-

resentation for Y t3(n)¢™, we need to recall the key ingredient of MacMahon’s method,
n23
the Omega operator (5.

DEFINITION 1: The operator €2, is given by

(<)
s1=—00

where the domain of the A, . is the field of rational functions over C in several complex
variables and the \; are restricted to a neighbourhood of the circle |A;| =.1. In addition,
the A,, .. s, arerequired to be such that any of the series involved is absolutely convergent
within the domain of the definition of A, . .

o0 )
Z Asx,...,sr’\‘;] o ’\:r = Z c Z Asl,..‘,sra

Sp=— 81=0 $r=0

w2

oo
o0

We emphasize that it is essential to treat everything analytically rather than formally,
because the method relies on unique Laurent series representations of rational functions.

Another fundamental aspect of Partition Analysis is the use of elimination rules
which describe the action of the Omega operator on certain base cases. MacMahon
begins the discussion of his method by presenting a catalog [12, Volume II, pp. 102-106]
of fundamental evaluations. Subsequently he extends this table by new rules whenever he
is forced to do so. Once found, most of these fundamental rules are easy to prove. This
is illustrated by the following examples which are taken from MacMahon [12, Volume II,
Article 354, p.106].

PROPOSITION 1. For integer s > 0 and variables A, B being free of ),

2) Q2 S
( 2(1-24)(1-2) (1-4)(1-ABy

PN 1 - AB - 541 A s+1
3) g _ Bs*!' 4+ AB

(1-x4)(1-2) " (1-A4)01-B)(1-4B)

Proor: Rule (3) is a special case of the more general rule (13); see Lemma 2.
Rule (2) is proved as follows. By geometric series expansion the left-hand side equals

ies Aip K Akbits oo
QY NTTAB =Q ) MAMIRI,

= i520 < jk20

where the summation parameter ¢ has then been replaced by k + j + 5. But now Q sets
A to 1, which completes the proof. 0

Now we are ready for deriving the closed form expression for T3(g) with Partition
Analysis.
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First, in order to get rid of the diophantine constraints, one rewrites the restricted
sum expression in (1) into what MacMahon has called the “crude form” of the generating
function,

_ az—a) yaz—az ya1+az—az—1_a;+az+ta3
T3(q) = 9 E : Al A2 A3 q
= a121, a2,8320

q/\" _
(1-q3) (1 —gX2) (1~ q32)’

where the last line is by geometric series summation.

I
w2

Next by applying again rule (2) we eliminate successively Az, A;, and A,

_ qkf‘

B(a)=¢ (1-a2)(1- £)(1- )
_ q
T TRy

q3

TA-0-d0-¢)

This completes the generating function computation and Problem 1 is solved.

(4)

With our package Omega the whole computation can be done automatically and
in one stroke. (Omega is available at
http://www.risc.uni-linz. ac.at /research/combinat frisc/software/Omega .)
Note that setting-up the crude generating function is done also by the package:

In[1]:= <<0Omegal.m
Out[l]= Axel Riese’s Omega implementation version 2.33 loaded
In[2]:= 0Sum [qax*n*as N {az 2 a;, as 2a,, a;+as > az, 4 2 1} , A]

Assuming a;20
Assuming az20

q
Q
Out[2)= > — ) (] . 9A3) (] _ g
o i N (- ) (- )
In[3):= OR (%)
Eliminating As...
Eliminating A,...
Eliminating A;... 3
q
Outel= -1 -1 - )

As already pointed out in [2], with Partition Analysis one is able to derive much
more information. Namely, we can consider the full generating function

a a:
S3(z1,z2,23) E '’ x5,
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where )" denotes again the restricted summation over all positive integer triples
(a1, ag, a3) satisfying a; < a2 < a3 and @1+ as > a3. On this expression we can carry out
essentially the same Partition Analysis steps as above to obtain a closed form expression.
For the crude form one gets

_ az2—a) yaz—az yay1+az—az—1_.a;, a2, .03
S3(z1, T2, T3) = E APTHAZR TG ' 25z

a121, a2,a320

‘—Q 1’1/\1-1
2 (1= 2 3) (1 - 2230) (1 - 2532)

Next by applying again rule (2), we eliminate successively A;, A, and A3 as above

and obtain
"L‘l/\l—l
53(.’131,.’132,123) =Q
2 (1 - 171%) (1 — %) (1 ol IQI3/\1)
-Q Z1T2T3

2 (1 - CE2.’E3)(1 - I]Zg.’l)3/\3)(1 - %)
(5) . T1X223

(1 — 2923) (1 — z122%3) (1 — 71 7273)

This not only generalises the generating function T3(g), that is, T3(q) = S3(q,4,9),
but gives rise also to a complete, parameterised solution of the underlying diophantine
set of equations

1< a1, a0 < ag, ay < az, and a; + a; > as.
This can be seen by a geometric series expansion of (5), namely

— n2+nz+1, ni+nz+n3+1,n1+n2+2n3+1
S3(x1,T2,73) = E S T3 Tzt TR

ni,n2,n320

In other words, by choosing
ap=ne+nz3+1l,ac=n1+n24+n3+1, and a3 =n; +ny + 2n3 + 1,

and running through all non-negative integers n;, n,, n3, one constructs in a one-to-one
fashion all non-degenerate triangles with sides of integer size.

In [3] we considered the following generalisation of the triangle problem to k-gons
where k£ > 3.

DEFINITION 2: Define the set of non-degenerate k-gon partitions into positive parts
by

Tk:={(a1,...,ak)eZk|1<a1<a2<-~~<ak anda1+-~-+ak_1>ak}.
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Define the set of non-degenerate k-gon partitions of n into positive parts by
Tk(n) = {(a1,...,a) €™ | a1+ +ax=n}
The corresponding cardinality is denoted by
ti(n) : |T,c n)l

The term “non-degenerate” refers to the restriction to strict inequality, that is,
to a; + -+ + ag_1 > ax. In the form of (4) we computed a rational expression for
T3{(q) = 3_ tz(n)g". With the Omega package in hand, we were able to compute also the

n>3

next cases in a purely mechanical manner. For instance,

(1+q+¢°
(6) ;m n)q" = B0 -0 =)=’
q5(1 _qu)
(M ;ts (1-9)1-¢>)(1—-g)(1—¢%(1 —¢%)(1 - qg))
and
(8) Ztﬁ "= SAl-g*+®+q" —¢®—q¢¥)

n>6 M = I =P =T - P - )1 = )

From these results we were able to derive a number of partition theoretical conse-

quences. However, despite the fact that the particular instances of Y tx(n)q™ can be
n2k
computed so easily, we were not able to find a common underlying pattern. So we stated

as an open problem:

PROBLEM 2. In view of the generating function representations (4), (6), (7), and (8):
is it possible to find a common pattern for all possible choices of k7

In Section 2 we provide an affirmative answer to this problem. More precisely, we
give closed form expressions for Ti(q) as well as for the corresponding general version
Sk(zy,...,xx) defined as follows:

DerINITION 3: For integer k£ > 3

Ti(q) : Z te(n) ¢,

nzk

and

Sk(:zl,... ,.’le) = Z z'l” "'IZ"~

(a1,..-,ax)ET

Finally, Section 3 provides some concluding remarks.
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2. GENERATING FUNCTIONS FOR k-GON PARTITIONS

In this section we prove the following main result for k-gon partitions.

THEOREM 1. Letk >3 and X; =xz;---z¢ for1 <i< k. Then
X1
Si(zy,... ,z
9) e V= T = X (1= Xe)
( X Xf? 1

1— X (1= Xp-1)(1 = Xe—aXi)(1 — XeaXP) - (1 — X, XF2)
Since Ti(q) = Si(q,... ,q), Theorem 1 implies the desired generating function rep-
resentation.
CoROLLARY 1. Fork >3,
¢ g2 1
1-91-¢) - (1-¢) 1-q(1-)0—-q) - (1—g*2)

REMARK 1. It is easily verified that (10) brings the representations (4), (6), (7), and
(8) for the special cases k = 3,4, 5,6 under one umbrella.

(10) Ti(g) =

We shall prove Theorem 1 with Partition Analysis. To this end we first need the
crude form of Si(z1,...,zk)-

PROPOSITION 2. Fork>3

Se(z1, ..., k)
(11) —q zi AL
2 (1-2138) (1 — 2o208) (1 - 2o 222) - (1 — g 22205 ) (1 — 3 22t)

PRroOOF: For fixed integer k > 3

-~ ax—-a o 1
Sk(z1, ... ,zk)=9 Z z‘f‘“-x:",\‘l" o, )‘k k— 1,\"1 ag-1—ag—
5 a2l
az,...,ax 20

by the definition of 2. The rest follows by geometric series summation. 0

The next step is the successive elimination of A, Ag,...,Ax_; from the crude
form (11). For this it is convenient to introduce a lemma.

LEMMA 1. Letk >3 andlety,,...,yr be free of A,..., \e_1. Then

A
(1—*',(—1)(1—y2§2) (l_yk 1,\k )(1—%)\1: 1)

Q
2

_ Y1 Yk
A—y)A = yrorve) - L=y ye)
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PRroOOF: We proceed by induction on k. For k = 3,

Q nA _a nA
z (1- }{—1)(1 - ?/2%)(1 —ysh) 2 (1-— %)(1 —y3)(1 — y2ysh1)
N1Y2y3 .
= by (2) with s = 1.

(1 — 12y3)(1 — y3) (1 — v1y2y3) @)

For the induction step we apply again rule (2) with s =0,

by (2) with s =0

Q At
2 (1-8)(1-w3) - (1- yk—lj\\::f)(l - ykA;_:l)(l = Yr+1Ak)
— 1 0] yl’\l—1
= Ao
L=kt 2 (1- ‘1,(—1) (1- yz%) (1= yk—l)‘:_f)(l = YkUk+1 k1)
__ 1 Y1 Ykl .
1—yerr (1= %e¥eer) (1 — ko1 ¥r¥rs) - (L= 91 Yer)’
for the last line we used the induction hypothesis. 0
Now we are in the position to state the crude form of Si(zy,... , ).
PROPOSITION 3. Letk>3and X;=ux;---z; for1 <i< k. Then
(12)
X1 Ak-3
Skftl,...,l‘k)= Q k N
( 1= X1z (1= 55)(1 = Xee2 M) (1 = Xi—aA) -+ (1 = X1AF72)

PRroor: By Proposition 2,

YA Ak
Sk(xl,...,xk):Q Y ,
2 (1- %) (1- y2%) (1= yk—l,\::f)(l — YeAk~1)
where ¥, = Ty Ak, -« , Yk-1 = Tp—1 Ak and yp = z¢/Ae. By Lemma 1 this is equal to
Q zy-- '.'L'k/\:—s
g

(1 - %i‘)(l - zk_lzk)(l - .’Ek_2Zk_1.'IJk/\k) R (1 -y Ik/\’,z_z)
which is the right-hand side of (12). 0

In order to complete the proof of Theorem 1 we need another elementary lemma;
namely, the special case m = 1, k = 1, and j; = 7 of our reduction algorithm described
in [4]. However, for the sake of better readability we state and prove it explicitly.

LEMMA 2. Letk>1,a>0, andlety,yy,...,yx be free of \. Then
/\a
(1= 51 =51 = 122 - (1 — geAr)
1 yotl
Q=m)Q-wl-y) (Q-ny)d-vp?) - -yy)1-y)

(13) Q
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REMARK 2. Formula (3) of Proposition 1 is the special case k = 1.
PRroOOF: The left hand-side of (13) equals

1-814-+k-sx+a

3 Sk, ry1-8142-82++k-sgt+a—r __ Sy ., 5%k r
0 Y Tty 5 e U,
T 81,e..,8520 r20 140,820 r=0
m
and the lemma follows by applying Eoy' =1 -y™)/(1 - y). a0
r=

Finally we come to the proof of Theo;em 1.
PRroo¥: [Proof of Theorem 1] By Proposition 3,

Sk(.’lfl, N ,.’L‘k)
Xl Ak—S
1 - Xk 1 (1 - —k)(l - Xk 2)};)(1 - Xk 3A ) (1 - Xlx\ll:—2)

Q

2

( 1
T1- Xk 1 \(1—X1)(1 = Xa) - (1 — Xi—2)(1 — Xi)

X2
C (1= X2 X)) (1= Xia XP) - (1 - X XEFD)(1 - ch)>’

where the last equality is by Lemma 2 with a = k — 3 and y = Xy, 91 = Xe_a, 92 =
Xi_3,...,Yk—2 = Xi. This completes the proof of Theorem 1.

3. CONCLUSION

As shown in a series of articles [3, 4, 5, 6, 7], Partition Analysis is ideally suited to
supplementation by computer algebra methods. In these papers the Mathematica package
Omega which had been developed by the authors, was used as an essential tool.

The Omega package played a crucial role also in discovering Theorem 1 above. How-
ever, it is important to note that the computations (4), (6), (7), and (8) for Tx(q) with
k = 3,4,5,6 have not led us to Theorem 1. Rather, the main point in the study
of k-gon partitions was the careful Omega investigation of the full generating function
Sk(z1, .- ,zx). Only in this generality was the underlying pattern finally revealed.

Another remark concerns the constructive use of Theorem 1. As a matter of fact,
formula (9) can be used to construct k-gon partitions in the same way as with the special
case (5), which was explained in the introduction.

In [2] refinements of the base case kK = 3 of Theorem 1 and Corollary 1 have been
considered. We expect that experiments with the Omega package will lead to more general
results in this direction.
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