REGIONS OF THE n-SPHERE AND RELATED INTEGRALS

by I.D. CURRIE

(Received 19th November 1976)

1. Introduction

In this note the volumes of certain regions in the n-sphere will be found in two ways: (a) by using a symmetry argument, (b) by expressing the volumes as repeated integrals over the $(n-1)$-cube. By considering the 4 and 5 spheres and equating the integrals obtained by method (b) to the solution obtained by method (a) we evaluate integrals of the form

$$
I(a, b, c)=\int_{0}^{a} \frac{x \tan ^{-1} x}{\left(b-x^{2}\right) \sqrt{ }\left(c-x^{2}\right)} d x, \quad b>c>0, \sqrt{ } c \geqslant a>0
$$

for certain values of a, b and c; it does not appear easy (if indeed it is possible) to evaluate these integrals by direct methods.

These integrals arose in the evaluation of the distribution function of a random variable W defined by Shapiro and Wilk in (1). They define

$$
W=\frac{n\left(\bar{X}-X_{(1)}\right)^{2}}{(n-1) S^{2}}
$$

where $X_{1}, X_{2}, \ldots, X_{n}$ are independent exponential variables, i.e.

$$
\begin{aligned}
f_{X}(x) & =e^{-x}, \quad x>0, \\
\bar{X} & =\sum_{i=1}^{n} X_{i} / n, \\
X_{(1)} & =\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}
\end{aligned}
$$

and

$$
S^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

The evaluation of the $I(a, b, c)$ was an unexpected bonus.

2. The Volumes of Two Regions in the \boldsymbol{n}-sphere

Let the volume of the n-sphere $\left\{x: \sum_{i=1}^{n} x_{i}^{2} \leqslant 1\right\}$ be denoted by S_{n}. Then it is immediately obvious that the volume U_{n} of the region R_{n},

$$
R_{n}=\left\{x: 0 \leqslant x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{n} \quad \text { and } \quad \sum_{i=1}^{n} x_{i}^{2} \leqslant 1\right\}
$$

is given by

$$
U_{n}=S_{n} /\left(n!2^{n}\right) .
$$

The second region T_{n} is defined by

$$
T_{n}=\left\{x: 0 \leqslant \sqrt{ }(1.2) x_{1} \leqslant \sqrt{ }(2.3) x_{2} \leqslant \cdots \leqslant \sqrt{ }(n(n+1)) x_{n} \quad \text { and } \quad \sum_{i=1}^{n} x_{i}^{2} \leqslant 1\right\}
$$

and has volume V_{n} given by

$$
V_{n}=S_{n} /(n+1)!
$$

We prove this as follows: consider the region R in the $(n+1)$-sphere defined by

$$
R=\left\{x: 0 \leqslant \sqrt{ }(1.2) x_{1} \leqslant \sqrt{ }(2.3) x_{2} \leqslant \cdots \leqslant \sqrt{ }(n(n+1)) x_{n} \text { and } \sum_{i=1}^{n+1} x_{i}^{2} \leqslant 1\right\}
$$

and apply the Helmert transformation

$$
\begin{gathered}
x_{i}=\frac{y_{1}+y_{2}+\cdots+y_{i}-i y_{i+1}}{\sqrt{ }(i(i+1))}, \quad i=1, \ldots, n \\
x_{n+1}=\frac{y_{1}+y_{2}+\cdots+y_{n+1}}{\sqrt{ }(n+1)} .
\end{gathered}
$$

Then this transformation maps R into R^{\prime} where

$$
R^{\prime}=\left\{y: y_{1} \geqslant y_{2} \geqslant \cdots \geqslant y_{n+1} \text { and } \sum_{i=1}^{n+1} y_{i}^{2} \leqslant 1\right\} .
$$

By considering the $(n+1)$! permutations of the suffices of the y 's we see, by symmetry, that the volume of R^{\prime} is

$$
\begin{equation*}
S_{n+1} /(n+1)! \tag{1}
\end{equation*}
$$

Since the Helmert transformation is orthogonal the volume of R is also given by (1).
Suppose the hyperplane $\left\{\boldsymbol{x}: x_{n+1}=a\right\}$ intersects R in a surface R_{a} with area C_{a}. Then

$$
\begin{equation*}
\int_{-1}^{1} C_{a} d a=S_{n+1} /(n+1)! \tag{2}
\end{equation*}
$$

R_{a} is given by

$$
R_{a}=\left\{x: 0 \leqslant \sqrt{ }(1.2) x_{1} \leqslant \sqrt{ }(2.3) x_{2} \leqslant \cdots \leqslant \sqrt{ }(n(n+1)) x_{n}, x_{n+1}=a, \quad \sum_{i=1}^{n} x_{i}^{2} \leqslant 1-a^{2}\right\}
$$

and so R_{0} has area V_{n}. Now R_{a} is mapped onto R_{0} by the transformation

$$
\begin{gathered}
x_{i}=\sqrt{ }\left(1-a^{2}\right) y_{i}, \quad i=1,2, \ldots, n \\
x_{n+1}=y_{n+1}+a .
\end{gathered}
$$

The Jacobian of this transformation is $\left(1-a^{2}\right)^{n / 2}$ and so

$$
C_{a}=\left(1-a^{2}\right)^{n / 2} V_{n}
$$

Substituting in (2) gives

$$
V_{n} \int_{-1}^{1}\left(1-a^{2}\right)^{n / 2} d a=S_{n+1} /(n+1)!
$$

and the formula for V_{n} follows.

3. U_{n} and V_{n} as Repeated Integrals

We apply the transformation

$$
x_{i}=\frac{y_{i}}{\sqrt{ }(i(i+1))}, \quad i=1, \ldots, n
$$

to the region T_{n}. The Jacobian of this transformation is

$$
1 /(n!\sqrt{ }(n+1))
$$

and T_{n} transforms into

$$
\left\{y: 0 \leqslant y_{1} \leqslant y_{2} \leqslant \cdots \leqslant y_{n} \text { and } \sum_{i=1}^{n} \frac{y_{i}^{2}}{i(i+1)} \leqslant 1\right\} .
$$

This region is transformed by setting

$$
\begin{equation*}
y_{i}=z_{1} z_{2} \ldots z_{n-i+1}, \quad i=1,2, \ldots, n \tag{3}
\end{equation*}
$$

The Jacobian of this transformation is $z_{1}^{n-1} z_{2}^{n-2} \ldots z_{n-1}$, and the region is mapped into

$$
\left\{z: 0 \leqslant z_{1}, 0 \leqslant z_{i} \leqslant 1, i=2, \ldots, n \text { and } \sum_{i=1}^{n} \frac{z_{1}^{2} z_{2}^{2} \ldots z_{i}^{2}}{(n-i+1)(n-i+2)} \leqslant 1\right\}
$$

and so we have

$$
V_{n}=\frac{1}{n!\sqrt{ }(n+1)} \int_{0}^{1} \cdots \int_{0}^{1} \int_{0}^{\theta(z)} z_{1}^{n-1} z_{2}^{n-2} \ldots z_{n-1} d z
$$

where

$$
1 / \theta(z)=\left\{\frac{1}{n(n+1)}+\sum_{i=2}^{n} \frac{z_{2}^{2} z_{3}^{2} \ldots z_{i}^{2}}{(n-i+1)(n-i+2)}\right\}^{1 / 2}
$$

Carrying out the integration with respect to z_{1} and using the value of V_{n} we find

$$
\begin{align*}
\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} \frac{x_{2}^{n-2} x_{3}^{n-3} \ldots x_{n-1}}{\left\{\frac{1}{n(n+1)}+\sum_{i=2}^{n} \frac{x_{2}^{2} x_{3}^{2} \ldots x_{i}^{2}}{(n-i+1)(n-i+2)}\right\}^{n / 2}} & d x_{2} d x_{3} \ldots d x_{n} \\
& =\frac{n}{\sqrt{ }(n+1)} \cdot \frac{\pi^{n / 2}}{\Gamma(n / 2+1)}, \quad n \geqslant 2 . \tag{4}
\end{align*}
$$

In order to express U_{n} as a repeated integral we use only the transformation (3) and obtain in the same way

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} \frac{x_{2}^{n-2} x_{3}^{n-3} \ldots x_{n-1}}{\left(1+\sum_{i=2}^{n} x_{2}^{2} x_{3}^{2} \ldots x_{i}^{2}\right)^{n / 2}} d x_{2} d x_{3} \ldots d x_{n}=\frac{\pi^{n / 2}}{(n-1)!2^{n} \Gamma(n / 2+1)}, n \geqslant 2 \tag{5}
\end{equation*}
$$

4. Applications

The cases $n=4$ and 5 in expressions (4) and (5) are interesting because if one tries to evaluate the integrals one is led to integrals of the form $I(a, b, c)$ as defined in Section 1. For example, if $n=4$ in (5), and if we integrate out the variables in the
order x_{3} followed by x_{2}, we find that we must evaluate $I(1 / \sqrt{ } 3,3,1)$. The details are elementary and rather tedious but the end result is that

$$
I(1 / \sqrt{ } 3,3,1)=\frac{\sqrt{ } 2}{576} \pi^{2}
$$

By considering the evaluation of (4) and (5) for $n=4$ and 5, with different orders of integration we can obtain the following results:

Source	a	b	c	$I(a, b, c)$	Order of integration
$(5) n=4$	$\frac{1}{\sqrt{3}}$	3	1	$\frac{\sqrt{ } 2}{576} \pi^{2}$	x_{3}, x_{2}
(5) $n=4$	$\frac{1}{\sqrt{3}}$	1	$\frac{1}{2}$	$\frac{\sqrt{2}}{96} \pi^{2}$	x_{3}, x_{4}
(4) $n=4$	$\sqrt{\frac{5}{3}}$	3	2	$\frac{\pi^{2}}{30}$	x_{3}, x_{4}
(4) $n=4$	$\frac{1}{\sqrt{3}}$	3	$\frac{1}{2}$	$\sqrt{ }(10)\left\{\frac{\pi^{2}}{25}-\frac{2 \pi}{15} \tan ^{-1}\left(\sqrt{ } \frac{5}{3}\right)\right\}$	x_{3}, x_{2}
(5) $n=5$	$\frac{1}{\sqrt{ } 3}$	3	2	$\frac{\pi^{2}}{20}-\frac{\pi}{6} \tan ^{-1}\left(\sqrt{ } \frac{5}{3}\right)$	x_{4}, x_{2}, x_{3}
(4) $n=5$	$\sqrt{ } 2$	3	2	$\frac{\pi^{2}}{12}$	x_{4}, x_{2}, x_{3}
-	1	3	2	$\frac{\pi^{2}}{96}$	-

It is easy to show, by using straight forward methods, that

$$
I(\sqrt{ } 2,3,2)=\frac{\pi^{2}}{16}+2 I(1,3,2)
$$

This gives the final entry in the table.
Note: Because of the amount of algebra needed to obtain the above results, all the results were checked by numerical integration.

5. Comments

Three obvious questions can be asked:
(i) Can the integrals obtained in 4 be evaluated directly?
(ii) For what other values of a, b and c do nice results like those in 4 hold?
(iii) If the answer to (i) is "no", can other regions in the n-sphere be defined which will lead to evaluation of integrals of the form $I(a, b, c)$?

Acknowledgement. I acknowledge a very helpful discussion with Professor H. Daniels of Birmingham University.

REFERENCE

(1) S. S. Shapiro and M. B. Wilk, An analysis of variance test for the exponential distribution (complete samples), Technometrics 14 (1972), 355.

Department of actuarial Mathematics \& Statistics, Heriot-Watt University,
Riccarton, Currie,
Edinburgh EH 14 4AS

