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Abstract. Our purpose in this paper is to present a more or less complete solution
to the problem of the smoothness of the conjugation of aperiodic diffeomorphisms
of the circle. We show that the rotation number and the smoothness of the
diffeomorphism guarantee a certain smoothness for the homeomorphism which
conjugates it with a rigid rotation, and obtain the best smoothness that can be
guaranteed.

0. Introduction
We study orientation preserving aperiodic diffeomorphisms/of the circle. Poincare
(1885) noticed that the orbit structure of such / is determined by some irrational
(mod 1), called 'the rotation number' of/ and denoted a = p(f), in the following
sense: for any point / eT=R/Z , the mapping fJ(t)^>ja (modi), j e Z , is order
preserving (properly speaking, orientation preserving). Some fifty years later, Denjoy
proved that if log Df is of bounded variation, and in particular, if fe $f2 (i.e. is
C2-diffeomorphism, see next section for notation) then the orbits {fj(t)}jeZ are
dense and the mapping fJ(t)^>ja (mod 1) can therefore be extended by continuity
to a homeomorphism h of T, which conjugates / to the rigid rotation Ra:t-> t + a,
that is, such that / = hlRah.

The natural problem now was to obtain smoothness information for h; more
precisely to relate the smoothness of h to that of/ and to the arithmetical properties
of the rotation number a. Knowing a and assuming that / = h~lRah is Ck, C°°,
analytic etc, what can be said about the smoothness of h ?

To get an idea of what one may expect, one can consider the 'corresponding'
linear difference equation

where one gets a fairly precise idea almost trivially by writing the corresponding
Fourier coefficient conditions

<p(0) = 0, ${n) = -q(n){e2™a-\)

t Research partially supported by NSF Grant No. DMS86-05098.
t Df denotes the derivative of/
§ We shall use the convention that for mappings iteration is written as product; we expand and write

f°g only when we deem it essential for clarity.
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644 Y. Katznelson and D. Ornstein

or rj{n) = <p(n)(e'r1"" -1)""1. Smoothness of <p corresponds to a rate at which $(n)
goes to zero as |M|-»OO; the 'small divisors' (e2ir'na -1) determine how much bigger
than ${n) can TJ(M) be, and that implies a degree of smoothness for rj(t). Thus if
a is such that, for some constant j6, |e2irim* - 1 | > c|n|~p^', (a is then said to 'satisfy
a diophantine condition', or to be 'Diophantine' or 'Non-Liouville') and does not
satisfy the analogous condition for any f20 < P, then TJ may have p +1 + e fewer
derivatives than <p. (The only slightly delicate point in the harmonic analysis here
comes from the fact that multiplying the Fourier coefficients by cn =£ |M|y may result
in a loss of y + j derivatives, because of the difference between continuity and
absolute convergence of the Fourier series; the special form of (e217""*-!)"1 saves
the extra 'half a derivative'. Note also that if ${n) are small on the set of values of
n for which na is close to one the loss of differentiability may be smaller.) On the
other hand, if a is a Liouville number, one may have an infinite loss of smoothness
and even loss of analyticity (i.e. <p may be analytic and 17 not even absolutely
continuous) depending on the rate at which na (mod 1) may become small.

Arnold [A] (for/ analytic) and Moser [M] (for/e dXk) developed perturbation
techniques that yielded analyticity resp. smoothness of h in the local situation, i.e.
when one assumes / to be a perturbation of Ra in an appropriate function space.
In that case Moser showed that the loss of differentiability is no more than the loss
for the linear difference equation above. In fact the difference equation above is
the 'linearized' part of the perturbation equation (Id + r]) ° Ra ° (Id + r))~l =
(Ra + d), and has to be solved repeatedly in the so-called implicit function theorem
technique. Herman [H] and Lazutkin [LA] showed that the loss of differentiability
can be as bad as that of the difference equation.

The non-local case remained open until Herman [H] proved that for a in some
set A of full measure and fe Wk (/c>3), h is in fact k—l — e times differentiable,
and is analytic if/ is analytic. The elements of the set A all satisfy the diophantine
conditions |e27r i""-l|> Cjn|~'~s for any e>0. Yoccoz [Y] extended Herman's
methods to obtain results for all Non-Liouville numbers with the loss of differentia-
bility as one would expect from the linear difference equation, but only if one
assumes substantially more differentiability than is needed for C '-conjugation.
Herman's breakthrough depended crucially on an inequality obtained cleverly from
properties of the Schwarzian derivative and the same basic estimates are also essential
in Yoccoz' work. The unfortunate aspect of this is that it only applies if/is sufficiently
smooth; thus Herman needs to assume / G $f3 even if a entails the loss of a single
(or 1 + e) derivative, and cannot conclude h e $?' from/e $f2+E. The same problem
(due to the same technical reason) prevents Yoccoz from obtaining smoothness of
h unless fe 3€k, fc>fc0, k0 being an integer satisfying fco>2)8 + 1, fco>3 (for that
degree of smoothness he obtains the right result, namely h e ̂ ffc-1"̂ -Ej \/e > 0; no
information, however, for /3 + 2< fe<max (2)3 + 1,3) is obtained).

In the opposite direction, easy constructions along the lines of [K] show that the
expected differentiability loss does in fact happen. (Cf. Appendix 3 or [H], see also
[LA] and [HS]. Lazutkin's paper appeared in 1977, [LA] is the English translation.
We thank the referee for pointing out this paper to us.)
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What we propose to do in this paper, is to complete the picture obtained by
Herman and Yoccoz when the rotation number is Diophantine (= Non Liouville),
and to show that indeed one has the same loss of differentiability as in the linear
case. Our main result, Theorem 4.* (or 4.12), is the following (the diophantine
condition is stated in § 4 in terms of the convergents of the continued fraction
expansion of a, equivalent to our statement here):

THEOREM. Assume thatfe dXk and the rotation number a = p(f) satisfies the diophan-
tine condition |e277""* — l|> C|H|~P~', with (3+2<k, then the homeomorphism h which
conjugates f with Ra is in Xk~l~p~e for all e>0.

We do not use the Schwarzian derivative and obtain the necessary estimates by
repeatedly using one basic idea which has its roots in Denjoy's work with variants
developed and used by Herman and by Carleson [C]. (In fact the same basic idea
appears in many estimates of the growth, or decay, of cocycles in other dynamical
systems, e.g. geodesic flow cf, Livshitz [LI]).

Much of the conceptual contents of the paper, including the complete proof of
the ^'-conjugation for almost all a and fe "M2+c, is contained in the first three
sections and the less than totally commited reader need not lose heart by the heavier
technical aspect of § 4.

Preliminary versions of the paper, some containing the results of the first three
sections, some containing all of it (as well as what became [KO]) have been in
circulation for the past three years and several friends, including the referee, sent
us comments which helped us with the preparation of the present version. We wish
to thank them for their help. In the meantime a different approach to the problem
[KS] also appeared.

1. Background and notation
We denote by W the groups of orientation preserving homeomorphisms of the circle
T = R/Z, and by S€k, fcsl, the subgroup of Ck-diffeomorphisms. A conjugation
f=h~lgh, f, g, htdK means , in terms of dynamics, that h maps /-orbits onto
g-orbits, and since h is orientation preserving, the 'order' on the circle of an /-orbit
has to agree with the 'order' of the corresponding g-orbit. The preceding sentence
can be taken as a definition of 'order' on T, namely: two doubly infinite sequences
have the same 'order' if one can be mapped onto the other by an orientation
preserving map. The key fact for orientation preserving homeomorphisms was
observed and proved by Poincare in 1885:

THEOREM 1.1. There is a mapping p:$f-»T, called the rotation number having the
following properties:
(a) p(f) = 0 if and only iff has a fixed point.
(b) for any integer k, p(fk) = kp{f). In particular, p(f) is of finite order (rational

(mod 1)) if and only if f admits periodic orbits.
(c) Iff is aperiodic and hence by (b), a = p(f) is of infinite order (irrational (mod 1)),

then every f orbit has the same 'order' on T as {na (mod 1)}.
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We omit the explicit reference to (mod 1) and often refer to p(f) as a number
in [0,1); in particular we discuss the continued fraction expansion of p(f) (see
Appendix 1).

We denote by Ra the rigid rotation on T by angle a: Ra(t) = t + a. Poincare's
theorem mentioned above says that if/ is conjugate to Ra, then a = p(f). If p(f).
If p(f) is rational, / is typically not conjugate to /?„</>. If a = p(f) is irrational,
then the orbit 'order' is consistent with conjugation but another condition has to
be met as well: all the orbits of Ra are dense and that property is again maintained
by conjugation. If/ has one dense orbit {fJ(t0)}, we can define

h(fJ(t0))=ja (modi) (1.1)

and extend h by continuity (it is orientation preserving from a sense subset onto a
dense subset) to obtain he 3^ a n d / = h~xRah.

We obtained

THEOREM 1.2. If a = p{f) is irrational, then f is conjugate to Ra if and only if some
(all) f-orbits are dense.

Unless specified otherwise, we shall assume henceforth a = p(f) is irrational, If
the orbits of/ are not dense, we obtain, by taking the complement of the closure
of an /-orbit, and /-invariant open set with infinitely many component intervals
which are permuted b y / If we denote one of these intervals by /„ and/J(/0) by IJt

then {/,}, y'eZ, are disjoint and the sum of their lengths |/,| is therefore bounded
by 1. If we assume tha t / e X\ and write ||D/J'||0C = sup \Dfj\ then |/0|< | | D / ^ y 7,-|
and |/0| Y.j \\DfJ\\^^ 1. We state this observation as

THEOREM 1.3. Iffe X1 and £\ ||DfJ:||i1 = oo, then f is conjugate to Ra.

The divergence condition in Theorem 1.3 is satisfied in particular if the general
term does not go to zero, that is, if/ has an infinite collection of iterates which are
uniformly bounded in Si?1 (more generally, equicontinuous). Denjoy (1932) proved
that this is always the case i f / e Si?1 and Df is of bounded variation (see [H] for
historical discussion). Denjoy's inequality, which we state below, is based on some
simple observations:
(a) The chain rule Df"(t) = Wj~* Df{fj(t)) which we write 'additively' as

log Df(t) = "j: log Df(fJ(t)) (1.2)
j = 0

(another terminology: log Df(t) is an additive 1-cocycle).
(b) Since /** maps the circle onto itself, its derivative cannot be always bigger than

1, nor always smaller than 1. Thus there exists points tq such that Df(tq) = 1 or

logD/*(/,) = 0 (1.3)

(c) If t, re T and the sets {fJ(t)}J~o and {fk(r)}q
kZ}0 can be matched in such a way

that the arcs (fj(t), fk{J\r)) are disjoint (where fku)(r) is the point matched
with fJ(t)), then

|log Df(t) -log D / " ( T ) | < Var (log Df). (1.4)
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with Var (log Df) denoting the variation of log Df on T. This follows immedi-
ately from (1.2).

(d) If (our standing assumption) a = p(f) is irrational and q = qn is a denominator
of a convergent in the continued fraction expansiont of a, then the matching
condition of (c) is satisfied for any pair /, T. Thus taking T = tqn of (1.3) and t
arbitrary, (1.4) reads

||logD/"" I k s Var (log D/). (1.5)

Inequality (1.5) is Denjoy's inequality and combined with Theorem 1.3, it clearly
implies

THEOREM 1.4. (Denjoy): Iff& 9Pl and Dfhas bounded variation, and if a = p(f) is
irrational, then f is conjugate to Ra.

The key idea which we broke above the observations (a)-(d) is to estimate the
sum (1.2), using the fact that the terms have both signs and there is a fair amount
of cancellation. We use the fact that for some point t = tq the cancellation is perfect,
(1.3), and compare other points to tq.

We shall use the notation:

°n(t) = \logDf"-(t)\
(1.6)

SHIOIU

(1-8)
VmU)

We rephrase Lemma A. 1.1 (cf, Appendix 1) as

LEMMA 1.5. T)mn =C(exp {—c(n — W)}) with c>0, c depends only on Var (log Df).

Definition. An interval^ J = (t,r) is n-small and the pair t, r qn-close if {f\J)}fra
x

are disjoint. We remark that the fact that two points on the circle determine two
arcs, and not just one, leads to no confusion in the context of (c) above or the
present definition; for later use we shall always take the shorter arc (in terms of the
variation of h).

The following is very much in the spirit of Denjoy's inequality:

LEMMA 1.6. / / / and T are qn-close and 0<m<qn, then

|logD/m(0-logD/m(r)|<Var(logD/).

Proof.

log D/m(0-log D T ( T ) = I [logD/(/J(/))-logD/(/^(T))]
j=0

and the intervals (fJ{t),fJ(r)) are disjoint. •

t See Appendix 1 for the notations and basic properties of the continued fraction expansion of a and
its relation to the dynamics of Ra. We shall use a variation of the matching condition given by Lemma
A. 1.2.

t We shall abuse the notation and write intervals as (a, b) without concern to determine whether a < b
or b < a; this because/''"(() lies on both (alternate) sides of ( and we choose not to modify the notation
according to the parity of n.
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LEMMA 1.7. If t and r are qn-close then

U O - l o g T ^ T ^ K 0 ^ , . (1.9)

Proof. Check (cf, Appendix 1) that t and r are gn-close if either re (t,f'-'(t)) or
t<=(T,fq-'(T)). If, say, t<T<fq"-'(t)<fq-'(T) we have

Vn(t)=fq"'(t)-r+r-l,

and the ratio r)n(r)/rjn(t) is closer to 1 than \fq'-'(T)-fq"-<(t)\/\T-t\ which lies in
the interval (exp (-K°_,), exp (K°_,))- D

An immediate corollary of (1.9), taken for n + 1 rather than n, with T =fq"(t) and
repeated j times is

In particular if ann+,K° < 1 then the ratio of any two qn+l -intervals within the same
^-interval is bounded by e<3 and we obtain the estimate r?nn+1 <(3an-n+1)~l. If
ann+,K° > 1, any <7n+1-interval has at least (K°) ' comparable (within a factor of
3) disjoint images and we obtain

LEMMA 1.8. Vnn+1 < 3 max (a~*n+l, K°).

Remark. If ann+iK°n< e <l, then the bound for -qnn+l is e"a~^+l and if we have
ann+1K°^-0, we may ignore the fadtor 3 (or eF)

Some more notation: for integers s>0, « > 0 , 0 < / < ^ we write

Ks
n(l) = KW, 0 = vs

n(t)\D
s log 0/(01, (1.10)

Ks
n = Ks

n(qn)- K'n=\\K'n(t)\U (1.11)

K"n denotes a term of the form /C^(j^n ,) withy< an^Xm (1.12)

K*n denotes a term of the form Ks
n(l), l^qn\ (1.13)

A more useful version of Lemma 1.6 is

LEMMA 1.9. If t and T are qn-close and 0< /<q n , then

| logD/(0-logD/'(T) |£KiexpK;_,.

Proof. For some Te (/, T)

|log D/ '(0 -log Df'(r)\ = |r - r| |D log D/'(f)|

s Vn(t)\D log D/'(f)| =sKi exp K°n_,

by Lemma 1.7. •

Remark. Denjoy's inequality (1.5) gives the bound b0 = exp (Var log Df) for
expK°_, and, for the sake of shorter formulae we sometimes use the constant b0

instead of the better estimate expK°_,. Thus we shall sometimes replace Lemma
1.8 by

/ (0- logD/ ' (T) |<6oKi . (1.14)
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Similarly, if t and T are gn-close and / < qm with m < n we have

|log Df'(t) — log D / ' ( T ) | < fe0KjnT;mn(/). (1.15)

Denjoy's inequality (1.5) can be improved as follows: We want to estimate
log Df"(t); let t be such that log Df"{t) = 0. There exists a T which is gn-close to
t and such that t=f'(r) with 0</<<?„. Now

log Df"(t) = log £>/*"(') -log Dfq"(t)

= log Df'(t) — log D/'(/''"(T)) + log Dfq"~'{ f'(t)) — log Df'r'(f)

which gives, by (1.14)

K^3fe0Ki- (1-16)

For a variant see (4.35).

2. 77ie smoothness of the conjugation
The groups S€k have a natural translation invariant metric which is defined as
follows: the ^-distance of <f>e 3?k to the identity is ||< |̂|* =sup \<f>{t)-t\ + ||D<£||c*->
where ||g||c* ' =Zj=o II ̂ £ll°° (and for non integer values of k the appropriate Holder
constant of the last derivative is added), and the ^-distance between ip, 4> e "Xk is

The differentiability class of h can be determined by

THEOREM 2.1. Assume f= h~lRah, a irrational. Consider the following conditions:
(i) hefflk (Ck-diffeomorphisms)
(ii) {fJ} bounded in "Mk

(iii) {fJ} precompact in S(f\
Then, ifk is a positive integer, all three conditons are equivalent; ifk> 1 is not an

integer, conditions (i) and (ii) are equivalent.

Even though the theorem offers necessary and sufficient conditions and is not
hard to prove, it is not, methodologically, optimal. The only part that requires an
argument (cf, [H]) in addition to Lemma 2.2 below is the implication (ii)=»(i)
which is useful though seldom essential since, often, proofs of (ii) give (iii) as a
bonus. Worse than that: if we want to use it to prove h e 2tk when k is not an integer
we need uniform estimates of the modulus of continuity of Dwf', which may be
tedious or difficult or both. The variation that we propose in Lemma (2.2), and
Theorem 2.3 are much better adapted to our needs.

In the following lemma h and / are the liftings to R of h and /, respectively.

LEMMA 2.2. h(x) = const + limN^oo AT1 £,", (f'{x)-ja).

Proof. Recall that fJ = h~'Rjah, so that

fJ(x) = h-\h'(x)+ja),

fj(x) -ja - h(x) = (/T1 -Id)- (h(x) +ja).
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Averaging for l < j < N and letting N-»<x>, we have

h(x) = lim -J- I (fJ(x)-ja)- I (h~-\u)-u)du. U
JV^oo IS j=l Jo

COROLLARY. The implication (iii)=>(i) of Theorem 2.1.

THEOREM 2.3. Assume that f' = h~xRjah are uniformly bounded in SVk, k a positive
integer, and that the mapping ja -* f' from {ja}<=T (with the metric induced by T)
into 9£k (with its natural metric) satisfies the modulus of continuity </>. Then he3tk

and Dkh satisfies the same modulus of continuity.

Proof. By Lemma 2.2 (or by its consequence, Theorem 2.1 implication (iii)=>(i))
we obtain h e 3€k. We can extend the mapping by continuity to all of T, the extended
mapping being r-*h~lRTh, and it satisfies the same modulus of continuity as its
restriction to {7a} namely <f>. All that we need to do is show that Dkh satisfies <j>
and we start with the case k = 1 which is completely transparent: For an arbitrary
r e T write to = h(t) and consider

un (r0)

Since the distance in $f' of h xRTh from the identity is bounded by <f>(r), we obtain

Thus Dh~l satisfies 4> a ° d hence so does Dh.

For k > 1 we point out that the modulus of continuity of Dkh is the same as

(bounded by a constant multiple of) the modulus of continuity of Dki log Dh

which we evaluate using formula (4.11) writing:

Dk] log D(h~'Rrh) = Dk'1 log D(h~'(r+h))

= (Dk~l log Dh'l)(T+ h)(Dh)k~' + Dk~> log D(r + h)

+ termsinC1 (2.1)

= (D*~' log Dh-t)(r + h)(Dh)k-l + Dk-1 log Dh + terms in C1.

Our assumption implies that Dkx log Dh~l RTh(0) satisfies, as a function of T, the
modulus of continuity <p; and this implies the same for Dk~l log Dh~l(r + h(0))
since, by (2.1), the two differ by a C'-function. •

In the following theorem, as in Appendix A-l, dn denotes the distance of qna to 0.

THEOREM 2.4. Assume £ am m + ,K°<oo. Set

<p{dn)= I an,n+1K°m (2.2)
m = n

and extend q> by linearity in every (dn+i, dn). Then the mapping T-> h~xRTh from T
to $f' satisfies the modulus of continuity <p, h e 5if' and Dh satisfies the modulus of
continuity tp.
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Proof. Since the mapping in question is a representation of T (resp. {ja}) in 5if', it
is enough to check the continuity at the identity. Let T be close to zero on the right,
say,

We can write
oo

T= I cmdm,
n + l

with cm integers and cm<am>m+1 (recall that amm+x = [dm_Jdm)), and hence

h'Rrh = lim / I ±cmqm in # ' , (2.3)
JV-*co n + l

log D(&-;?,/.)= lim I cm log Drq"°f\ (2.4)
JV-> + °o n + l

computed at appropriate points (the chain rule), and finally

sup|logD(/,-1/?r/I)|< I cmK°m< I am,m+1K°m. (2.5)
n+l n+l

Remembering that l o g x ~ l - x for x~l (here x = log Dh~xRrh), (2.5) clearly
gives us the right estimate for the 'derivative part' of the X1 distance of h~lRTh to
the identity, but we also need to control the 'uniform part'. The fact that h is a
homeomorphism gives some estimate which, with (2.5), implies that r^h~xRrh is
a continuous representation in $f', and by Theorem 2.3 we may conclude h e $f'.
This now gives the uniform estimate \h~xRTh-Id\ = €{T), T-»0, SO that in the
$f' -distance the uniform part is small compared to the distance in terms of the
derivative which is controlled by (2.5). •

3. Assuming fe%2+*
The notation fe ^2 +* means that /e W2 and that the modulus of continuity of D2f
(or, equivalent^, of D log Df= D2f/Df) is bounded by ip. If ip(x) = xs we write,
as usual, 3€2+s. Our goal in this section is to prove that if/G #f2+s, 5 > 0, then K° -* 0
exponentially fast, independently of a. By the results of the previous section this
implies C1 -conjugation provided the coefficients ann+l of a do not grow too fast,
a proviso which is satisfied for almost all a (see Appendix 2). The exponential
decay of K° will also be a good starting point in § 4.

Even the weaker continuity condition i/»(x) = 6 ((log x"')~I"e) e > 0, provides an
estimate, K^ = C(M"'~e), which is still sufficient for C1 conjugation for almost all a.

In order to estimate K° efficiently we need to estimate also Kn and K),, estimates
that will also serve later, when we investigate higher differentiability of h under
appropriate conditions. The method consists in applying the basic procedure for
Kn (the original Denjoy was for K°) and, in the following section, to K̂  for
* = 1,2,3, Our presentation here (§ 3) differs slightly from the general scheme
of § 4, due to the need to establish that Kj, -» 0 as n -» oo. As we shall presently see
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this can be obtained easily from the ratio ergodic theorem (which is invoked in
[H]) and had we chosen to use that, we could have continued with the format of
§ 4, as we could have also under the assumption Var (log Df)<\. Instead we chose
to adapt the presentation so as to avoid either the ergodic theorem or unnecessary
assumptions (see also [C]).

We denote

Wn(t) = "l Df(t) (3.1)

and notice that if t and T are qn- close

as (1.14) implies the same for each of the summands DfJ which make Wn.

LEMMA 3.1. Wn(t)~(Vn(t))-\

(The notation ~ means that the ratios of the sides are bounded from zero and
above, uniformly in the parameters, here n and /.)

Proof. Set / = (*,/*—(*))• By (3.2)

I, Wn{r)dr~Wn(t)Vn(t). (3.3)
11

The integral (3.3) expresses the measure of the set J = [JJl^1 fJ(I) and hence is <1.
On the other hand J u / ' » ( ; ) = T and by (1.5) J and /*»(/) have comparable
measures. •

Lemma 3.1 sheds some light on the definition of K\. In fact, replacing rjn(t) by
' we get the expression

„, Ifto'P log Df{f(t))Dr(t)

which is a weighted average of D log Df along a qn-piece of the orbit of t, the
relative weights being Df'(t). (At this point we can invoke the ergodic theorem and
show that Kj,-»0 a.e.)

By Lemma 3.1, K\~ Kl
n and similarly for K), = (Wn7in)~'iK),. It will be somewhat

simpler to write the main estimates of this section in terms of Kl
n and this is what

we do.

LEMMA 3.2. For m<n

Wm(t) = C(Wn(t)Vn,.n), (3.5)

Kl^Kl + Oin^). (3.6)

Both constants in the O-estimates depend only on \\D log D/||oo.

Proof. (3.5) follows immediately from Lemma 3.1. For (3.6) we take / < qn and write
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it as I = bqm + k, k<qm. For teT, write f, =fi%"(t);

D log Df'(t) = I D log Df(fJ(t))DfJ(t)
7=0

= L D/ 'MO*! DlogD/(/J(f,))D/J(r,) (3.7)
i=0 7=0

+ iy"»(f) Y D log Df(fJ(tb))Dfj(tb).
j=o

Dividing (3.7) on both sides by Wn(t), we estimate the right hand side:

Wn'(0 I D/"-(r)|£>logD/""'(/1.)l= X W ^ O O / ^ ^ l W J f ^ K i i J s K l ,
i=0 i=0

(3.8)

while, remembering that by Denjoy's inequality (1.5), we have

Wn(t)~Dfh"'»(t)Wn(tb),

and the last term coming from (3.7) is bounded by

||D log Df\\xWm(tb) W-\tb) = 6(v(m, n)). D

If we denote bx = bosup (K\/K\) we can rewrite (1.15) in the form

(for 0 < / < qm, m < n and /, T^n-close) or, for m = n,

|log Df'(t) -log D / ' ( T ) | S b,K> (3.9*)

PROPOSITION 3.3.

(a) Assume f e "M2\ then Kj,-»O.
(b) Assume fe 3V2+'1'; then, for m<n and a constant b, which depends only on

\\D log Df \\~
K^<2b1(K^)2+C('nmn) + (?(t/»('»|n)). (3.10)

Proof. We shall first obtain the estimate

In order to do that we need to estimate D log Df"(t) for arbitrary t. Being the
derivative of a periodic function, D log Df" has mean value zero and hence there
are points I for which D log Dfq"(t) = 0; we can write, for any choice of c,

D log Df-(t) = V D log Df(fJ(t))DfJ(t)-c\l D log Df(fJ(t))DfJ(t).
j=0 7=0

(3.11)

There exists T which is gn-close to t and such that t =/ '(x) with 0< /<<?„. Write

then /•'(/) and /J*(r) are gn-close for j > / and, at worst, 'twice the distance of
9,,-close' for _/< / (which does not affect the following estimates).
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We now write

D log Df "••({) = "'£' [D log Df(f{t))DfJ(t) - c,D log Df(f'(r))Dfr(T)],
j = 0

(3.12)

with c, = cDf'(i) still completely arbitrary, and rewrite it as

D log D/M0 = V ( O log Df)(fj{t))\_DfJ(t)-c,DfJ*(T)]
j = 0

+ c1W(DlogDf)(fi(t))-(DlogDf)(f\r))-\DfJ\r) (3.13)

The constant c, will be bounded by 1 and \fJ(t)-fJ*(T)\<n\n so that the term S2

in (3.13) is €(i)/(y\n) Wn(r)) and contributed the last summand in (3.10).
To estimate 5, in (3.13) we break the block 0 < y < / into blocks of length qm and

possibly a shorter remainder block; similarly for the sum from / to qn — 1.
The ^-blocks, lT"'"~\ can be written (with ts =fs(t) and T, = / ' * ( T ) ) as

V (DlogD/)(/J(/s))[D/s(OD/J(fJ-ClD/s*(r)D/J(Ts)] (3.14)s

and we compare separately Df{t) with Dfs'(r) and Df'(ts) with DfJ(rs).
For the first pair we evaluate (by (3.9*) and Lemma 3.2)

|log Dfs(I) -log D/ s (T) | < 6,Ki, + M m , n (3-15)

and if s* = s + qn we add the estimate

|log Dfs(t) -log D/s+"-(r)| = |log D/""(/s(r))| < K°n < ft.Ki, + fc2t,m,n. (3.16)

For the second pair we have, by (3.9),

|log Df\ts)-log DfJ(r,)\ < K ^ ^ S ft,IID log D/||ooT)m,n

and since fcjD log D/H^ is fixed and y\mn is small (exponentially in n - m) we have

\Df(ts) - Df(rs)\ <

and we can write (3.14), as

=o
(3.17)

= D log Df'»(t,)[Df'(t)-CtDf' (T)] + <?(DT(0Wm(OT,m,n).
We now taket c, = inf (Dfs(t)/Dfs'(T)) the infimum being taken for all the

configurations of s, t, r. By (3.15), (3.16) etc. . . we have
l > c , > e - ' ' K " " ^ , (3.18)

Ors Df'(t)-clDf''(T)s(\-c])Ef'(t). (3.19)

t Had we used the ratio ergodic theorem or assumed that Kj,, is small, we could simply take c, = 1 and
replace (3.19) by \Df"(t)- D/1*(T) |<(61K, ' , , + 62II )D/V(f).
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Adding the absolute values of (3.17)s for all s we obtain

+ the absolute value of the 2 'remainder' blocks.

Each one of the 2 remainder blocks is bounded by \\D log Df\\ Z%u DfJ(t) with
0 < H < B < ? n and v-u<qm, which is bounded by €{r\m,nWn(t)) (notice that we
can assume that either v = qn-\, or w =0).

Since I s Dfs(t)Wm{ts)< Wn(t) we obtain

which, together with (3.18) and the estimate we had for 52, completes the proof of

(3.10*).
life W2 we have (3.10*) with i/» denoting whatever modulus of continuity D log Df

has. Now the first term on the ri^ht hand side of (3.10*) is at least a tked. rjror^Qrtion
Jess than K'm while the rest tends to zero as n -> oo. Thus if n is sufficiently bigger
than m, K\<pK]n with p < 1. This proves (a).

Once we know that K^ is small, (3.10) follows directly from (3.10*). •

COROLLARY 3.4. Iffe W2 then Kj->0.
Remembering that T|n < 77" and t\mn <rj"~m for some 77 < 1, we obtain

COROLLARY 3.5.

(a) Ifip(x) = €(xs), 0 < 5 < l , then K ^ 0 exponentially fast.
(b) / />(*) = <?((log *- ')-*), 0<8, then Ki = 0(iT4).

We may replace the assumption fe $f2+<// by fe %2+bv, that is instead of modulus
of continuity \j/ for D log Df we assume simply that it is of bounded variation. That
only affects the estimates of S2 in (3.13) and instead of €(i//(r)n) Wn(r)) obtained
there we now get Var (D log Df) sup, DfJ(r). After dividing by Wn(t), i.e. multiply-
ing by T)n(t) ~ 7?n(x) we obtain the estimate S2 = O(r\n), which is the same we would
obtain under the assumption D log Dfe Lip (1). We record it as

COROLLARY 3.5.

(c) Iff<=W2+hv, then Ki^O exponentially fast.

PROPOSITION 3.6.

(a) / />(*) = G(xs), 0 < S £ 1, then Kl
n -> 0 exponentially fast.

(b) If<p(x) = O((logx-1ys),0<8, then kl
n = €(n-s).

(c) Iffe W2+hv then K),->0 exponentially fast.

Proof. Corollary 3.5 and estimate (3.6) with m = n/2. D

By (1.16) we have

K°n = 6(kl) (3.20)
and this, combined with Proposition 3.6, gives

THEOREM 3.7. Assume fe $f2+<*
(a) Ififi(x) = €(xs), 0 < « < l , then K° -> 0 exponentially fast.
(b) / /^ (x) = (D>((logl/x)-s), 0<5, t/ien K^ = f7(«-5).
(c) If D2fis of bounded variation then K°-»0 exponentially fast.
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COROLLARY 3.8. For a e F (cf Appendix 2), ifty = O((log l/x)'s), S > 1, or e/set
if D2f is of bounded variation, then f is C1 conjugate to Ra.

We end this section by remarking that for the estimates involving Kj, we don't
really need uniform estimates for D log Df\ l<qn. If we go back to the proof of
Lemma 1.9 and evaluate |log Df\t)-\og D / ' ( T ) | not by the mean value theorem,
but by integrating D log Df' on (T, 0, we would obtain

| logD/ ' ( r )- logD/ ' ( r ) |<K' ,

where Kj, = sup J, \D log Df'\ dt, the supremum being taken for all integers /, 0< /<
qn, and / which are ̂ ,,-small.

Assuming that the log Df is absolutely continuous we can adjust slightly the proof
of Lemma 3.2 and obtain

K),<sup I \D\ogf-\ dt + o{\)K),<sup

the supremum being taken on all Jm which are qm small.
Either by invoking the ratio ergodic theorem or by reviewing our proof of

Proposition 3.3, writing DlogDf=<$>+0 with <J> continuous of mean value zero
and \\6\\L' small, one obtains

THEOREM 3.9. Iffe ffl1 and D log Df is absolutely continuous then, (the supremum
relative to all qm-small intervals)

sup |DlogD/"-| dt^O

and consequently K),->0 and K°->0.

4. ThecasefeZek,k>2
Our standing assumption in this section is tha t / e 3€k with k>2. Since we would
have to word things slightly differently depending on whether k is an integer or
not, and when k is an integer we use the fcth derivative only to give a modulus of
continuity (namely Lip(l)) for the previous derivative, and since for the purpose
of our theorem below we lose nothing if we replace the ^-condition by / e dKk~£

for all e > 0, we stipulate that k is not an integer and rewrite our standing assumption
as f<=W+l+s, r > l is an integer and 0 < 5 < l . The condition is also written as
log D/e Cr+S.

Our main result is:

THEOREM 4.* Iffe W+i+s and the rotation number a = p(/) satisfies the diophantine
condition qn+} = O(q%+1) with fi + Kr+8, then the homeomorphism h which conju-
gates f with Ra is in 5 r+s-s-0-- f0r alle>Q.

The result is sharp (see Appendix 3).
The case r = 1 was treated in section 3 but not completely, our goal there being

the exponential decay of Kj, and K° with the implied C1 conjugation for almost all

t For /e SC2+hv and the rotation number with bounded coefficients this was done in [H2].
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rotation numbers. For the complete result, namely that 0 < /? < S < 1 implies
Ci+S~P~E conjugation, we need the methods of the present section. In fact we
strongly recommend that the entire section be read first assuming that r = 1, assump-
tion that cuts out much of the formalism and reveals the strategy of the proof,
(especially if one compares it to § 3). The general case will be less forbidding in a
second reading.

We shall outline the main ideas of the proof after introducing some additional
notation and review the notation introduced in § 1 namely:

Vn(t) = \f"'(t)-t\ Hn = |Mco, (4.1)

(t) 1\n,n + l = \\ Vn,n + l ||co, (4.2)

log Dfm(t)\ (v
s
n means (Vn)

s), (4.3)

K*n = Ks
n(qn) K ' . H I K ' J L , (4-4)

Ks
n denotes a term of the form Ks

n(jqn_x)

withy<an_i nK^ = sup ||K*|| for all such terms. (4.5)

Ks
n denotes a term of the form Ks

n(m), m <qn. Ks
n=s\ip\\Ks

n(m)\\ao, m<qn

(4.6)
A,K'K(t, r) = Vn(')\Dr log D/MO - D' log D/""(r)|

(the subscript /" on A limits its domain to
't and T are ^,-neighbors'; it serves as a reminder,
especially if t and r are not explicitly specified) (4.7)

Similarly

^Kr
n{m, t, T) = V

r
n(t)\D

rJog Dfm(t) - Dr log Dfm(r)\
where m<qn (the Kr

n convention)
and t, T are ^.-neighbors (the A, convention). (4.8)

Notice that the difference operator is applied before the multiplication by -q'n.

^n-n+1 =max (<*„, MrK
r
n) with an =!>„,„+,, an+1,n+2,...] (cf, Appendix 1),

Mr a constant to be specified later. (4.9)

Vn = "li Vjj+i (4-10)

We also introduce the following notation convention:

will mean that A<(l + 6n)B with &„ exponentially small (in «). The exponent is
not specified and we obtain A<nC form {/4<nB and B^nC}. We have longer
chains of transitivity of the relation ^ n but they will be of uniformly bounded
length, hence legitimate. We also multiply inequalities like Aj<n.Bj; and as long
as the number of values ofj for which n} = m is bounded, uniformly in m, we can
conclude that IT Aj^^Tl Bj where wo = min {/?;}. Similarly,

A~B means that / 4 < B a n d B < A

https://doi.org/10.1017/S0143385700005277 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005277


658 Y. Katznehon and D. Ornstein

Remark. The reason for the notation is that in many of our estimates we shall need
a multiplicative correction factor which is exponentially close to one. Since the
estimates that we are seeking now are typically much smaller than 'exponentially
small' we certainly cannot afford exponentially small additive errors; however
multiplicative errors, the product of which converges, can be ignored since their
total effect on the final estimates is a constant factor. There are three sources, in all
that follows, for the introduction of these multiplicative errors:

(a) replacing t)s
n ° g by r)s

n(Dg)s or vice versa, where g=fJ with j<qn requires
a multiplicative correction factor (Dg(r)/Dg(t))s which, by (1.14) and Corollary
3.6, is of the form 1 + dn with #„ = O(e~c") for some c> 0. (b) replacing r)n(t) or
Vn,n+i(0 by the same function at T, where T is a qn-neighbor of t, see Lemma 1.7;
and finally (c) in the course of the proof of Proposition 4.5 we evaluate K*'(l - Sn),
Sn exponentially small, and simply ignore the factor (1 - Sn) in the sequel (cf, (4.38)).

The reader is left to bear some of the responsibility to check that this notation is
in fact not abused.

The general strategy of the proof is similar to that of the previous two sections.
We obtain the smoothness of h by invoking Theorem 2.3. Thus we need to show
that ifm + l + y<r+8 — ji (m>0 an integer and 0< y< 1; the notation matches
that of the proof of Theorem 4.11 in which this step of the proof is carried out),
then the mapping ja>-+fJ, j e Z from {ja}cT (with the induced metric) into 2ifm+1,
satisfies a Lip(y) modulus of continuity.

This is done at the very end of the proof, Theorem 4.12, and that is the only place
in which the diophantine condition enters. The first part of the proof, all the way
to Theorem 4.8, is preparing the needed estimates of the various derivatives of all
the iterates of/ As begun in § 3, we work with

Ks
n(m) = Kl(m, t) = v'n(t)\D' log Dfm(t)\

rather than with Ds+lfm. This is done because of the better formal behaviour of
Ds log Dfm and the 'equalizing effect' of the factor -qn (recall Lemma 3.1 and (3.4)).

There are two key elements that are used together and repeatedly in the proof of
Theorem 4.8. The first 'leg' is a an almost purely formal extension of the chain rule
and we sometime refer to it as 'breaking into shorter runs'. The only part that is
not purely formal in this step, which goes all the way to Theorem 4.2', is the use
of the continuity properties of 7\n and !)„_,,, which permits the use of '=£„'.

The second leg, Lemma 4.4 until Lemma 4.7, is what we refer to as 'the basic
procedure' and is the extension of the proof of Denjoy's inequality and Proposition
3.3 to our setup. The key idea is that it may be easier to evaluate a cocycle-like
expression by comparing it to the same expression at a different point and using
the fact, if one has it, that there exist points at which the expression must vanish.

Theorem 4.8 is the heart of the proof, where the two legs work together (with
hands, nails and huffing and puffing) to give the estimates needed for 4.11.

We denote by P, polynomials Pt(xu ..., x,) which are homogeneous of weight /
if Xj is of weight / Notice that P, may denote different polynomials in different
places. By definition Po= 1.

https://doi.org/10.1017/S0143385700005277 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005277


Differentiability: certain diffeomorphisms of the circle 659

LEMMA 4.1. Forg,he^s+1

Ds log D(g °h) = (Ds log Dg ° h)(Dh)s + Ds log Dh

+ V (Ds~' log Dg o h){DhY-'P,{. ..,D' log DA,.. .) . (4.11)

s-l m-\

log Dgm = I I (Ds~' log Dg o ^')(^g7)'-'P,(. • •, D' log

(4.12)

Proof. This is formal, checked by induction (recall that D log DF =
D2F/DF). U

In our context both g and h will be powers (iterates) of / and our goal is
inequality (4.19) below. If g =f'-', (4.12) becomes

m —1

Ds log Dfmq"' = X (D*
7=0

s-1 m-1
I (D ' - ' log D/«»' o/H,-,) (4-13)

;=i >=i

x (Df*-i)'-'P,(..., D1 log D / * - ' , . . . ) .

If we multiply both sides of (4.13) by 77*, and keeping in mind that T7* ° g ~r)s
n(DgY,

n

we obtain:

m l

r,sn\D
s log Qfm"-'\ s i o (!,;_,,„*;;_,) ° / J""-

" J = s ° - l m - , ( 4 - 1 4 )

+ V Y (Vn-u«K'»-\) °fq"-'P,{- • •, v'n\D' log DfJ"'-'\,...).
' = 1 7 = 1

The factors r?n_,,„ appear because of the different normalization of Ks
n_, and Ks

n

(namely rjs
n^ for the first, 17̂  for the latter).

The value of m in (4.14) will always be between 2 and an^Un; the range needed
for evaluating Kn, Kn, and Kn in terms of /£„_,, etc. When we evaluate Kn or Kn

we use (4.11) as well.
We can get rid of the sum over j in (4.14) by observing that:

I Vn°fJ"'-'<Vn-l°j'"•-'•••"•- ~Vn-l (4.15)

(the intervals fJq"'(t,fq"-'{t)) are disjoint, their union is

(/,/-»-.««»-(/))<= (/«»(0,/D"- '-*"-(0) (4.16)

whose length defines i?n_, ° /°"- | ' A - 1 , the ' ~nf]n _,' is justified by the fact that / and
/ " " ' "'"-'(f) are qfn_,-close, see (b) in the Remark above). This implies

a

"l ' VSn~\n°fiq"-^r\7-un, / = 0 , l , . . . s - l (4.17)
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and transforms (4.14) into

KJ
n s V K'n-W-J^P,(Kl

n,..., K'n). (4.18)
" ;=o

For s = 1 (4.18) takes the pleasant form

K ' ^ K L , (4.18),
n

and for 5 = 2 the estimate is

K2 sKt . i l ^Ln + K^.^fKi) , (4.18)2

where P, is now just a constant multiple of the variable. We now replace the term
K|, by (4.18) and (4.18)2 becomes

2 ,)2- (4.19)2

In the general case we obtain

^ ^ I c , = S, (4.19)

where the number of summands in (4.19) depends on 5 but not on n nor on a = p(f).
Notice that we did not write the constants - they are replaced by repetitions, so that
when we say that the number of terms is bounded we mean the sum of the coefficients
in a more conventional writing.

This is a notation convention that we use throughout the rest of the paper, namely
writing 'a sum of terms of certain forms' with £ with unspecified limits; the
convention being that the number of summands (or the sum of the coefficients)
depends only on specified parameters and nothing else (here on s).

The cases 5 = 1,2 of (4.19) were done above, the general case is obtained by
induction on s (replacing in (4.18) the terms appearing in P, by (4.19) fory < l<s).
For most of our needs (4.19) is sufficient, but for some we shall have to go back to
(4.14).

Our next goal is the analogous inequality for Kn, (4.22) below. We obtain
expressions for Ds log Dfk, k<qn, by writing k = mqn_1 + w, 0<w<qn_,, setting
h=fmq-\ g=fw and applying (4.11) and (4.13). Thus
Ds log Dfk = (D' log Df" ° fmq" <)(Dfmq'-<)s + Ds log Df"">•-<

+ ' l (£>*-' log D / " of"i,.^)(Dfn"1"-' Y - 'P , ( . . . , D ' log Df mq->,...)

= (Ds log DfK °fmq->)(Dfn"'"-<y

+ I (Ds log Dfq"'°f jq"-')(Dfjq"~'Y ' (4.20)
j=0

.5-1 m-\

+ 1 I (D'-'logD/«»-o/*..-.)(D/*»-r'
1 = 1 7 = 1

x P , ( . . . , D' log Dfjq-',...)

+ V ( D ' - ' l o g D / " of"«<.,-i)(Dfmq»-<y-'Pl(. . , D ' l o g D f m q » > , . . . )
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and using (4.14)

661

5 — 1 m — 1

+ 1 1 (v'n-'x.»K'-Jt) of»->P,(..., rilD1 log D/*»- | , . . . ) (4.21)

/ = ! > = 0

+ V (Vn-LnK'-J,) <./""»-P,(. . . , ij'nlD'" log D/""-'!, . . .).

Notice that Ks
n and K*nl\ in (4.21) are related functions:

K'n = r)'nD'log Dfk,

K'-J^v'-lD'-'log DT
and k = mqn_l + w. We can replace the various functions by their norms, use (4.17),
and obtain an inequality analogous to (4.21):

PROPOSITION 4.2.

^ 1
Osdss

(4.22)

Recall that the right hand side of (4.21) means 'a sum of terms' of the form

(FI K^_,T)'n'z
||in)Kn_1nn_1 „

the number of terms depends only on s and the integer parameters c, and d are
non-negative integers satisfying the conditions appearing under the summation sign.

We can also keep the terms involving Ks
n_l and

X^_, in (4.21) as they are and apply (4.17) to the rest to obtain:

I (ijl-i/:.,)

(4.23)

PROPOSITION 4.2'. Assume that k = mqn_\ + v^qn and that t, r are qn-neighbors, then,

(AnK
r
n = r,'H(t)\Dr log Dfk(t)-Dr log Dfk{r)\

<(7/^AnD
r log Df°) o/™«»-. + £ (T?^AnD

r log D / ' - ) » / « » - (4.24)
n

+ Z (riK^.-n^.jK^.-n^,^.

/ We estimate AnK^ by expressing Dr log D/", both at / and at T, by (4.20),
and subtracting the corresponding terms. We keep the leading terms as differences
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and bound the other differences by the mean value theorem, remembering that

l/J(O-/V)|sr,n°/;(O.
After multiplying by r\r

n we obtain an expression that differs from the one expressing
Kr

n
+l, (if the additional derivative exists), only in that the terms T^K^t1, and rjnK

r
n
+-\

are replaced by the corresponding &Kr. •
We shall refer to the sum of the terms of order 5 as it appears in (4.23) or of

order r in (4.24) above, as the leading term (the linear term) in (4.23) or (4.24),
respectively. Notice that (4.23) and (4.24) are point estimates; the left-hand side
and the leading term are functions, the other terms are constants. Notice also that
X Cj > 0 in each term of the last row of either (4.23) or (4.24).

Next comes a 'temporary result' which uses the formal results obtained in conjunc-
tion with Corollary 3.6 to give (at least) exponential decay for K*. It is convenient
to have, and will be superceded eventually.

PROPOSITION 4.3. For 1 < s < r, there exists £s, 0 < £ < 1, such that

ks
n = O(t:) asM^oo. (4.25)

Proof. For s = 1 we have the result in Corollary 3.6. We now use induction on s.
For aptropriate t and m<qn we have, by (4.12)

K'n = \V'n(t)D' log Dfm(t)\
s — \ m — 1

s H (vr'Ds-'log Df)ofJ(t)Pl(...v'n(t)D
i\ogDfJ(t),...) (4.26)

« / = O 7=0

s — 1 m — 1

S C H \vSn-'°fJ(t)P,(...v'n«)D'\OgDfJ(t),...)\.
" 1=0 j = 0

We use two estimates
(a) As Ym v ° f < l we have Ym vs~'° fJ< ti1"'"1

V"/ ^v:> L*j = o '" J — ' n a v e ^ J — Q if n J — n ' I n

(b) by the induction hypothesis, for / > 1 , P,{..., r)'nD': log DfJ,...) = O(£") for
some £, < 1.
The sum (overy') for / = 0 in (4.26) is bounded by r\l,~', exponentially small since
s > 1. The other sums are exponentially small because of (b). •

The next step of the proof (through Lemma 4.7) provides us with the second leg
discussed in the outline earlier. We estimate Kr

n at any point by comparing it,
formally, to its value at a point where it vanishes (such points always exist for
derivatives of periodic functions). The notation is:

t - an arbitrary point
ts - a point for which Ds log Pf«»{ts) = 0
T - a gn-neighbor of t such that for some m < qn, ts = /m(x) .
We apply (4.11) and write D" log Df"+m(T) in two different ways: setting h =fm,

g=f" (4.11) becomes

Ds log D/"-+m(r) = Ds log D T ( T )

+ I D-' log D/«»('s)(D/m(T)r 'P,(. . . , D1 log D/m(r) , . . . )
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while writing h =fq", g = / m in (4.27) gives:

Ds log D/"»+m(r) = (Ds log Dfm of«,,{T)){Df>»(T)Y + D5 log D/*-(T)

x (Df"''(r)y-'PI(. ..,D' log DfHr), • • •)•

Comparing (4.27) and (4.28) we obtain

Ds log £>/ ' -(T) = Ds log D / " ( T ) - ( D S log D/"1 ° / ' " ( T ) ) ( D / " » ( T ) ) S

+ V Ds ' log D/""(/s)(D/m(T))s-'P,(..., D' log Df",.
i=i

- V (D*-'^log D/m of" of",, (T))

(4.28)

(4.29)

x (D/" - (T) ) S - 'P , ( . . . , D1 log Df\ ...)

and estimate Ds log Df»(t) by

Ds log Dfq»{t)-Ds log D T » ( T ) + the right hand side of (4.29). (4.29)'

The following inequalities are obvious.

(x ) ) s - l |<*K° , (4.30)

< 1 7 n •»!„,„ + , , (4.31)

\DS log Df»(t)-Ds log D/««(T)| < TJB(T)||DJ+I log Df"\U, (4.32)

DS log D/m(r) - Ds log D/m °/*"(r)| s 7,n+1(r)||Ds+l log (4.33)

Multiplying (4.29)' by VU= Vn(t) ~vs
n(r)) and using (4.30), (4.31), and (4.32)

we have proved

LEMMA 4.4. For 1 s s < r

K^ +T|njn+1KJi .

+VKr'Pi( . . . ,Kj , . . . )
s-/

+ 1 K'n Pl(- • • , K J
n , . . .)

(4.34),

and

K
r

n

nKr
n(t, T

1=1
(4.34)r

Notice that the inequalities (4.34)s deal with constants while (4.34)r is an
inequality between functions. There is no intrinsic difference between the case s < r
and r; we write the inequalities simply in the form that we are going to use them later.
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Denjoy's inequality is obtained from the case s = 0 which we write separately:

K°n<K^+-nn,n+1k^. (4.35)
n

For s = 1 (4.34) has only the first row on the right side and using (4.35) we obtain

Kj, <KiK^ + -nn,n+1(K
2
n + (K^)2) + K2

n. (4.36)

Since K\ is exponentially small (Proposition 4.3) we can ignore the term KJ.KJ,
and (4.36) can be written

Ki s r , n , n + 1 P 2 ( . . . , K i , . . .) + K2, (4.36')
n

which gives also

K° <t,n,n+1[K^ + P 2 ( . . . , K{,.. .)] + K2. (4.35')

These are special cases of

PROPOSITION 4.5. For 0 < j < s , < r

. (4.37)

Proof. Assume (4.37) for some 5, < r and all s < s,. By (4.34)Si

by (4.37) replace KJ
nO<j<s, by Ks

n' + i\n,n+l(...) and open brackets. The terms K*1

are all multiplied by some KJ
n and can be collected and moved to the left which

becomes K*1 • (1 -Sn), with Sn exponentially small.
So that

Ks
n< s K r ' + t K ^ K r ' + W J ) , (4.38)

n

where P is a polynomial in KJ
n,js su all whose terms have weight> s,, in particular

all the terms are products. Combine (4.38) with (4.37) to obtain

which is (4.37) for s, + 1. •

LEMMA 4.6. For appropriate t, T which is a qn-neighbor of t, and Os m < qn we have

where *wt^ r+Y means that the weight of every term in P is > r + 1.
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Proof. Write (4.34)r for t which maximizes Kr
n, apply Proposition 4.5 with st = r

to all the terms K* appearing there and move the (exponentially small) multiple of
Kr

n obtained on the right-hand side to the left. •

The functions r\n and of 7jnn+1 and their norms x\n and t ] n n + 1 are the only geometric
element in our discussion, and the motivation for the introduction of the formal
f7nn+, in (4.9) and rjn in (4.10) should become clearer in the next few pages. The
formal relation comes from Lemma 1.8 and we make it more precise now. The two
elements in which the following differs from Lemma 1.8 (considering the definition
(4.9)) are that K°n is replaced by a (large multiple of) Kr

n, and that a^n+1 is replaced
by <*„,„+!. The reason for the pettiness is (Definition (4.10)) the fact that a constant
factor for rjn,n+\ becomes an exponential factor for rjn and we need to be able to
bring it to arbitrarily slow exponential growth or loset some of the smoothness of
h

LEMMA 4.7. For n sufficiently large, and writing e =2M~X (see (4.9)), we have

Proof. We repeat the proof of Lemma 1.8. A ^-interval splits into an n+,qn+i-intervals
and a single qn+2-interval. The ratio between two adjacent qn+x-intervals is bounded
by exp (K°) and if an n+1K° < M~l with M > 1 the intervals are all equal within a
factor exp M '. This gives a little better than

*,„,„+, < (1 + M"1) max (al\+l, MK°)

and by (4.37) (with s = 0 and s, = r) we may replace K° by KJ,, the additional
summand being an exponentially small multiple of •»)„,,+,.

To understand why we can. replace a~*n+x by an (with a correction factor 1 + e)
we notice that the ratio of thex^wo is bounded by l + (a n n + ,a n + 1 n + 2 )~ ' and if
ann+xan+x n+2» e ', the replacementis-clearly valid. If the coefficients an _„+,, an+l n+2

are small, we recall that for the rigid rotation^/?„ we have r)n,n+i = an and one can
get an estimate (to within a factor (l + e/2)) of the ratio of the lengths of a qn_x

and a qn intervals for Ra by counting how many disjoint <7n+([-intervals each of
them contains, where k is the largest integer for which qn+k<e~sqn. Since K° is
exponentially small all these intervals (for our picture, with powers o f / ) are equal
enough to give our estimate. •

Remark. If either an or MrK
 r

n is substantially bigger than the other, the factor 1 + e
can be brought substantially closer to 1.

We now come to the "Piece de resistence' of the entire paper, namely the estimates
of K̂ , and related quantities.

Notation. We denote T^ = sup f] K[j the supremum conditioned by /, s r, £ lj = L.

t We are dealing now with rotation numbers whose coefficients may grow at superexponential rate but
don't have to. If the growth is consistently superexponential the exponential factor will have no effect,
but if we have long stretches of small coefficients the estimates may really suffer if the exponent is not
arbitrarily small (multiple of n).
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THEOREM 4.8. Assume fe $fr+1+6, 0< 5 < 1. There exist positive constants M and £,
£ < 1, such that if Mr> M and we set e = 2rM~\ we have for appropriate constants
Ai, A2, A3, for r+ l<L<2r and all n:

K^A,(l + e)^r1 + S , (A)n

AnK
r
n^\2(\ + errjrn~i+S, (B)n

T^A3f*?»~1+8- (C)n

Remark. Estimate (C)n for L<2r implies exponentially better estimates for bigger
values of L since we can factor out some of the factors K'n, which are exponentially
small, and still have the weight of the rest bigger than r.

Remark. We get Theorem 4.8 by repeatedly 'breaking into shorter runs' Propositions
4.2 and 4.2' and applying our 'basic procedure' Propositions 4.5 and 4.6. The main
difficulties are the loss of an r\n-Un associated with the /£„_, (e.g., (4.40)) and the
growing number of terms. The loss of the "nn_, „ is handled by using the 'basic
procedure' either regaining the lost Tfin_, „ or getting an K^-i that can be replaced
by an "*)„_,,„ (e.g., (4.43)). The growth in the number of terms is compensated for
by certain exponentially small factors. In some cases we get a higher power of r\
than we need. In other cases, the terms at the next (lower) level have more weight
and this can happen at most r times before we can split off an exponentially small
factor.

Proof. The constants Mr and £ are determined as follows: there are various values
& given by Proposition 4.3 and also a bound 77 < 1 for f\n-hn and £ can be taken
as the biggest of these, raised to the power ^(1-5) and then multiplied by 1 + e. It
is less than 1 provided s is small enough. This, with Lemma 4.7, gives (4.39)a below.
In order to simplify the notation later we also impose (1 + e)r < 17; this defines the
lower bound M for Mr; (we may choose it much bigger if we want to lower the
bound on e, but we should notice that this affects the definitiont of rjn_i>n).

The estimates are needed for large n, and we assume that n > n0 where n0 is large
enough so that the various estimates which we import, and which we know to be
true for large n, are in fact valid for n > n0. Also, we obtain in the course of the
proof various polynomials (in n) with large coefficients and we want £", n > n0, to
be small enough to neutralize them.

With these constraints on the constants we have:

r,r
n

+\n =£ t|;-,.« ^ fv7-un , (4.39)O

K;<£2"(l + e ) - 2 " . (4.39)6

Define:

A(r) = K'n(l + e) -^r r " 8 , (A)*

A(
2
n) = sup A n £; , ( l+ £)-"??:,-'"*, (B)*

t For the a's that will interest us later, the value of rj,,_, „ will be determined, for all large n, by a,,
rather than MrK'n. Here we make no assumption on a (except for being irrational).
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the supremum for all legitimate values of AnK
r
n

We shall prove that AJn) are bounded and that for large values of n we have
AJ"'<Xj with A2= \\Dr log Df\\UpS+ 1, A, =3A2 and A3 - some absolute multiple of
A!. We use a pseudo-induction procedure, i.e. evaluate AJn) in terms of Ajm>, m< n,

We have two tools which we combine, the 'Basic procedure' embodied in Lemmas
4.5 and 4.6, and the 'break into shorter runs' embodied in formulas (4.21)-(4.24).
One important thing to remember is that the expressions in (4.22)-(4.24) are universal
polynomials, independent of n and of the rotation number (which maintain a 'low
profile presence', however, through the loss of the factor i j n _ l n , loss which replaced,
(4.17), the summation over the iterates f i q " - ' ) .

A: \\n)<2\(
2

Proof. This follows from Lemma 4.6. •

We now estimate A 3"', leaving A2
n) for last. In the formulas below C denotes

some absolute constant, and we write \\"fl' = max (A(,"~u, A3""")).

C: A 3
n l <CVr / 2 [ max A1/",'].

Proof. We estimate T^ = II KJ; (IJ < r, £ l}•. = L > r+ 1) by applying (4.22) to each of
the factors and multiplying the corresponding expressions

Tn
L< I (riK^1-n

c
nC1

1,J(nK^,'n^1,J. (4.40)

In particular, there is a single term in (4.40) for which £ c,- = 0, namely the term
YlVLi-ii\A-\,n, which is a replica of the original expression; and the number of the
other summands is bounded by some constant which depends only on L (recall
that in (4.22) we have universal polynomials so that the exact form of (4.40) is
completely determined by {/,} of which there is a finite number with £ l} = L, and
L limited to [ r+ l ,2r ] ) .

In each of these (other) summands we have at least one factor lC'_,, c, > 1, and
we apply Lemma 4.4, with s, = r, to every such factor with c, < r,

and obtain a bound for T^ by a sum of terms of the form

(K;_,)6nKS-,T|^7.* (4-41)

whose number is bounded by some universal constant which we denote by Nr; with
0 < b bounded by the number of factors, (which is certainly bounded by L).

We now evaluate separately the terms (4.41) for which b = 0 and those for which
b > l .

The terms for which b = 0 all have weight s L +1 and the exponent on T|n_i „ is
at least L. The sum of the one 'replica' pulled out of (4.40) and the terms with b = 0
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and weight^2r in (4.41), (with the factors if|n_,>n in excess of L removed), namely

(4.42)

will be referred to as the first generation, and is the part that we'll have to develop
further.

The rest, that is, the terms in (4.41) for which ftsO as well as the terms whose
weight exceeds 2r, we estimate right here and now.

If b = 1 we have the term K^_, n Kn'-i'Hn-i.n with X u, s l which we can estimate
(using (A)n_! and (4.39)b) by

£2nA(n-l)-r-.+S_ ^ ^

If fc>2 we replace b-2+S of the factors K^_, by (M;ir}n.Un)
b~2+s, (see (4.9)),

estimate one factor K^_, using (>!)„_,, and the remaining K),~* by (4.40) to obtain
again the bound (4.43). We have several such terms (the number bounded by Nr).
Thus the sum of all the terms (4.41) with b z 1 is bounded by JVr times the estimate
(4.43).

Finally, terms whose weight exceeds 2r can be written as
•H^ljnK^_, Yle^rXciSr+t K«'-i and can be estimated as follows: use (4.40) to replace
Tl^'i.n by ^lri7n1+s and K^_, by £""'. Replace the remaining product by

bounded by Nr (which bounds the total number of terms we obtain at this stage).
Putting all of this together, we obtain (writing A ^ ' ^ m a x (A*,""1', A^""0))

l'i-i+ I 01 **'-,) +AU(
l:y

1)f2Vn~1+*. (4.44)
d^r J

Now we have to repeat the same procedure on every term in the first generation,
i.e., the terms in the square brackets in (4.44). The first is just the replica of our
original, (for n — 1 instead of n) and it's contribution to the next generation is a
replica of (4.42). The other terms are all of weights L+ 1 and the contribution of
each to the next genration consists in a replica of itself, and at most Nr additional
terms, all of weights L + 2 and <2r. Each of these also spins off other terms, the
ones with b>0 above, and those with weights2r+ 1, which are estimated directly
as in (4.43), in other words:

The term T)^_Ijn Yl Kn-i is estimated by:

Z Cn £rdi \ \ J- L \r \ (n-2) rln-l -r-l + S

{[[ Kn'-2) +TJn_i „ JVfA l>3 £ 17n-1
2raxi,»L+l

(4.45)

and similarly each Vn-i.n Yl Krf'-i to:
2"-2v7-\+s

(4.45)*
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and putting them all together we have

2

s = 0

where Q(°l2 = Yl KA-J is a single term,

is the 'new terms in the first generation', each comes now twice, being reproduced
both by itself and by the original term of order L. We also have the 'new' terms of
weights L + 2, whose number is bounded by N2

r. This is the second generation.
Repeating J times and being somewhat wasteful in our estimates, we obtain

j

n SKI n-l,n ' ' " "*\n-J,n-J + l Z Qn-J

(4.46)

where Q?IJ=U*'A-J is a single term, and Q«lj = -/Xd / S r ,2 r a I d / a L + 1 (II *}-;) are
as described above, the factor J in Q^lj is there since with each iteration of the
procedure not only do these terms reproduce themselves (with the index n reduced
by one) but Q<0) produces another copy. Similarly Q^-J are the terms of weights
L + 2 (and s2r) , which make their first appearance in the second generation, (4.45)*;
their number increases quadratically with J.

In general Q(
n

slj are the terms which appear first at the 5 iteration of our procedure
as the terms (4.41) (for which b = 0, and whose weight is between L +s and 2r) as
well as their replications in the steps from s +1 to /. Their number is bounded by
J* times their number at their first appearance, in Q{

n
sls. That number is no more

than JVr times the number of terms in Q<
n
sT5+1 and induction on 5 shows it to be =sJV*.

Since Q(s) are identically zero for s > r (in fact for s>2r — L, terms with weight
exceeding 2r are estimated directly), and after we exchange some T)'S f°r f's, we have

)-nr
n'

l+s- (4.47)
s = 0 \s=l /

/?*/' is the number of terms obtained at the 5-iteration which are estimated directly
rather than developed further, and is bounded by a constant multiple of the number
of terms in £ '= 1 QlJ-s+l which is O(ir~'). It replaces the factor Ns

r in (4.46) which
is far too wasteful for large values of s.

We take J = [n/2], evaluate the terms in I Q{
n

slj by (C)n_j ; replace L b y r + 1
and convert the factors r\r^jn+l into £;2y'm,}J+i', and obtain (with some absolute
constant C):

T^Cnr-^n/2\t
3
J) • t"rjr-x+s + CnT max Aft'f" • fv7'+s, (4.48)

n/2<m<n

which we write, after combining the first two rows, as

\l
3
H) s CnT'\ max Aft']. (4.48*)

n/25»i<n

•
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Finally we turn to estimate A(
2
n):

B: A^<| |D' logiy| |L i p 8 + f £ Â »

Proof. We estimate AnK
r
n by (4.24)

AnK
r
n<(v

r
nAnD

r log Df) o/"">..-,+ Z (v
r
nAnD

r log Df-')
(4.24)

o/*»- I (n K^.-n^.JK^.r,^.^

and the second row, the non-leading terms, have the formt of the right-hand side
of (4.40) which we have just ((4.48)) shown to be bounded by \(

3"
)^"v'n~

x+s.
All that we need now is a good estimate for the leading term in (4.24). We evaluate

each of the terms AnD
r log Df and AnD

r log Df" ', computed at their appropriate
points, by the analogue to (4.24) (the difference is that we break the runs into
qn_2-runs) and obtain a new leading term

Y (v
r
nAnD

r log Df>) of <\ (4.49)

where /*,- are mostly equal to qn-2 with a single qn_3 per each f"-' in (4.24) and
the last /J. being the remainder after dividing v by gn_2. The o-} are the starting
points, in the orbit {/'(/)}, of the runs fij. Notice that every <r, has the form
a^n_, + b^n_2 with a < an_1>n, b< an^2,n-i, so that the points/"'(f) all lie within one
( M - 2 ) interval.

We also get the additional terms

V?-\.n Z ( I l K ^ i i ^ - O K ^ ^ ^ ^ , , (4.50)
Vcy = r+1

for the term r)r
nAnD

r log D/" and

l/^-'l.- I (II K^2-n^:2
1,_1)K^_3-n'-3.f,-2-n"-2,n-1 (4.51)

for each of the summands (rjr
nAnD

r log Df"-*) °fjq"-<. Using (4.17) we replace the
sum of all the expressions (4.51) by 77 ~1, „ times one of them so that the leading
term of (4.24) is bounded by (4.49) plus

r V"1 /FT V ^ c — 1 \ fr ti d
Hn-1,B L Ul *i-n-2t\ri-2,n-\)l^n-2*\n-2,r>-\

which we can estimate as before (using (4.39)O) by

3 ? T\n-\,nVn-\ - A 3 f TJn . (4.52)

Repeatedly reducing the length of the runs to qn-3, qn-4 etc.. . . we finally reach
'runs' of length 1, namely the leading term

which is bounded by

/ | | i p 5 I VT °f^\\D log D/||LipSDr log D/||Lip5 I VTS °f>^\\Dr log D/||LipSt,r1+S

t Notice that A,,K|, behaves formally like K',*{, the only difference being in the leading terms. All the
terms spun off in the course of the proof are well within the class estimated in C above.
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The additional terms, evaluated along the way (e.g. (4.52)), add up to
Z"=i ^^"Vn1*8 which gives

n

\[
2
n)< \\Dr log Df\\u s + ij" Z ^3j)- •

In order to conclude the proof of theorem 4.8 we write A("' = max (Xjm))j = 1, 2,3,
m < n\ and write the estimates A, B and C as:

hence A(n+1)<max (A(n),3||Dr log £>/||LipS) provided n is large enough. This shows
that A(n) is eventually constant and the proof is complete. •

Remark. We shall sometimes replace (A)n by:

K'n^Vr
n-

1+8" (A)**

for any 8"<8 and n> n(8").
This can be interpreted and checked as follows: the factor ijs

n~
s compensates for

A,(l + e)". As rjn decreases at least exponentially fast, knowing 8 - 8" enables us to
choose Mr large enough and hence e small enough to guarantee A^l + e)"^*"8"-»0.
A little closer look enables us to obtain (A)* without adjusting the e (which also
affects yjn) by noticing that the source of the factor (1 + e)" is the conversion, in
the estimate of the leading term in the bound for A(

2
n), of i\r

n~'+s into T?T'+ S- This
is done by writing m,, < [ ] Tljj+i a n d applying Lemma 4.7 to each factor and we
have remarked after the proof of that lemma that the factor (1 + e) appears only if
ctj and Kj are comparable. Thus the conversion factor (which we estimated by
(1 + e)") is in fact exponentially big in n only if 77,,->0 superexponentially and it
follows that for any 8"<8, r\i

n~
s is more than enough to compensate for the

conversion.

The basic method used in the proof above yields other estimates which we shall
find useful. The next lemma and Proposition 4.10 are examples.

LEMMA 4.9. Assume f e fflr+l+R, 0< 5 < 1. For s < r and with £ as above we have

n k
Proof. We can estimate K^ by (4.23) and (4.17)

1 f K t n c : ;

apply Proposition 4.5 to the terms lC'_, and write the terms obtained as in (4.41):

(Kn-l) I! ^n-l'Hn-l.n-
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The terms with b = 0 have weights r+1 and can be estimated by (C)n_, of
Theorem 4.8. In the terms with b > l replace b — 1 of the factors KJ,_, by (A)n_,
of Theorem 4.8. Do the same to the term KJ,_, in the first row of (4.53) and obtain,
after trading (l + e)"rjs

n for f,

K ^ K ^ . T ^ ^ + C r ^ - 1 . (4.54)

Running (4.54) for n — 1, n — 2,..., 1 we finally obtain

Kn=£ C £ r~Wn-x.n • • • r£,-hn-i+lTir--i^ C.f-^-"1. (4-55)

The same argument applies also to expressions of the form \\ Kcj whose weight
X c, a r and gives for them the estimate C^"rjr

n~
l.

Finally, we can replace rby r—l,r-2 etc, and obtain the inequalities for all s < r.

•
These estimates can be improved, especially for small values of s.

PROPOSITION 4.10. For l < s < r w have the following,

= <5i I V

Remark. The ghost of the diophantine condition is showing itself here in the form
of comparing -n7J+1 with a power of v\j, and any estimate of the form i\jj+i —^f
makes the present proposition better than Lemma 4.9.

Proof. By Proposition 4.2,

KHsSKJi-lVn-M + K'n-lirn-'l.- I l|2-l.nK2-l II K^'-lin'-,'.,, (4.55)
lsdss-1

and by Proposition 4.5,

K:_ltir-'.,-sK;-li)r-l,,»+ti:-./(K:-,; wtss+n. (4.56)

By Lemma 4.9

similarly, applying Proposition 4.5 to each of the factors K^_, in (4.55) and continuing
as before, we estimate the last sum in (4.55) by a sum of a (universally) bounded
number of terms whose form is either

or

t l i -MriKi- , , I/,-a 5 + 1. (4.58)

The terms (4.57) are exponentially smaller than the first term in (4.56) while the
terms (4.58) are C(t;nrjs

n); thus,

KJ =£ KJ
n_,V-i.n + Kr

n-1rj*nZ\,H + {"Vn (4.59)

and by (A)**,

Kn-\VSn-l,n—Vrn-l V n - I ,n = V n( ̂  n -^ ^n-l.n)

and the proof goes by induction. •
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We are finally ready to prove the main result stated in the beginning of this
section. Assume that a satisfies a 'Diophantine condition of order /3' that is:

qn+i = O(q*+l) (4.60)

or, what amounts to the same

or again

LEMMA 4.11. Iff is in 2T+1+S, and a satisfied condition (4.60) with (3 + l<r+8, then
for all large n, rjn,n+i = an and consequently

r\n~q'n\ (4.61)

Proof. We introduce the numbers yn by the condition r\n = q~n
y». Thus 0 < y n < l .

We also introduce the numbers cn by

Condition (4.60) says basically that cn < /3 + 1.
By (4.9), either rjn<n+l = an n + 1 or,

with 8"<8 close enough so that /3 +1 < r + 8".
In the first case yn+l is a convex combination of yn and 1, so y n + ) > yn. In the

second case

so that yn+1 = yn(r + 5")/(/3 + 1) and we went up by a factor greater than 1. As yn < 1,
this can only happen a finite number of times; thus for all large n: fjnn+1 = an and

THEOREM 4.12.t Iff is in ?T+ i + 6 , and a satisfied condition (4.60) with p + Kr+8,
then the homeomorphism h which conjugates f to Ra is in ffls+r-P-e for a // e > Q

Proof. Let m be the largest integer less than r + 5 - / 3 - l . By (4.60)

by Proposition 4.10,
) (4.62)

and by Lemma 4.11 this means

for all / s m, which implies that /i e 3Km+\

t The overall structure of our results is especially clear if we focus on a special case of Theorem 4.12:
the boundedness of K". K" < I,','"1 au+xK". K°== ,.-nu+1 I P,(... K\•...) + K \ (by the basic procedure,
Proposition 4.5). Proposition 4.8 and the diophantine condition show that a, j+1K[ is exponentially
small. a; /+,(T|, ,+| X P,(K))) is exponentially small by Lemma 4.11, Proposition 4.3 and Lemma 4.7.
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Since h e Sff"1"1"1, it follows that the conjugation by h is a differentiate representa-
tion of T in ST". We have fq" = h~l ° Rqna° h and Rqna is within <7~j, from the
identity, which implies, for I < m,

||D'logD/«»||« = tf(9nii), (4.63)

that is

K'n = G(q-Uqn'). (4.64)

Similarly

\\D' log Dfc^\\x = O(cnq-U). (4.65)

In order to complete the proof we need to estimate the modulus of continuity of
the representation T-» h~x ° RT ° h in $fm+1, and it is enough to check it for a dense
subset of T, (and in fact only in a neighborhood of the identity).

We take T of the form ka, but instead of taking all k e Z or all positive k, we take
those of the form k = chqh + I J 2 b + 1 c#_,- with 1 < \cb\ < ab>b+1, 0< |c,-| < a,-_,-+, for 7 > b
so that

||fca|| ~ |cb|qffc|, (||/ca || denotes the distance of ka to the nearest integer).
(4.66)

Allowing the coefficients c, to be negative comes to guarantee efficientt approxima-
tion, and in particular (4.66). As the estimates for/"1 and/are equivalent, we write
everything that follows as if c, > 0, j > b.

We need to show that for any y > 0 such that

m + y < r + S - j$ - 1

we have

||DmIogD/k||ar = <7((c6^!1)
Y). (4.67)

By (4.13) we have

Dm log Dfc"q- = I (Dni \og Df-° f i q - ) m

7=0

+ I I ( D " - ' log D/'» o/"»)(D/*"r~ 'Pi( . . . ,£> ; log D/^»,. . .)
(=1 7 = o

and we observed already ((4.64)) that for 0< /< m we have

\\Dm-' log D/«»||=c

so that the double sum above is bounded by 6(c2
nq^t) and

||DmlogDr"""|U = Cf(cn||DmlogD/""|U+c;9-i,). (4.68)

By Proposition 4.5

t For example , if in the usual expans ion , ch — 1 and ch + , = ah + l h+2~ ' then ||/ca|| — ^ ^ I T and (4.66) may
fail. We propose to start the expansion in this case with -qh+la.
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We use the estimates given by Theorem 4.8 and Proposition 4.10 as well as (4.62),
namely

( n-\

- r , ^ rjrj

terms of weights m + 2 are €(q~m~l) and so are terms of weight m + l which are
products of terms of weight < m.

Combining all of this we obtain

K ™ _ fjl -(r + 5-l) , n n~\ n~
m~y\

n —VyCIn ' anan + \ a n ),

and finally, by (4.68) and since cnq~'+,<q~'

\\Dm log Dfc>-«'-\\x^const. [cnq-nWn-T + c2
nq-2

+l]
(4.69)

<const. (cnqn'+lq'n
 y)<const. (cnqn

x
+l)

y.

We use this estimate for n > b, keeping it as for n = b, (this is the expression we
need, see (4.67)), while for n > b we simplify, replacing {cnq~x

+x)
y by q~y.

By (4.11) and (4.69)

\\Dm log D/c*«*+c»-*-Hcc == const.

and as before we invoke (4.65) and bound the sum, which involves only derivatives
of order less than m, by a constant multiple of

which can be ignored.
Adding cb+2qb+2, cb+iqh+2, e tc . . . . and using the same estimate, we obtain

sconst. (cb(7fc!,)T = const. \\ka\\y

and the proof is complete. •

Appendix 1. The orbits of Ra

Let a be irrational, 0< a < | t . We want to relate the orbit structure of any (osT
under Ra to the continued fraction expansion of a. Since the orbit of t0 is obtained

t For j< a < 1 interchange 'left' and 'right' in the description.
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from that of t = 0, for notation we might as well take f0 = 0. We define a sequence
of positive integers, {qn}™=l by taking in their natural order all integers m such that
ma is closer to zero on T than any ka with 0 < k < m. Thus q0 = 1 and the first time
we come closer to zero iis just before crossing it, which means qx = [ I / a ] . We denote
by dn the distance of qna to zero (do=a, di = l-q1a, etc.). Since (ql+j)a is at
distance dx to the 'left' of ja, we have, for j<q2, (qi+j)a close to zero thanja is
to the right, and farther from zero if ja is to the 'left' of zero. Thus the first ma
closer to zero than qxa will fall in (0, a) and we must have m = aqx +1 = aqx + q0

where a is the first positive integer for which a— adl<dl, that is, a = [a/dl] =
[do/di]. We now write al = [l/a], an = dn~Jdn_2 and an = [ l / a n ] for n > l and
notice that qx = ax and, by the remarks above, <?2 = a2<7i + <7o- We can now repeat
the same argument for arbitrary n, and see that qn-xa and qna lie on different sides
of zero (qna 'right' of zero for even n, 'left' for odd) and one gets to qn+xa by
moving from qn-xa an+1 steps of size dn, that is, by an+lqna. Thus

qn+i = an+1qn + qn-1. (Al.l)

Denoting by pn the integer closest to qna (on R), a moment's reflection shows that
Pn+i - an+\Pn +/>n-i, and we recognize the recurrence formulas for the denominators
qn and the numerators pn of the convergents to the infinite continued fraction

[ ]

a 3 - • •

We modify the notation slightly and write an n+l instead of an+l, (this somewhat
heavy notation is used in order to avoid confusion where shifting the index n by
one may change the order of magnitude of the corresponding a). Thus ann+l =
[qn+\/qn] and (Al.l) now reads

qn+l = anin+lqn + qn.x (Al.l')

and, similarly, a =[a,,2, a 2 3 , . . . ] and an =[an,n+1, a n + l n + 2 , . . . ] .
We denote by Pn = Pn(Ra) the partition of T by the points {ja}, j = 0 , . . . , qn -1.

If we arrange the Pn-intervals by the orbits order of their left end points for n even,
(right end points for n odd), we obtain 'tower with balconies' Diagram A, where
the action of Ra on all but the top level is to map any point to the point directly
above it. Diagram B describes the action of Ra on all but the leftmost part of the
roof, and cutting and stacking according to B leads to C which is the analogue of
A (but for the next value of n). Notice that the balconies in C face the opposite
direction from those in A. The size of the base of the tower is </„_, and of the
balconies is dn. The balconies in A become the base for C, each level without balcony
of A (i.e. Pn) is divided in C (i.e. Pn+t) into a n n + ,=3 in our illustration, levels
(intervals) and the levels with balcony into l + ann+1. This description of dynamics
of Ra by towers is a convenient rephrasing of the description in the beginning of
this section.
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(<?„-!)«

a •

o-

For / e / / with p(f) = a we denote by Pn(f) the partition of T by {fJ(0)},
j = 0,...,qn-l. The action of powers of/ on Pn(/) is completely analogous (in
fact conjugate) to that of the corresponding powers of Ra on Pn(Ra). This holds
whether / is conjugate to Ra or not. It is conjugate precisely when the maximal
length of the intervals in Pn(f) tends to zero as n->oo. We can use this observation
to give a slightly different proof of Denjoy's Theorem 1.4 from his inequality (1.5).

Every Pn(f) interval / is divided in Pn+l(f) into ann+1 (or one more, if / has a
balcony) intervals, one of which has a balcony. For simplicity we assume now that
an n + 1>2. Each of the Pn+1(f) intervals without balconies can be mapped into its
adjacent by /*•• (onto if the adjacent interval is without balcony) and their ratio is
therefore bounded by e" (t> = varlog Df) an interval with balcony can be covered
by two images f"(J) and f2q"{J), where J is an adjacent interval without balcony,
which gives again bounds on the ratios. The outcome of all this is that no Pn+1(/)
interval can fill more than a certain fraction of the Pn(f) interval which contains
it. If ann+x = 1, the Pn(f) intervals without balcony simply become Pn+i(/) intervals
with balcony which do split in Pn+2. This plus induction yields

LEMMA A.I.I. There exists a constant TJ = r)(v)<l such that for fe>2 the relative
length of a Pn+k(f) interval in the containing Pn(f) interval is bounded by r}k. In
particular the length of any Pn(f) interval is bounded by r]k. In the notations (1.7),
(1.8) we have

COROLLARY. Under the assumptions of Denjoy's Theorem 1.4, ifaeG (see A.I)
then the conjugating function h satisfies a Lip (S) condition, where S is such that

Definition, t, T are qn-close if {fJ(t, T)}J^0 are disjoint.
It is clear that t, r are q^-close if and only if r e (f">{t),f~q"->{t),f~q"->(t)). The

tower diagrams make it transparent that

j=O ) I j=0

this is just a decomposition of T into 'rooms' and 'balconies'. An immediate
consequence, which is used repeatedly in the Denjoy procedure, is the following:

LEMMA A.I.2. Given t, t'eT, there exist r e T and an integer 1,0^ l<qn, such that
t, T are qn-close, and t' = / ' ( T ) .
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Appendix 2. Continued fraction statistics
We recall some basic facts about the continued fraction algorithm. For 0 < x < 1 we
write

a(x) = [l/x], (f>(x)=--a(x),
x

1 1 1
x = •

is the continued fraction expansion of x. We also write it as x = [a^x), a2(x),...]
where a,(x) = a(x) and an(x) = a(<t>"~\x)).

The mapping <f> (of (0,1) onto itself) was observed by Gauss to preserve the
probability measure (log 2)~IAc/(1 + v) (direct verification), and it is easy to check that
its action is ergodic. As the coefficients an(x) = a(4>"~\x)) are read by sampling
the function a along orbits, we get relatively precise information about the distribu-
tion of values of an(x) for almost all x. The function a(x) is not integrable but
log (1 + a(x)) is, and applying the ergodic theorem to it yields

lim-J-log fl (1 + an(x)) = const. ( = (log 2)"1 | ' ° g ( 1 + fl(x))
 dx). (A2.1)

/v i \ Jo i + x )

Since qn+i = anqn + qn_, < (1 + an)qn, (A2.1) gives a bound on the exponential growth
of qn for almost all x We get finer estimates if we use the fact

qn = a n _ i^_ , 7a n _ 2 - l

that is, apply the ergodic theorem to log (a($(x)) + {\/a(x) - 1)) etc. and one shows
this way that lim q'J" = Q for almost all x with Q an absolute constant.

We denote by G the set (of full Lebesgue measure) of all x in [0,1] for which
the ergodic averages N~* £ , f° </>"(x) converge to the proper limit, namely

for all / is some countable collection which include all the functions that may be
of interest to us here (such as log (l + a(x)), or the indicator functions of the sets
{x; a(x)=j} etc.) points in G are referred to as 'typical'.

Now turn to the question of the convergence a.e. of series of the forms

I an(x)Kn, (A2.2)

where Kn > 0.
«

LEMMA A.2.1. TTie series (A.2.2) converges a.e. if

lKn\ogn<oo. (A2.3)
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Proof. Write a*(x) = min (an(x), n4). Since a*(x) = an(x) except on a set of measure
~n~4 we have that for almost all xa*(x) = an(x) except possibly a finite number of
times (values of n), and the series (A2.2) converges a.e. if and only if

I a*(x)Kn (A2.4)

does also. Now, Ĵ  a*(x) dx~log n, and the convergence of (A2.3) implies
that of (A2.4) in L\ and, the terms being positive, we obtain pointwise
convergence a.e. •

Remark. The opposite implication is false unless we assume some regularity of the
sequence {Kn}. It is not hard to check, e.g., that if {Kn} is monotone the a.e.
convergence of (A2.2) is in fact equivalent to (A2.3).

COROLLARY A2.2. For every e > 0

) ^ F < o o a.e.

X an(x)n~\\og «)"2(log log w)"'"F <oo a.e.

Appendix 3: Sharpness
We describe briefly how one can construct examples that show that our main results
are sharp. We assume that a satisfies (4.60) and that the constants /3 cannot be
reduced so that for /?' < /3 there are infinitely many values of n such that

On the interval [0,1] consider a C^-function 4> whose support is in (0.1,0.9)
<A = -1 on (0.2,0.4); 0 = 1 on (0.6,0.8); j <f>(t) dt = O; and its norm in C+s is about
as small as is consistent with all these conditions. 4>{\t) will display the same basic
behavior that 4> does on [0,1], on the interval [0, A"1] but its norm in Cr+S is

Ar+b U l i e - -
Let / be a smooth diffeomorphism with rotation number a. Let n be such that

(A3.1) is valid. Consider the partition Pn(f) (whose atoms are the levels of a tower
such as described in diagram A) and define a perturbation/! of/ in the following
manner: on each atom of Pn(f) (excluding the balconies) add to Df a constant
multiple of <f> scaled so that the atom now plays the role of [0,1] for cj>. Since the
size of the atoms is ~q~n

x, the norm of the scaled <f> in Cr+S will be q^+s||</>||c'+s

and if we multiply it by 0 = q\,r~s, the norm is brought back to ||<A||c'+s-/i is defined
as the diffeomorphism which agrees with / on the edges of the levels of the tower,
and whose derivative is Df+ 6<t> (in the middle of the levels); we may have to adjust
it slightly to keep the same rotation number. The diffeomorphism / , is still C°° and
its norm in cr+l+s may have increased but only to the level of ||</>||c:+s- Furthermore,
if we repeat this for a sequence of values of n which increases fast enough, the
norms of the perturbations (which are really the Lip 5 norms of the rth derivatives)
do not add up and we end up with a diffeomorphism in Cr+1+S.

The effect such perturbations have on the conjugation becomes clear when we
notice that the '#<£' added 6 to Df on a set that covers a run of order roqn+\ and
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as we started with / that was C°°-conjugate to Ra we can assume Dfcq" very close
to one for c<a n r i + 1 . Taking c~joann+l we obtain

and we do not have C1-conjugation if/3 + 1 — r — 5 > 0 .
The same construction (with the appropriate scaling) gives that, generically,

Theorem 4.11 is sharp, i.e. if >3 cannot be replaced by /3'</3 in (4.60) we'll have
difteomorphisms in dKr+x+&, with rotation number a such that the conjugating h is
not in Cr + a" / 3 + f for e > 0 .
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