Y. Miyashita Nagoya Math. J. Vol. 49 (1973), 21-51

AN EXACT SEQUENCE ASSOCIATED WITH A GENERALIZED CROSSED PRODUCT

YÔICHI MIYASHITA

§0. Introduction

The purpose of this paper is to generalize the seven terms exact sequence given by Chase, Harrison and Rosenberg [8]. Our work was motivated by Kanzaki [16] and, of course, [8], [9]. The main theorem holds for any generalized crossed product, which is a more general one than that in Kanzaki [16]. In §1, we define a group P(A/B) for any ring extension A/B, and prove some preliminary exact sequences. In §2, we fix a group homomorphism J from a group G to the group of all invertible two-sided B-submodules of A. We put $\Delta/B = \oplus J_a/B$ (direct sum), which is canonically a generalized crossed product of B with G. And we define an abelian group $C(\Delta/B)$ for Δ/B . The two groups $C(\Delta/B)$ and P(A/B) are our main objects. $C(\Delta/B)$ may be considered as a generalization of the group of all central separable algebras split by a fixed Galois extension. The main theorem is Th. 2.12, which is a generalization of the seven terms exact sequence theorem in [8]. However it is proved that the exact sequence in Th. 2.12 is almost reduced to the one which is obtained from the homomorphism $G \rightarrow \operatorname{Aut}(K)$ induced by J, where K is the center of B. This fact is proved in Th. 2.15. In §3, we fix a group homomorphism $u: G \to \operatorname{Aut}(A/B)$. From u we obtain a free crossed product $\oplus Au_a/B$, where $u_a u_r = u_{ar}$, $u_a a = \sigma(a)u_a (a \in A)$. Therefore the results in $\S 2$ is applicable for this case. In $\S 4$ we prove the Morita invariance of the exact sequence in Th. 2.12. In § 5, we treat a kind of duality, which is based on a result obtained in [19]. In §6 we study the splitting of P(A|B) in particular cases.

Received December 23, 1971.

§1. The definition of P(A/B), and related exact sequences.

As to notations and terminologies used in this paper we follow [19], unless otherwise expressed.

Let G, G' be groups, and f a homomorphism from G to the group of all automorphisms of G'. Then G operates on G', by f. Then we call G' a G-group. We denote by G'^{G} the subgroup $\{g' \in G' | g(g') = g'$ for all $g \in G\}$.

Let $A \supseteq B$ be rings with common identity, and let L, K be the centers of A and B, respectively. We denote by $\mathfrak{S}(A/B)$ the group of all invertible two-sided B-submodules of A (cf. [19]), where a two-sided B-submodule X of A is invertible in A if and only if XY = YX = B for some B-B-submodule Y of A. We denote by Aut(A/B) the group of all B-automorphisms of a ring A, which operates on the left. Then it is evident that $\mathfrak{S}(A/B)$ is canonically a left Aut(A/B)-group. On the other hand we have

PROPOSITION 1.1. Aut (A/B) is a $\mathfrak{G}(A/B)$ -group.

Proof. Let X be in $\mathfrak{G}(A/B)$. Then $A = XA = X \otimes_{B}A = AX^{-1} = A \otimes_{B}X^{-1}$ canonically (cf. [19; Prop. 1.1]), and hence $X \otimes_{B}A \otimes_{B}X^{-1} \to A, x \otimes a \otimes x' \mapsto xax'$ is an isomorphism. Therefore, for any σ in Aut(A/B), the mapping $X(\sigma): x \otimes a \otimes x' \mapsto x \otimes \sigma(a) \otimes x'$ ($x \in X, x' \in X^{-1}$) from A to A is well defined. Then it is easily seen that $X(\sigma)$ is a B-automorphism of A, and this defines a $\mathfrak{G}(A/B)$ -group Aut(A/B).

Here we continue the study of $X(\sigma)$ for the sequel. Since $XX^{-1} = B \ni 1, 1$ is written as $1 = \sum_i a_i a'_i (a_i \in X, a'_i \in X^{-1})$. Then $\sum_i \tau(a_i)\sigma(a'_i) \cdot \sum_i \sigma(a_i)\tau(a'_i) = 1$ for σ, τ in Aut (A/B). Since $\sum_i a_i \otimes a'_i \mapsto 1$ under the isomorphism $X \otimes_B X^{-1} \to B$, we know that $\sum_i ba_i \otimes a'_i = \sum_i a_i \otimes a'_i b$ for all b in B, and so $b \sum_i \tau(a_i)\sigma(a'_i) = \sum_i \tau(a_i)\sigma(a'_i) b$. Thus $\sum_i \tau(a_i)\sigma(a'_i) \in U(V_A(B))$ (the group of all invertible elements of $V_A(B)$), and $(\sum_i \tau(a_i)\sigma(a'_i))^{-1} = \sum_i \sigma(a_i)\tau(a'_i)$. Put $u = \sum_i a_i \cdot \sigma(a'_i)a'_j = X(\sigma) (\sum_{i,j} a_i a'_i a_a a_j a'_j) = X(\sigma)(a)$. Hence $X(\sigma)$ differs from σ by the inner automorphism induced by u. Therefore $X(\sigma) = \sigma$ is equivalent to that u is in the center L of A. To be easily seen, $u \cdot \sigma(x) = x$ for all x in X, (and similarly $\sigma(x')u^{-1} = x'$ for all x' in X^{-1}). Conversely, since the left annihilator of X in A is zero, this characterizes u, and hence u is independent of the choice of

 a_i, a'_i , and is denoted by $u(X, 1, \sigma)$, in the sequel. As $\sum_i \tau(a_i)\sigma(a'_i) = \tau(\sum_i a_i \cdot \tau^{-1}\sigma(a'_i))$, $\sum_i \tau(a_i)\sigma(a'_i)$ is also independent of the choice of a_i, a'_i , and is denoted by $u(X, \tau, \sigma)$.

LEMMA 1.2. Let ${}_{B}P_{B'}$ and ${}_{B}P'_{B'}$ be Morita modules, A and A' are over rings of B and B', respectively. Let f_{0} be a left B, right B'isomorphism $P \to P'$, and $f: A \otimes_{B} P \xrightarrow{\approx} P' \otimes_{B'} A'$ is a B-B'-isomorphism such that $f(1 \otimes p) = f_{0}(p) \otimes 1$ for all $p \in P$. Assume that $xf^{-1}(f(a \otimes p)x')$ $= f^{-1}(f(xa \otimes p)x')$ for all $x, a \in A, x' \in A'$. Then, if we define $(a \otimes p) * x'$ $= f^{-1}(f(a \otimes p)x')$, then ${}_{A}A \otimes_{B}P_{A'}$ is a Morita module. (cf. [19])

Proof. Put End $(_{A}A \otimes _{B}P)/B' = A''/B'$. Then, by [19; Lemma 3.1], $P \otimes _{B'}A'' \to A \otimes _{B}P, p \otimes a'' \mapsto (1 \otimes p)a''$ is an isomorphism. On the other hand $f^{-1}: P' \otimes _{B'}A' \to A \otimes _{B}P, f_{0}(p) \otimes a' \mapsto (1 \otimes p)*a'(p \in P)$. By hypothesis, the image of A' in the endomorphism ring is contained in A''. And, since $P_{B'}$ is a generator, the above two isomorphisms imply that the image of A' is equal to A''.

Next we define a group P(A/B). P(A/B) consists of all isomorphic classes of left *B*, right *B*-homomorphism φ from a Morita module ${}_{B}P_{B}$ to a Morita module ${}_{A}N_{A}$ such that the homomorphism $A \otimes {}_{B}P \to N$, $a \otimes p \mapsto a \cdot \varphi(p)$ is an isomorphism (cf. [19; §3]). An isomorphism from $\varphi: P \to N$ to $\varphi': P' \to N'$ is a pair (f, g) of isomorphisms such that the diagram

$$\begin{array}{c} P \xrightarrow{\varphi} N \\ f \bigvee \qquad & \downarrow g \\ P' \xrightarrow{\varphi'} N' \end{array}$$

is commutative, where f is a left B, right B-isomorphism, and g is a left A, right A-isomorphism. The isomorphism class of φ is denoted by $[\varphi]$. The product of $\varphi: P \to N$ and $\psi: Q \to U$ is $\varphi \otimes \psi: P \otimes_B Q \to N \otimes_A U$, where $(\varphi \otimes \psi) (p \otimes q) = \varphi(p) \otimes \psi(q)$. We define $[\varphi] [\psi] = [\varphi \otimes \psi]$. Then this is well-defined, and associative. The inclusion map $B \to A$ is evidently the identity element. Let $P^* = \operatorname{Hom}_r(_BP, _BB)$ (cf. [19]), $N^* =$ $\operatorname{Hom}_r(_AN, _AA)$, and $\varphi^*: P^* \to N^*$ the homomorphism such that $\varphi^*(p^*) =$ $(a \cdot \varphi(p) \to a \cdot p^{p^*}) (p^* \in P^*, a \in A, p \in P)$ (cf. [19; Lemma 3.1]). Then it is obvious that $[\varphi^*]$ is the inverse element of $[\varphi]$ in P(A/B). Thus we have proved THEOREM 1.3. P(A|B) is a group.

Remark. Similarly P(A|B) can be defined for any ring homomorphism $B \to A$.

THEOREM 1.4. There is an exact sequence

 $1 \to U(L) \cap U(K) \to U(L) \to \mathfrak{G}(A/B) \to P(A/B) \to \operatorname{Pic}(A)$,

where U(*) is the group of invertible elements of a ring *, and Pic(A) is the group of isomorphic classes of two-sided A-Morita modules.

Proof. The mapping $U(L) \cap U(K) \to U(L)$ is the canonical one, and the mapping $U(L) \to \mathfrak{S}(A/B)$ is $c \mapsto Bc$. Then $1 \to U(L) \cap U(K) \to U(L)$ $\to \mathfrak{S}(A/B)$ is evidently exact. For X in $\mathfrak{S}(A/B)$, we correspond the canonical inclusion map $i_X \colon X \to A$. If i_X is isomorphic to i_B , then there is a commutative diagram

$$B \xrightarrow{i_B} A$$
$$\approx \downarrow \qquad \qquad \downarrow \approx$$
$$X \xrightarrow{i_X} A$$

and hence there is an element d in U(L) such that Bd = X. Hence $U(L) \to \mathfrak{S}(A/B) \to P(A/B)$ is exact. For $\varphi: P \to M$ in P(A/B), we correspond [M] (the isomorphic class of M). If $M \xrightarrow{\approx} A$ as A-A-modules, then we may assume that M = A and P is a B-B-submodule of A (cf. [19; Lemma 3.1 (4)]). Then, by [19; Prop. 1.1], we have $P \in \mathfrak{S}(A/B)$. This completes the proof.

On the other hand we have

THEOREM 1.5. There is an exact sequence

 $1 \to U(L) \cap U(K) \to U(K) \to \operatorname{Aut}(A/B) \to P(A/B) \to \operatorname{Pic}(B)$.

Proof. The map $U(L) \cap U(K) \to U(K)$ is the canonical one, and the map $U(K) \to \operatorname{Aut} (A/B)$ is $d \mapsto \tilde{d}$, where $\tilde{d}(a) = dad^{-1}$ for all $a \in A$. Then $1 \to U(K) \cap U(L) \to U(K) \to \operatorname{Aut} (A/B)$ is evidently exact. For any σ in Aut (A/B), we correspond the map $i_{\sigma} \colon B \to Au_{\sigma}, b \mapsto bu_{\sigma}$ (cf. [19]). For d in $U(K), d \mapsto \tilde{d} \mapsto i_{\tilde{a}}$. Put $\tilde{d} = \tau$. Then $A \xrightarrow{\approx} Au_{\tau}, a \mapsto ad^{-1}u_{\tau}$, as A-Amodules, and $B \xrightarrow{\approx} B$, as B-B-modules, by $b \mapsto bd^{-1}$, and we have a commutative diagram

 $\mathbf{24}$

$$\begin{array}{ccc} B \xrightarrow{i_B} & A \\ \approx & \downarrow d^{-1} & \downarrow \approx \\ B \xrightarrow{i_\tau} & A u_\tau \end{array}$$

Let σ be in Aut (A/B), and suppose that i_{σ} is isomorphic to $i_B: B \to A$. Then there are isomorphisms α, β such that

$$\begin{array}{ccc} B \xrightarrow{i_B} & A \\ \beta & & \downarrow^{\alpha} \\ B \xrightarrow{i_{\sigma}} & Au_{\sigma} \end{array}$$

is commutative. Put $\alpha^{-1}(u_{\sigma}) = d$. Then, for any $a \in A, \sigma(a)d = \alpha^{-1}(\sigma(a)u_{\sigma})$ $= \alpha^{-1}(u_{\sigma}a) = da$, and so $\sigma(a)d = da$. Since $\beta(d)u_{\sigma} = \alpha(d) = u_{\sigma}$, we have $\beta(d) = 1$, whence d is in U(K), because β is a *B*-*B*-isomorphism. Finally, for $\varphi: P \to M$ in P(A/B), we correspond $[P] \in \text{Pic }(B)$. If ${}_{B}B_{B} \xrightarrow{\approx} {}_{B}P_{B}, 1 \mapsto u$, then P = Bu and $M = A \cdot \varphi(u)$. Since $M \xrightarrow{\approx} A \otimes {}_{B}P$ as left A, right B-modules, $a \cdot \varphi(u) = 0$ $(a \in A)$ implies a = 0. Hence there is an automorphism $\sigma \in \text{Aut } (A/B)$ such that $\varphi(u)a = \sigma(a)\varphi(u)$ for all $a \in A$. Then φ is isomorphic to i_{σ} . This completes the proof.

If we cut out P(A|B), we have well known exact sequences.

PROPOSITION 1.6. There are two exact sequences

$$\begin{split} 1 &\longrightarrow U(K) &\longrightarrow U(V_A(B)) \xrightarrow{\alpha} \mathfrak{S}(A/B) &\longrightarrow \operatorname{Pic}(B) , \\ 1 &\longrightarrow U(L) &\longrightarrow U(V_A(B)) \xrightarrow{\beta} \operatorname{Aut}(A/B) &\longrightarrow \operatorname{Pic}(A) , \end{split}$$

where $\alpha(d) = Bd$ and $\beta(d)(a) = dad^{-1}(d \in U(V_A(B)), a \in A)$.

Here we indicate Th. 1.4, Th. 1.5, and Prop. 1.6 by the following diagram:

If A is an R-algebra, we define $\operatorname{Pic}_{R}(A) = \{[P] \in \operatorname{Pic}(A) | rp = pr \text{ for} \\ all \ r \in R \text{ and all } p \in P\} \text{ and } P^{R}(A/B) = \{[\varphi] \in P(A/B) | \varphi \colon P \to N, [N] \in P\}$

Pic_{*R*}(*A*)}. If *B* is an *S*-algebra, we define $P_{\mathcal{S}}(A/B) = \{ [\varphi] \in P(A/B) | \varphi : P \rightarrow N, [P] \in \text{Pic}_{\mathcal{S}}(B) \}.$

§ 2. The definition of $C(\Delta/B)$, and an exact sequence associated with Δ/B .

In this section, we fix a (finite or infinite) group G, rings $B \subseteq A$, and a group homomorphism $J: \sigma \mapsto J_{\sigma}$ from G to $\mathfrak{G}(A/B)$. Then J induces a group homomorphism $G \to \operatorname{Aut}(V_A(B)/L)$ (cf. [19; Prop. 3.3]), and further $G \to \operatorname{Aut}(K/K \cap L)$. A generalized crossed product $\bigoplus_{\sigma \in G} J_{\sigma}/B$ associated with J is defined by $(x_{\sigma})(y_{\sigma}) = (z_{\sigma})$, where $z_{\sigma} = \sum_{\tau \rho = \sigma} x_{\tau} y_{\rho}$. We denote this by Δ/B in the sequel. Pic (B) is a left G-group defined by ${}^{\sigma}[P] = [J_{\sigma} \otimes_{B} P \otimes_{B} J_{\sigma^{-1}}]$ (conjugation). Then we define Pic $(B)^{G} = \{[P] \in$ Pic $(B) | {}^{\sigma}[P] = [P]$ for all $\sigma \in G\}$, and Pic_K $(B)^{G} =$ Pic $(B)^{G} \cap$ Pic_K (B). The homomorphism $\mathfrak{G}(A/B) \to P(A/B)$ in Th. 1.4 induces a left G-group P(A/B)defined by conjugation.

PROPOSITION 2.1. The following exact sequences consist of G-homomorphisms:

$$1 \longrightarrow U(L) \cap U(K) \longrightarrow U(K) \longrightarrow \operatorname{Aut} (A/B) \longrightarrow P(A/B) \longrightarrow \operatorname{Pic} (B)$$
$$1 \longrightarrow U(L) \longrightarrow U(V_{4}(B)) \longrightarrow \operatorname{Aut} (A/B) \longrightarrow \operatorname{Pic} (A)$$

Proof. Let $\sigma \in \operatorname{Aut}(A/B)$, and $X \in \mathfrak{G}(A/B)$, and let $\sum_i a_i a'_i = 1$ $(a_i \in X, a'_i \in X^{-1})$. Then $X(\sigma)(a) = \sum_i a_i \cdot \sigma(a'_i)\sigma(a) \sum_j \sigma(a_j)a'_j$ for all a in A(cf. § 1), and so $Au_{\sigma} \xrightarrow{\approx} Au_{X(\sigma)}$ as A-A-modules, by the map $au_{\sigma} \to a$ $\cdot \sum_i \sigma(a_i)a'_iu_{X(\sigma)}$. Then the following diagram is commutative:

Hence Aut $(A/B) \to P(A/B)$ is a G-homomorphism. Let c be in $U(V_A(B))$. Then, since X induces an automorphism of $V_A(B)$, there is a $c' \in U(V_A(B))$ such that xc = c'x for all $x \in X$ (i.e., X(c) = c'). Put $u = \sum_i a_i \cdot \tilde{c}(a'_i)$. Then $c'c^{-1} \cdot \tilde{c}(x) = c'c^{-1} \cdot cxc^{-1} = c'xc^{-1} = x$ for all x in X. Hence we know that $c'c^{-1} = u$ (cf. § 1). For any a in $A, X(\tilde{c})(a) = u \cdot \tilde{c}(a)u^{-1} = c'c^{-1}cac^{-1} \cdot cc'^{-1} = c'ac'^{-1}$. Hence $X(\tilde{c}) = \tilde{c'} = X(\tilde{c})$. The remainder is obvious.

We define $P(A/B)^{(G)} = \{ [\phi] \in P(A/B) | \phi : P \to M, J_{\sigma} \cdot \phi(P) = \phi(P) \cdot J_{\sigma} \text{ for all } \sigma \in G \}$. Then $P(A/B)^{(G)}$ is a subgroup of $P(A/B)^{G}$. In fact, for $\phi : P \to M$ in P(A/B), $[\phi]$ belongs to $P(A/B)^{(G)}$ if and only if, for any σ

in G, there is a B-B-isomorphism $f_{\sigma}: P \to J_{\sigma} \otimes {}_{B}P \otimes {}_{B}J_{\sigma^{-1}}$ such that the diagram

is commutative, where $({}^{\sigma}\phi)(x_{\sigma} \otimes p \otimes x'_{\sigma}) = x_{\sigma} \cdot \phi(p)x'_{\sigma}$. Here we shall check that $P(A/B)^{(G)}$ is closed with respect to inverse. We may assume that $P \subseteq M$ and $P^* \subseteq M^*$ (cf. [19; Lemma 3.1]). Then $P^* = \{g \in M^* | P^g \subseteq B\}$. In this sense, $(P)J_{\sigma}P^*J_{\sigma^{-1}} = (PJ_{\sigma})P^*J_{\sigma^{-1}} = (J_{\sigma}P)P^*J_{\sigma^{-1}} = J_{\sigma}((P)P^*)J_{\sigma^{-1}} = J_{\sigma}J_{\sigma^{-1}} = B$, and so $J_{\sigma}P^*J_{\sigma^{-1}} \subseteq P^*$ for all $\sigma \in G$. Hence $J_{\sigma}P^*J_{\sigma^{-1}} = P^*$ for all $\sigma \in G$.

We put $P_{\kappa}(A/B)^{(G)} = P_{\kappa}(A/B) \cap P(A/B)^{(G)}$. Further we define $\operatorname{Aut} (A/B)^{(G)} = \{f \in \operatorname{Aut} (A/B) | f(J_{\sigma}) = J_{\sigma} \text{ for all } \sigma \in G\}$. Then we have

PROPOSITION 2.2. There is an exact sequence

$$1 \longrightarrow U(L) \cap U(K) \longrightarrow U(K) \longrightarrow \operatorname{Aut} (A/B)^{(G)} \longrightarrow \operatorname{P}_{\kappa}(A/B)^{(G)} \longrightarrow \operatorname{Pic}_{\kappa}(B)^{G} .$$

Proof. The above sequence is a subsequence of the one in Th. 1.5. Therefore it suffices to prove that, for f in Aut(A/B), the image of f is contained in $P_{K}(A/B)^{(G)}$ if and only if $f \in \text{Aut}(A/B)^{(G)}$. However $J_{\sigma} \cdot Bu_{f}J_{\sigma^{-1}} = J_{\sigma} \cdot f(J_{\sigma})^{-1}u_{f}$, so that $J_{\sigma} \cdot Bu_{f}J_{\sigma^{-1}} = Bu_{f}$ if and only if $J_{\sigma} \cdot f(J_{\sigma})^{-1} = B$, or equivalently, $f(J_{\sigma}) = J_{\sigma}$. This completes the proof.

Next we state several lemmas (which are well known).

For any two-sided *B*-module *U*, we denote by $V_U(B) \{ u \in U | bu = ub \text{ for all } b \in B \}.$

LEMMA 2.3. Let B be an R-algebra, and P an R-module such that $_{R}P|_{R}R$ (i.e., finitely generated and projective). Then $\operatorname{End}_{r}(_{B}B \otimes _{R}P)$ $\xrightarrow{\approx} B \otimes _{R}\operatorname{End}_{r}(_{R}P)$ canonically, and $_{B}B \otimes _{R}P_{B}|_{B}B_{B}$ (cf. [19]). And further $V_{B\otimes P}(B) \xrightarrow{\approx} K \otimes _{R}P$ canonically, where K is the center of B. Therefore if $\operatorname{End}(_{R}P) = R$ then $_{B}B \otimes _{R}P_{B}$ is a Morita module.

Proof. The first assertion is well known. The remainder is evident, if $_{R}P$ is free. Hence it is true for any P such that $_{R}P|_{R}R$.

LEMMA 2.4. Let $_{B}M_{B}|_{B}B_{B}$. Then $M = B \cdot V_{M}(B) \xrightarrow{\approx} B \otimes _{K}V_{M}(B)$

canonically, and $_{K}V_{M}(B)|_{K}K$. Further $\operatorname{End}_{r}(_{K}V_{M}(B)) \xrightarrow{\approx} \operatorname{End}_{r}(_{B}M_{B})$ and $\operatorname{End}_{r}(_{B}M) \xrightarrow{\approx} B \otimes _{K}\operatorname{End}_{r}(_{B}M_{B})$, canonically.

Proof. ${}_{B}M_{B}|_{B}B_{B}$ implies that $V_{M}(K) = M$, and hence M may be considered as a left B^{e} -module, where $B^{e} = B \otimes_{K} B^{\circ p}$. Then ${}_{B^{e}}M|_{B^{e}}B$. Evidently $\operatorname{Hom}_{r}({}_{B^{e}}B, {}_{B^{e}}M) \xrightarrow{\approx} V_{M}(B)$ canonically. By [14; Th. 1.1], ${}_{B^{e}}M \xrightarrow{\approx} \operatorname{Hom}_{r}({}_{B^{e}}B^{e}, {}_{B^{e}}M) \xrightarrow{\approx} \operatorname{Hom}_{r}({}_{B^{e}}B^{e}, {}_{B^{e}}B) \otimes_{K}\operatorname{Hom}_{r}({}_{B^{e}}B, {}_{B^{e}}M) \xrightarrow{\approx} B \otimes_{K} V_{M}(B), {}_{K}V_{M}|_{K}K$ and $\operatorname{End}_{r}({}_{K}\operatorname{Hom}_{r}({}_{B^{e}}B, {}_{B^{e}}M)) \xrightarrow{\approx} \operatorname{End}_{r}({}_{B}M_{B})$. Combining this with Lemma 2.3, we obtain the last assertion.

COROLLARY 1. Further assume that $\operatorname{End}_r({}_{B}M_{B}) = K$, Then ${}_{B}M_{B}$ is a Morita module.

COROLLARY 2. Let ${}_{B}M_{B}|_{B}B_{B}$ and ${}_{B}M'_{B}|_{B}B_{B}$. Then ${}_{B}M_{B} \xrightarrow{\approx} {}_{B}M'_{B}$ if and only if ${}_{K}V_{M}(B) \xrightarrow{\approx} {}_{K}V_{M'}(B)$.

The following corollary is repeatedly used to check commutativity of diagrams.

COROLLARY 3. Let ${}_{B}M_{B}|{}_{B}B_{B}$ and ${}_{B}M'_{B}|{}_{B}B_{B}$. Then $V_{M\otimes M'}(B) \xrightarrow{\approx} V_{M}(B) \otimes {}_{K}V_{M'}(B)$ canonically, and there is an isomorphism ${}_{B}M \otimes M'_{B} \rightarrow {}_{B}M' \otimes M_{B}, m_{0} \otimes m' \mapsto m' \otimes m_{0}, m \otimes m'_{0} \mapsto m'_{0} \otimes m (m_{0} \in V_{M}(B), m \in M, m'_{0} \in V_{M'}(B), m' \in M')$, where unadorned \otimes means \otimes_{B} . We call this isomorphism the "transposition" of M and M'

Proof. By Lemma 2.4, $M = B \otimes_{\kappa} V_M(B)$ and $M' = B \otimes_{\kappa} V_{M'}(B)$. Consequently, $M \otimes M' = B \otimes_{\kappa} V_M(B) \otimes_{\kappa} V_{M'}(B)$. Then, by Lemma 2.3, $V_{M \otimes M'}(B) \xrightarrow{\approx} V_M(B) \otimes_{\kappa} V_{M'}(B)$ canonically. Since $V_M(B) \otimes_{\kappa} V_{M'}(B) \xrightarrow{\approx} V_M(B) \otimes_{\kappa} V_M(B)$ by transposition, we obtain the latter assertion.

Remark. We put $\{[M] \in \operatorname{Pic}(B)|_{B}M_{B} \sim {}_{B}B_{B}\} = \operatorname{Pic}_{0}(B)([19])$. Then, by Lemma 2.3, Lemma 2.4, and Cor. 3 to Lemma 2.4, $\operatorname{Pic}_{K}(K) \xrightarrow{\approx} \operatorname{Pic}_{0}(B)$, $[P] \mapsto [P \otimes_{K}B]$.

The following lemma is also used to check commutativity of diagrams

LEMMA 2.5. Let $_{B}U \otimes _{B}W_{B} \sim _{B}B_{B} \sim _{B}M_{B}$. If $x \in V_{M}(B)$ and $\sum_{i} u_{i} \otimes w_{i} \in V_{U \otimes W}(B)$, then $\sum_{i} u_{i} \otimes x \otimes w_{i} \in V_{U \otimes M \otimes W}(B)$.

Proof. For any x in $V_M(B)$, $U \otimes_B W \to U \otimes M \otimes W$, $u \otimes w \mapsto u \otimes x \otimes w$ is a *B-B*-homomorphism.

Next we shall define an abelian group $C(\Delta/B)$, which is the main object in the present paper. In the rest of this section, unadorned \otimes

always means \otimes_{B} . $C(\mathcal{A}/B)$ consists of all isomorphic classes of generalized crossed products $\bigoplus_{\sigma \in G} V_{\sigma}/B$ of B with G such that ${}_{B}V_{\sigma B} \sim {}_{B}J_{\sigma B}$ for all $\sigma \in G$ (cf. [19]). Let $\oplus V_{\sigma}/B$ and $\oplus W_{\sigma}/B$ be generalized crossed products of B with G, and let f be a B-ring isomorphism from $\oplus V_{\sigma}/B$ to $\oplus W_{\sigma}/B$. If $f(V_{\sigma}) = W_{\sigma}$ for all $\sigma \in G$, we call f an isomorphism as generalized Precisely a generalized crossed product $\oplus V_{\sigma}/B$ is crossed products. written as $(\bigoplus V_{\sigma}/B, f_{\sigma,\tau})$, and its isomorphic class is denoted by $[\bigoplus V_{\sigma}/B, f_{\sigma,\tau}]$, where $f_{\sigma,\tau}: V_{\sigma} \otimes V_{\tau} \to V_{\sigma\tau}$ is the multiplication. In particular, the multiplication of Δ is denoted by $\phi_{\sigma,\tau}$. However we denote often $(\bigoplus J_{\sigma}/B, \phi_{\sigma,\tau})$ by $\oplus J_{\sigma}/B$, simply. Let $(\oplus V_{\sigma}/B, f_{\sigma,\tau})$ and $(\oplus W_{\sigma}/B, g_{\sigma,\tau})$ be generalized crossed products in $C(\Delta/B)$. Then the σ -component of the product of $(\bigoplus V_{\sigma}/B, f_{\sigma,\tau})$ and $(\bigoplus W_{\sigma}/B, g_{\sigma,\tau})$ is defined as $V_{\sigma} \otimes J_{\sigma^{-1}} \otimes W_{\sigma}$. The multiplication is defined by $h_{\sigma,\tau} \colon V_{\sigma} \otimes J_{\sigma^{-1}} \otimes W_{\sigma} \otimes V_{\tau} \otimes J_{\tau^{-1}} \otimes W_{\tau} \xrightarrow{t} V_{\sigma} \otimes V_{\tau}$ $\otimes J_{\tau^{-1}} \otimes J_{\sigma^{-1}} \otimes W_{\sigma} \otimes W_{\tau} \xrightarrow{*} V_{\sigma\tau} \otimes J_{(\sigma\tau)^{-1}} \otimes W_{\sigma\tau}$, where t is the transposition of $J_{\sigma^{-1}} \otimes W_{\sigma}$ and $V_{\tau} \otimes J_{\tau^{-1}}$, and $* = f_{\sigma,\tau} \otimes \phi_{\sigma,\tau} \otimes g_{\sigma,\tau}$. The associativity of the above multiplication is proved by making use of Cor. 3 to Lemma 2.4. If we identify the canonical isomorphism $B \otimes B \otimes B \to B$, then we have a generalized crossed product $(\bigoplus (V_{\sigma} \otimes J_{\sigma^{-1}} \otimes W_{\sigma})/B, h_{\sigma,\tau})$. The associativity of this composition in C(A/B) is proved by using Cor. 3 to Lemma 2.4, too. Evidently $[\oplus J_{\sigma}/B, \phi_{\sigma,\tau}]$ is the identity element of $C(\Delta/B)$. The σ -component of the inverse of $(\bigoplus V_{\sigma}/B, f_{\sigma,\tau})$ is $J_{\sigma} \otimes V_{\sigma}^* \otimes J_{\sigma}$, where $V_{\sigma}^* = \operatorname{Hom}_r({}_{B}V_{\sigma}, {}_{B}B)$. The multiplication is defined by $f_{\sigma,\tau}^*: J_{\sigma} \otimes$ $(V^*_{\sigma} \otimes J_{\sigma}) \otimes (J_{\tau} \otimes V^*_{\tau}) \otimes J_{\tau} \xrightarrow{t} J_{\sigma} \otimes (J_{\tau} \otimes V^*_{\tau}) \otimes (V^*_{\sigma} \otimes J_{\sigma}) \otimes J_{\tau} \xrightarrow{\phi \otimes * \otimes \phi} J_{\sigma\tau} \otimes (V^*_{\sigma} \otimes J_{\sigma}) \otimes J_{\tau} \xrightarrow{\phi \otimes * \otimes \phi} J_{\sigma\tau} \otimes (V^*_{\sigma} \otimes J_{\sigma}) \otimes J_{\tau} \otimes (V^*_{\sigma} \otimes J_{\sigma}) \otimes J_{\tau} \otimes (V^*_{\sigma} \otimes J_{\sigma}) \otimes J_{\tau} \otimes (V^*_{\sigma} \otimes J_{\sigma}) \otimes (V^*_{\sigma} \otimes J_{\sigma}) \otimes J_{\tau} \otimes (V^*_{\sigma} \otimes J_{\sigma}) \otimes J_{\tau} \otimes (V^*_{\sigma} \otimes J_{\sigma}) \otimes (V^*_{\sigma}$ $V_{\sigma\tau}^* \otimes J_{\sigma\tau}$, where $*: V_{\tau}^* \otimes V_{\sigma}^* \to (V_{\sigma} \otimes V_{\tau})^* \to V_{\sigma\tau}^*$ is the canonical isomorphism induced by $f_{\sigma,\tau}$. We identify the canonical isomorphism $B \otimes B^*$ $\otimes B \to B$, and we have a generalized crossed product $(\oplus (J_{\sigma} \otimes V_{\sigma}^* \otimes J_{\sigma})/B)$, $f_{\mathfrak{q},\mathfrak{r}}^*$). By the isomorphism $V_{\mathfrak{q}} \otimes (J_{\mathfrak{q}^{-1}} \otimes J_{\mathfrak{q}}) \otimes V_{\mathfrak{q}}^* \otimes J_{\mathfrak{q}} \to (V_{\mathfrak{q}} \otimes V_{\mathfrak{q}}^*) \otimes J_{\mathfrak{q}} \to$ J_{σ} , the product of $(\bigoplus V_{\sigma}/B, f_{\sigma,\tau})$ and $(\bigoplus (J_{\sigma} \otimes V_{\sigma}^* \otimes J_{\sigma})/B, f_{\sigma,\tau}^*)$ is isomorphic to Δ , as generalized crossed products. Hence $C(\Delta/B)$ is a group. Finally $C(\Delta/B)$ is an abelian group, because the isomorphism $V_{\sigma} \otimes J_{\sigma^{-1}}$ $\otimes W_{\sigma} \to V_{\sigma} \otimes J_{\sigma^{-1}} \otimes W_{\sigma} \otimes (J_{\sigma^{-1}} \otimes J_{\sigma}) \xrightarrow{t} W_{\sigma} \otimes J_{\sigma^{-1}} \otimes V_{\sigma} \otimes (J_{\sigma^{-1}} \otimes J_{\sigma}) \to W_{\sigma}$ $\otimes J_{\sigma^{-1}} \otimes V_{\sigma}$ is an isomorphism as generalized crossed products, where t is the transposition of $V_{\sigma} \otimes J_{\sigma^{-1}}$ and $W_{\sigma} \otimes J_{\sigma^{-1}}$. By $C_0(\Delta/B)$, we denote the subgroup of all generalized crossed products $[\bigoplus V_{\sigma}/B, f_{\sigma,\tau}]$ such that $_{B}V_{\sigma_{B}} \xrightarrow{\approx} _{B}J_{\sigma_{B}}$ for all $\sigma \in G$. We put $\operatorname{Pic}_{K}(B)^{[G]} = \{[P] \in \operatorname{Pic}_{K}(B) \mid _{B}P \otimes J_{\sigma}\}$ $\otimes *P_{B} \sim {}_{B}J_{\sigma_{B}}$ for all σ in G}, where $*P = \operatorname{Hom}_{l}(P_{B}, B_{B})$, and "~" means

"similar" (cf. [19]). Then $\operatorname{Pic}_{\kappa}(B)^{[G]}$ is evidently a subgroup of $\operatorname{Pic}_{\kappa}(B)$. Then the canonical isomorphism $*P \otimes P \to B$ induces an isomorphism $P \otimes J_{\sigma} \otimes (*P \otimes P) \otimes J_{\tau} \otimes *P \to P \otimes J_{\sigma} \otimes J_{\tau} \otimes *P$, and we obtain ${}^{P}\phi_{\sigma,\tau} \colon (P \otimes J_{\sigma} \otimes *P) \otimes (P \otimes J_{\tau} \otimes *P) \to P \otimes J_{\sigma} \otimes J_{\tau} \otimes *P \xrightarrow{P} \stackrel{|\otimes \phi \otimes|}{\longrightarrow} P \otimes J_{\sigma\tau} \otimes *P$. Then $(\bigoplus (P \otimes J_{\sigma} \otimes *P)/B, {}^{P}\phi_{\sigma,\tau})$ is a generalized crossed product, and $[P] \mapsto [\bigoplus (P \otimes J_{\sigma} \otimes *P)/B, {}^{P}\phi_{\sigma,\tau}]$ is a group homomorphism from $\operatorname{Pic}_{\kappa}(B)^{[G]}$ to $C(\Delta/B)$. Thus we have proved the following theorem

THEOREM 2.6. $C(\Delta/B)$ is an abelian group with identity Δ/B , and $C_0(\Delta/B)$ is a subgroup of $C(\Delta/B)$. There is a commutative diagram

Remark. $C_0(\Delta/B)$ is isomorphic to $H^2(G, U(K))$. The isomorphism is defined as follows: Let $[\oplus J_{\sigma}/B, f_{\sigma,\tau}]$ be in $C_0(\Delta/B)$. Then, for any σ, τ in G, there exists uniquely $a_{\sigma,\tau} \in U(K)$ such that $f_{\sigma,\tau}(x_{\sigma} \otimes x_{\tau}) =$ $a_{\sigma,\tau} \cdot \phi_{\sigma,\tau}(x_{\sigma} \otimes x_{\tau})$ for all $x_{\sigma} \in J_{\sigma}, x_{\tau} \in J_{\tau}$. Then $\{a_{\sigma,\tau} | \sigma, \tau \in G\}$ is a (normalized) factor set, and $[\oplus J_{\sigma}/B, f_{\sigma,\tau}] \mapsto \text{class } \{a_{\sigma,\tau}\}$ is an isomorphism. $(\oplus J_{\sigma}/B, f_{\sigma,\tau})$ may be written as $(\oplus J_{\sigma}/B, a_{\sigma,\tau})$ when Δ is fixed.

PROPOSITION 2.7. There is an exact sequence

 $P_{K}(\varDelta/B)^{(G)} \longrightarrow \operatorname{Pic}_{K}(B)^{G} \longrightarrow C_{0}(\varDelta/B)$.

Proof. The semi-exactness follows from the definition of $P_{K}(\Delta/B)^{(G)}$ ([19; § 3]). Let $[P] \in \operatorname{Pic}_{K}(B)^{G}$ be in the kernel. Then $(\oplus (P \otimes J_{\sigma} \otimes *P), {}^{P}\phi_{\sigma,\tau})$ is isomorphic to $(\oplus J_{\sigma}, \phi_{\sigma,\tau}) = \Delta$. However, by [19; p. 116], $(\oplus P \otimes J_{\sigma} \otimes *P), {}^{P}\phi_{\sigma,\tau})/B$ is isomorphic to $\operatorname{End}_{l}(P \otimes {}_{B}\Delta_{d})/B$, as rings, and so we have a Morita module ${}_{d}P \otimes {}_{B}\Delta_{d}$. Then the canonical homomorphism P to $P \otimes \Delta, p \mapsto p \otimes 1$ is in $P_{K}(\Delta/B)^{(G)}$.

An abelian group $B(\Delta/B)$ is defined by the following exact sequence:

$$\operatorname{Pic}_{K}(B)^{[G]} \longrightarrow C(\varDelta/B) \longrightarrow B(\varDelta/B) \longrightarrow 1$$

Then we have

PROPOSITION 2.8. There is an exact sequence

 $\operatorname{Pic}_{K}(B)^{G} \longrightarrow C_{0}(\varDelta/B) \longrightarrow B(\varDelta/B)$

Proof. The semi-exactness is trivial. If $[\bigoplus J_{\sigma}, f_{\sigma,\tau}]$ is in the kernel of $C_0(\Delta/B) \to B(\Delta/B)$, then there is [P] in $\operatorname{Pic}_K(B)^{[G]}$ such that $[P] \mapsto$ $[\bigoplus J_{\sigma}, f_{\sigma,\tau}]$ under the homomorphism $\operatorname{Pic}_K(B)^{[G]} \to C(\Delta/B)$. Then it is evident that [P] is in $\operatorname{Pic}_K(B)^{G}$.

By Remark to Cor. 3 to-Lemma 2.4, $\operatorname{Pic}_{\kappa}(K) \to \operatorname{Pic}_{0}(B), [P_{0}] \mapsto [P_{0} \otimes_{\kappa} B]$ is an isomorphism, and $[P] \mapsto [V_{P}(B)]$ is its inverse.

PROPOSITION 2.9. The above isomorphism is a G-isomorphism.

Proof. Let [P] be in $\operatorname{Pic}_0(B)$. Then $P = B \otimes_{\mathbb{K}} V_P(B)$, and $J_{\sigma} \otimes P \otimes J_{\sigma^{-1}} \xrightarrow{\approx} J_{\sigma} \otimes (B \otimes_{\mathbb{K}} V_P(B)) \otimes J_{\sigma^{-1}} \xrightarrow{\approx} (J_{\sigma} \otimes_{\mathbb{K}} V_P(B)) \otimes J_{\sigma^{-1}}$ as two-sided *B*-modules. It is easily seen that $J_{\sigma} \otimes_{\mathbb{K}} V_P(B) \to Ku_{\sigma} \otimes_{\mathbb{K}} V_P(B) \otimes_{\mathbb{K}} Ku_{\sigma^{-1}} \otimes_{\mathbb{K}} J_{\sigma}, x_{\sigma} \otimes p_0 \mapsto u_{\sigma} \otimes p_0 \otimes u_{\sigma^{-1}} \otimes x_{\sigma}$ is a *B*-*B*-isomorphism, where σ denotes the automorphism induced by J_{σ} . Therefore $J_{\sigma} \otimes P \otimes J_{\sigma^{-1}} \xrightarrow{\approx} Ku_{\sigma} \otimes_{\mathbb{K}} V_P(B) \otimes_{\mathbb{K}} Ku_{\sigma^{-1}} \otimes_{\mathbb{K}} B, x_{\sigma} \otimes p_0 \otimes x_{\sigma^{-1}} \mapsto u_{\sigma} \otimes p_0 \otimes u_{\sigma^{-1}} \otimes x_{\sigma} x_{\sigma^{-1}} (x_{\sigma} \in J_{\sigma}, x_{\sigma^{-1}} \in J_{\sigma^{-1}}, p_0 \in V_P(B))$ is a *B*-*B*-isomorphism. Hence, by Lemma 2.3, $V_{J\sigma \otimes P \otimes J\sigma^{-1}}(B) \xrightarrow{\approx} Ku_{\sigma} \otimes_{\mathbb{K}} V_P(B) \otimes_{\mathbb{K}} Ku_{\sigma^{-1}}$, as *K*-modules. This completes the proof.

COROLLARY. $Z^{1}(G, \operatorname{Pic}_{K}(K)) \xrightarrow{\approx} Z^{1}(G, \operatorname{Pic}_{0}(B)).$

There is a group homomorphism $[\bigoplus V_{\sigma}, f_{\sigma,\tau}] \mapsto (\sigma \to [V_{\sigma}] [J_{\sigma}]^{-1}) \ (\sigma \in G)$ from $C(\Delta/B)$ to $Z^{1}(G, \operatorname{Pic}_{0}(B))$. Then the following sequence is exact:

$$1 \longrightarrow C_0(\Delta/B) \longrightarrow C(\Delta/B) \longrightarrow Z^1(G, \operatorname{Pic}_0(B))$$

 $\overline{H}^{1}(G, \operatorname{Pic}_{0}(B))$ is defined by the exactness of the following row:

$$\operatorname{Pic}_{K}(B)^{[G]} \longrightarrow Z^{1}(G, \operatorname{Pic}_{0}(B)) \longrightarrow \overline{H}^{1}(G, \operatorname{Pic}_{0}(B)) \longrightarrow 1$$

$$C(\Delta/B)$$

PROPOSITION 2.10. $C_0(\mathcal{A}/B) \to B(\mathcal{A}/B) \to \overline{H}^1(G, \operatorname{Pic}_0(B))$ is exact.

Proof. Evidently the above sequence is semi-exact. Let $[[\oplus V_{\sigma}, f_{\sigma,\tau}]]$ (the class of $[\oplus V_{\sigma}, f_{\sigma,\tau}]$ in $B(\Delta/B)$) be in the kernel. Then there is a $[P] \in \operatorname{Pic}_{K}(B)^{[G]}$ such that $P \otimes J_{\sigma} \otimes *P \xrightarrow{\approx} V_{\sigma}$ for all $\sigma \in G$, where $*P = \operatorname{Hom}_{l}(P_{B}, B_{B})$. For any $\sigma \in G$, we fix an isomorphism $h_{\sigma} \colon P \otimes J_{\sigma} \otimes *P \to V_{\sigma} \cdot f'_{\sigma,\tau}$ is defined by the commutativity of the diagram

where * is defined by $*P \otimes P \xrightarrow{\approx} B$ (canonical) and $\phi_{\sigma,\tau}$. Then $(\bigoplus V_{\sigma}, f'_{\sigma,\tau})$ differs from $(\bigoplus V_{\sigma}, f_{\sigma,\tau})$ by some factor set $\{a_{\sigma,\tau}\}$, i.e., $f'_{\sigma,\tau} = a_{\sigma,\tau}f_{\sigma,\tau}$ (cf. Remark to Th. 2.6.). Then, by the canonical isomorphism $J_{\sigma} \otimes J_{\sigma^{-1}} \otimes V_{\sigma} \xrightarrow{\approx} V_{\sigma}$, $(\bigoplus J_{\sigma}, a_{\sigma,\tau}) \times (\bigoplus V_{\sigma}, f_{\sigma,\tau})$ is isomorphic to $(\bigoplus V_{\sigma}, f'_{\sigma,\tau})$. Since $(\bigoplus V_{\sigma}, f'_{\sigma,\tau})$ is isomorphic to $(\bigoplus (P \otimes J_{\sigma} \otimes *P), {}^{P}\phi_{\sigma,\tau})$, this completes the proof.

PROPOSITION 2.11. There is an exact sequence

$$B(\varDelta/B) \longrightarrow \overline{H}^{1}(G, \operatorname{Pic}_{0}(B)) \longrightarrow H^{3}(G, U(K))$$

Proof. For ϕ in $Z^1(G, \operatorname{Pic}_0(B))$, a homomorphism Φ from G to $\operatorname{Pic}(B)$ is defined by $\Phi(\sigma) = \phi(\sigma)[J_{\sigma}]$. Let $\Phi(\sigma) = [U_{\sigma}]$ and $U_1 = B$. Then $U_{\sigma} \sim J_{\sigma}$, as *B-B*-modules, for all $\sigma \in G$. For σ, τ in G, we take a *B-B*-isomorphism $f_{\sigma,\tau} \colon U_{\sigma} \otimes U_{\tau} \to U_{\sigma\tau}$. If $\sigma = 1$ or $\tau = 1$ then we take $f_{\sigma,\tau}$ as a canonical one. Then, for any σ, τ, γ in G, there exists uniquely $u(\sigma, \tau, \gamma) \in$ U(K) such that $u(\sigma, \tau, \gamma) f_{\sigma,\tau\gamma}(I_{\sigma} \otimes f_{\tau,\gamma})(x) = f_{\sigma\tau,\gamma}(f_{\sigma,\tau} \otimes I_{\gamma})(x)$ for all x in $J_{\sigma\tau\gamma}$, where I_{σ} is the identity of U_{σ} .

If $\sigma = 1$ or $\tau = 1$ or $\gamma = 1$, then $u(\sigma, \tau, \gamma) = 1$. Let $f'_{\sigma,\tau}$ be another isomorphism from $U_{\sigma} \otimes U_{\tau}$ to $U_{\sigma\tau}$, and let $u'(\sigma, \tau, \gamma)$ be the one determined by $f'_{\sigma,\tau}$. Then, for any σ, τ in G, there exists a unique $u(\sigma, \tau) \in U(K)$ such that $u(\sigma, \tau)f_{\sigma,\tau} = f'_{\sigma,\tau}$. If $\sigma = 1$ or $\tau = 1$, then $u(\sigma, \tau) = 1$. It is easily seen that $u'(\sigma, \tau, \gamma) = u(\sigma\tau, \gamma)u(\sigma, \tau) \cdot {}^{\sigma}u(\tau, \gamma)^{-1}u(\sigma, \tau\gamma)^{-1}u(\sigma, \tau, \gamma)$. Let H be the group of all functions u from $G \times G \times G$ to U(K). Then $Z^1(G, \operatorname{Pic}_0(B))$ $\rightarrow H/B^3(G, U(K)), \phi \mapsto \operatorname{class} \{u(\sigma, \tau, \gamma)\}$ is well defined, and this induces $\alpha \colon \overline{H}^1(G, \operatorname{Pic}_0(B)) \to H/B^3(G, U(K))$, where $B^3(G, U(K))$ consists of all $u(-, -, -) \in H$ such that $u(\sigma, \tau, \gamma) = u(\sigma\tau, \gamma)u(\sigma, \tau) \cdot {}^{\sigma}u(\tau, \gamma)^{-1}u(\sigma, \tau\gamma)^{-1}$ for

some mapping $u(-, -): G \times G \to U(K)$ such that $u(\sigma, \tau) = 1$ provided $\sigma = 1$ or $\tau = 1$. If class $\{u(\sigma, \tau, \gamma)\} = 1$ then, for a suitable choice of $f_{\sigma,\tau}$, we can take $u(\sigma, \tau, \gamma) = 1$ for all $\sigma, \tau, \gamma \in G$. Next we shall show that α is a homomorphism from $\overline{H}^1(G, \operatorname{Pic}_0(B))$ to $H/B^3(G, U(K))$. We take another $\psi \in Z^1(G, \operatorname{Pic}_0(B))$, and put $\Psi(\sigma) = \psi(\sigma)[J_\sigma] = [W_\sigma]$. And let each $g_{\sigma,\tau}: W_\sigma \otimes W_\tau \to W_{\sigma\tau}$ be a *B-B*-isomorphism, and $u_1(\sigma, \tau, \gamma)$ be the one determined by $g_{\sigma,\tau}$. Put $\phi \psi = \pi$. Then $\Pi(\sigma) = \phi(\sigma)\psi(\sigma)[J_\sigma] = \phi(\sigma)[J_\sigma][J_\sigma]^{-1}$ $\cdot \psi(\sigma)[J_\sigma] = \Phi(\sigma)[J_\sigma]^{-1}\psi(\sigma) = [U_\sigma \otimes J_{\sigma^{-1}} \otimes W_\sigma]$. We take an isomorphism $k_{\sigma,\tau}: U_\sigma \otimes J_{\sigma^{-1}} \otimes W_\sigma \otimes U_\tau \otimes J_{\tau^{-1}} \otimes W_\tau$. $\stackrel{*}{\longrightarrow} U_{\sigma\tau} \otimes J_{(\sigma\tau)^{-1}} \otimes W_{\sigma\tau}$, where t is the transposition of $J_{\sigma^{-1}} \otimes W_\sigma$ and $U_\tau \otimes J_{\tau^{-1}}$, and $* = f_{\sigma,\tau} \otimes \phi_{\tau^{-1},\sigma^{-1}} \otimes g_{\sigma,\tau}$. Then, by using of Cor. 3 to Lemma 2.4, it is easily seen that $u(\sigma, \tau, \gamma)u_1(\sigma, \tau, \gamma)k_{\sigma,\tau\tau}(I_\sigma \otimes k_{\tau,\gamma}) = k_{\sigma,\tau}(k_{\sigma,\tau} \otimes I_\gamma)$. The fact that Im α is contained in $H^3(G, U(K))$ will be proved later. Thus we have obtained the following theorem, which may be considered as a generalization of Chase, Harrison, Resenberg [8; Cor. 5.5].

THEOREM 2.12. Let G be a group, and $\Delta/B = (\bigoplus J_{\sigma}, \phi_{\sigma,\tau})$ be a generalized crossed product of B with G. Let C and K be the centers of Δ and B, respectively. Then there is an exact sequence

$$1 \longrightarrow U(C) \cap U(K) \longrightarrow U(K) \longrightarrow \operatorname{Aut} (\varDelta/B)^{(G)}$$
$$\longrightarrow P_{K}(\varDelta/B)^{(G)} \longrightarrow \operatorname{Pic}_{K}(B)^{G} \longrightarrow C_{0}(\varDelta/B)$$
$$\longrightarrow B(\varDelta/B) \longrightarrow \overline{H}^{1}(G, \operatorname{Pic}_{0}(B)) \longrightarrow H^{3}(G, U(K))$$

Proof. This follows from Propositions 2.2, 2.7, 2.8, 2.10 and 2.11.

Remark. The above sequence can be expressed as a seven term exact sequence:

$$1 \longrightarrow H^{1}(G, U(K)) \longrightarrow P_{K}(\mathcal{A}/B)^{(G)} \longrightarrow \operatorname{Pic}_{K}(B)^{G} \longrightarrow H^{2}(G, U(K))$$
$$\longrightarrow B(\mathcal{A}/B) \longrightarrow \overline{H}^{1}(G, \operatorname{Pic}_{0}(B)) \longrightarrow H^{3}(G, U(K)) .$$

In fact, for any $f \in \operatorname{Aut} (\Delta/B)^{(G)}$ and any $\sigma \in G$, there exists uniquely $c_0 \in U(K)$ such that $f(x_{\sigma}) = c_{\sigma}x_{\sigma}$ for all $x_{\sigma} \in J_{\sigma}$. Then it is easily seen that $c_{\sigma\tau} = c_{\sigma} \cdot {}^{\sigma}c_{\tau}$ for all $\sigma, \tau \in G$, and we have an isomorphism $\operatorname{Aut} (\Delta/B)^{(G)} \xrightarrow{\approx} Z^1(G, U(K))$. Evidently the image of U(K) in $\operatorname{Aut} (\Delta/B)^{(G)}$ corresponds to $B^1(G, U(K))$.

Let $P_{\sigma}(\sigma \in G)$ be a family of Morita *B*-*B*-modules such that ${}_{B}P_{\sigma B}$ ~ ${}_{B}B_{B}, P_{1} = B$. Then ${}_{B}P_{\sigma} \otimes J_{\sigma B} \sim {}_{B}J_{\sigma B}$. Put $V_{P_{\sigma}}(B) = P_{0,\sigma}$. Then ${}_{K}P_{0,\sigma}$

~ $_{K}K$, and so $_{K}P_{0,\sigma} \otimes _{K}Ku_{\sigma_{K}} \sim _{K}Ku_{\sigma_{K}}$. It was noted in the proof of Prop. 2.9 that $Ku_{\sigma} \otimes _{K}P_{0,\tau} \otimes _{K}Ku_{\sigma^{-1}} \xrightarrow{\approx} V_{J\sigma \otimes P\tau \otimes J\sigma^{-1}}(B)$, as K-K-modules, $u_{\sigma} \otimes p_{\tau} \otimes u_{\sigma^{-1}} \mapsto \sum_{i} a_{i} \otimes p_{\tau} \otimes a'_{i}$, where $a_{i} \in J_{\sigma}$, $a'_{i} \in J_{\sigma^{-1}}$, $\sum_{i} a_{i}a'_{i} = 1$. Let $f_{\sigma,\tau}^{*}: P_{\sigma} \otimes J_{\sigma} \otimes P_{\tau} \otimes J_{\sigma^{-1}} \to P_{\sigma\tau}(\sigma, \tau \in G)$ be a family of B-B-isomorphisms. Then, since $V_{J\sigma \otimes P\tau \otimes J\sigma^{-1}}(B) \xrightarrow{\approx} Ku_{\sigma} \otimes _{K}P_{0,\tau} \otimes _{K}Ku_{\sigma^{-1}}$, each $f_{\sigma,\tau}^{*}$ induces a K-K-isomorphism $f_{0,\sigma,\tau}^{*}: P_{0,\sigma} \otimes _{K}Ku_{\sigma} \otimes _{K}P_{0,\tau} \otimes _{K}Ku_{\sigma^{-1}} \to P_{0,\sigma\tau}$ (cf. Cor. 3 to Lemma 2.4), and conversely, and it is evident that $\{f_{\sigma,\tau}^{*}|\sigma,\tau \in G\} \mapsto$ $\{f_{0,\sigma,\tau}^{*}|\sigma,\tau \in G\}$ is a one to one mapping between them. This is nothing but an isomorphism in Cor. to Prop. 2.9, and we can prove the commutativity of the following diagram:

$$Z^{1}(G, \operatorname{Pic}_{K}(K)) \longrightarrow Z^{1}(G, \operatorname{Pic}_{0}(B))$$

$$\swarrow$$

$$H/B^{3}(G, U(K))$$

Then, by the same way as in [16; Lemma 8], the image of $Z^{1}(G, \operatorname{Pic}_{\kappa}(K))$ in $H/B^{3}(G, U(K))$ is contained in $H^{3}(G, U(K))$, and this completes the proof On the other hand, $f_{\sigma,\tau}^*: P_{\sigma} \otimes J_{\sigma} \otimes P_{\tau} \otimes J_{\sigma^{-1}} \xrightarrow{f_{\sigma,\tau}^* \otimes \phi_{\sigma,\tau}}$ of Th. 2.12. $P_{\sigma\tau}(\sigma, \tau \in G)$ induces $f_{\sigma,\tau} \colon P_{\sigma} \otimes J_{\sigma} \otimes P_{\tau} \otimes J_{\tau} \to (P_{\sigma} \otimes J_{\sigma} \otimes P_{\tau} \otimes J_{\sigma^{-1}}) \otimes (J_{\sigma} \otimes J_{\tau})$ $\rightarrow P_{\sigma\tau} \otimes J_{\sigma\tau}(\sigma, \tau \in G)$ and conversely, and $\{f^*_{\sigma,\tau} | \sigma, \tau \in G\} \mapsto \{f_{\sigma,\tau} | \sigma, \tau \in G\}$ is a 1-1 mapping. A similar fact holds with respect to $P_{0,\sigma}(\sigma \in G)$ and a crossed product $\oplus Ku_{\sigma}$ with trivial factor set: $\{f_{0,\sigma,\tau}^* | \sigma, \tau \in G\} \mapsto \{f_{0,\sigma,\tau} | \sigma, \tau \in G\}$. Let $\{f_{\sigma,\tau}\} \leftrightarrow \{f_{\sigma,\tau}^*\} \leftrightarrow \{f_{0,\sigma,\tau}^*\} \leftrightarrow \{f_{0,\sigma,\tau}\}$. Then $\{f_{\sigma,\tau}\}$ defines a generalized crossed product if and only if so is $\{f_{0,\sigma,t}\}$. Its proof is easy, but it is tedious, so we omit it. Next we shall show that $\{f_{\sigma,\tau}\} \mapsto \{f_{0,\sigma,\tau}\}$ is an isomorphism from $C(\Delta/B)$ to $C(\oplus Ku_{\sigma}/K)$. To this end, let $[\oplus (Q_{\sigma} \otimes J_{\sigma}),$ $g_{\sigma,\tau}$] be another element in $C(\Delta/B)$, and let $[\oplus (P_{\sigma} \otimes Q_{\sigma} \otimes J_{\sigma}), h_{\sigma,\tau}]$ be the product of $[\oplus (P_{\sigma} \otimes J_{\sigma}), f_{\sigma,\tau}]$ and $[\oplus (Q_{\sigma} \otimes J_{\sigma}), g_{\sigma,\tau}]$ (cf. the proof of Th. 2.6). Then $f_{\sigma,\tau}^*: P_\sigma \otimes J_\sigma \otimes P_\tau \otimes J_{\sigma^{-1}} \xrightarrow{\approx} P_{\sigma\tau}$ and $g_{\sigma,\tau}^*: Q_\sigma \otimes J_\sigma \otimes Q_\tau \otimes J_{\sigma^{-1}}$ $\xrightarrow{\approx} Q_{\sigma\tau} \quad \text{induce} \quad f_{\sigma,\tau}^* \otimes g_{\sigma,\tau}^* \colon P_{\sigma} \otimes J_{\sigma} \otimes P_{\tau} \otimes J_{\sigma^{-1}} \otimes Q_{\sigma} \otimes J_{\sigma} \otimes Q_{\tau} \otimes J_{\sigma^{-1}} \xrightarrow{\approx}$ $P_{\sigma\tau} \otimes Q_{\sigma\tau}$. Similarly $f_{0,\sigma,\tau}^*$ and $g_{0,\sigma,\tau}^*$ induce $f_{0,\sigma,\tau}^* \otimes g_{0,\sigma,\tau}^*$. On the other hand there are isomorphisms $P_{\sigma} \otimes J_{\sigma} \otimes P_{\tau} \otimes J_{\sigma^{-1}} \otimes Q_{\sigma} \otimes J_{\sigma} \otimes Q_{\tau} \otimes J_{\sigma^{-1}}$ $\xrightarrow{t} P_{\sigma} \otimes Q_{\sigma} \otimes J_{\sigma} \otimes P_{\tau} \otimes (J_{\sigma^{-1}} \otimes J_{\sigma}) \otimes Q_{\tau} \otimes J_{\sigma^{-1}} \xrightarrow{*} P_{\sigma} \otimes Q_{\sigma} \otimes J_{\sigma} \otimes P_{\tau} \otimes Q_{\tau}$ $\otimes J_{\sigma^{-1}}$, where t is the transposition of $J_{\sigma} \otimes P_{\tau} \otimes J_{\sigma^{-1}}$ and Q_{σ} . Similarly we have an isomorphism $P_{0,\sigma} \otimes Ku_{\sigma} \otimes P_{0,\tau} \otimes Ku_{\sigma^{-1}} \otimes Q_{0,\sigma} \otimes Ku_{\sigma} \otimes Q_{0,\tau} \otimes$ $Ku_{\sigma^{-1}} \rightarrow P_{0,\sigma} \otimes Q_{0,\sigma} \otimes Ku_{\sigma} \otimes P_{0,\tau} \otimes Q_{0,\tau} \otimes Ku_{\sigma^{-1}}$ for all $\sigma, \tau \in G$. Then the following two diagrams are commutative:

where $[\oplus (P_{0,\sigma} \otimes_{K} Ku_{\sigma}), h_{0,\sigma,\tau}]$ is the product of $[\oplus (P_{0,\sigma} \otimes_{K} Ku_{\sigma}), f_{0,\sigma,\tau}]$ and $[\oplus (Q_{0,\sigma} \otimes_{K} Ku_{\sigma}), g_{0,\sigma,\tau}]$. Then, since $\{f_{\sigma,\tau}^* \otimes g_{\sigma,\tau}^*\} \leftrightarrow \{f_{0,\sigma,\tau}^* \otimes g_{0,\sigma,\tau}^*\}$ is evident, we know that $\{h_{\sigma,\tau}\} \leftrightarrow \{h_{0,\sigma,\tau}\}$. Thus we have proved that $C(\Delta/B)$ $\rightarrow C(\oplus Ku_{\sigma}/K), \{f_{\sigma,\tau}\} \mapsto \{f_{0,\sigma,\tau}\}$ is an isomorphism. It is easily seen that $C_0(\Delta/B) \xrightarrow{\longrightarrow} C_0(\oplus Ku_{\sigma}/K)$ under the above isomorphism. Thus we have proved

THEOREM 2.13. There are commutative diagrams:

$$1 \longrightarrow C_{0}(\Delta/B) \longrightarrow C(\Delta/B) \longrightarrow Z^{1}(G, \operatorname{Pic}_{0}(B)) \quad (exact)$$

$$\approx \downarrow \qquad \approx \downarrow \qquad \approx \downarrow$$

$$1 \longrightarrow C_{0}(\oplus Ku_{\sigma}/K) \longrightarrow C(\oplus Ku_{\sigma}/K) \longrightarrow Z^{1}(G, \operatorname{Pic}_{K}(K)) \quad (exact)$$

$$Z^{1}(G, \operatorname{Pic}_{0}(B)) \longrightarrow H^{3}(G, U(K))$$

$$Z^{1}(G, \operatorname{Pic}_{K}(K)) \checkmark$$

We shall further continue the study of the relation between Δ/B and $\oplus Ku_{a}/K$ (with trivial factor set).

PROPOSITION 2.14. There exists a commutative diagram

$$\begin{array}{ccc} \operatorname{Pic}_{\kappa}(K) & \longrightarrow C(\oplus Ku_{\sigma}/K) \\ & & \swarrow \\ & & \downarrow \\ \operatorname{Pic}_{\kappa}(B)^{[G]} \longrightarrow & C(\varDelta/B) \end{array}$$

Proof. Let $[P_0] \in \operatorname{Pic}_K(k)$. It is necessary to prove that $(\bigoplus (P_0 \otimes {}_{K}Ku_{\sigma} \otimes {}_{K}*P_0), {}^{P_0}\phi_{0,\sigma,\tau})$ corresponds to $(\bigoplus ((B \otimes {}_{K}P_0) \otimes J_{\sigma} \otimes (B \otimes {}_{K}*P_0)), {}^{P}\phi_{\sigma,\tau})$ under the isomorphism $C(\bigoplus Ku_{\sigma}/K) \to C(\Delta/B)$, where $\phi_{0,\sigma,\tau}$ is the canonical isomorphism $Ku_{\sigma} \otimes {}_{K}Ku_{\tau} \to Ku_{\sigma\tau}, u_{\sigma} \otimes u_{\tau} \mapsto u_{\sigma\tau}, P = B \otimes {}_{K}P_0$, and $*P_0 =$ $\operatorname{Hom}_{l}(P_{0K}, K_{K})$ (cf. the proof of Th. 2.6). However this is done by using $Ku_{\sigma} \otimes_{\kappa} *P_{0} \otimes_{\kappa} Ku_{\sigma^{-1}} \xrightarrow{\approx} V_{J_{\sigma} \otimes^{*}P \otimes J_{\sigma^{-1}}}(B)$ and $*P \xrightarrow{\approx} B \otimes_{\kappa} *P_{0}$ canonically (cf. the proof of Th. 2.13).

Next we define a homomorphism from $P_{K} \bigoplus K u_{\sigma}/K)^{(G)}$ to $P_{K}(\varDelta/B)^{(G)}$. Let $\phi_0: P_0 \to M_0$ be in $P_K (\bigoplus K u_{\sigma}/K)^{(G)}$. Then $K u_{\sigma} \otimes {}_K P_0 \otimes {}_K K u_{\sigma^{-1}} \xrightarrow{\approx}$ $V_{J_{\sigma\otimes P\otimes J_{\sigma}-1}}(B)$, as K-K-modules, $u_{\sigma}\otimes p_{0}\otimes u_{\sigma^{-1}}\mapsto \sum_{i}a_{\sigma,i}\otimes (1\otimes p_{0})\otimes a_{\sigma,i}'$ where $P = B \otimes_{\kappa} P_0$, $a_{\sigma,i} \in J_{\sigma}$, $a'_{\sigma,i} \in J_{\sigma^{-1}}$, $\sum_i a_{\sigma,i} a'_{\sigma,i} = 1$. Therefore $Ku_{\sigma} \otimes$ $_{K}P_{0}\otimes _{K}Ku_{\sigma^{-1}}\otimes _{K}J_{\sigma} \xrightarrow{\approx} J_{\sigma}\otimes P$, as *B*-*B*-modules, $u_{\sigma}\otimes p_{0}\otimes u_{\sigma^{-1}}\otimes x_{\sigma}\mapsto$ $x_{\sigma} \otimes (1 \otimes p_0)$ (cf. the proof of Prop. 2.9). Now, for the sake of simplicity, we may assume that $P_0 \subseteq M_0$. Then $u_{\sigma}P_0u_{\sigma^{-1}} = P_0$ for all $\sigma \in G$. Then $P_0 \otimes_{\kappa} J_{\sigma} \xrightarrow{\approx} J_{\sigma} \otimes_{\kappa} P_0$, as *B-B*-modules, $u_{\sigma} p_0 u_{\sigma^{-1}} \otimes x_{\sigma} \mapsto x_{\sigma} \otimes p_0$, and this induces a *B-B*-isomorphism $P_0 \otimes_{\kappa} \varDelta \xrightarrow{\approx} P \otimes \varDelta \xrightarrow{\approx} \varDelta \otimes_{\kappa} P_0 \xrightarrow{\approx} \varDelta \otimes P_0$. Then, by Lemma 1.2, we have a Morita module ${}_{a}\Delta \otimes {}_{\kappa}P_{0a}$, where $(x_{\sigma} \otimes p_{0})x_{\tau}$ $= x_{\sigma}x_{\tau} \otimes u_{\tau^{-1}}p_{0}u_{\tau}$ $(x_{\sigma} \in J_{\sigma}, p_{0} \in P_{0}, x_{\tau} \in J_{\tau})$. Hence the canonical homomorphism $\phi: B \otimes_{\kappa} P_0 = P \to \mathcal{A} \otimes_{\kappa} P_0$ is in $P_{\kappa}(\mathcal{A}/B)^{(G)}$. Let $\psi_0: Q_0 \to U_0$ be another element of $P_{K}(\bigoplus Ku_{\sigma}/K)^{(G)}$. Then $[\phi_{0}][\psi_{0}]: P_{0} \otimes_{K} Q_{0} \to M_{0} \otimes' U_{0}$, $p_0 \otimes q_0 \mapsto \phi_0(p_0) \otimes \psi_0(q_0)$, where \otimes' means the tensor product over $\oplus Ku_s$. On the other hand, $[\phi][\psi]: (B \otimes_{K} P_{0}) \otimes (B \otimes_{K} Q_{0}) \rightarrow (\mathcal{A} \otimes_{K} P_{0}) \otimes_{\mathcal{A}} (\mathcal{A} \otimes_{K} Q_{0})$ is the canonical map. Then it is easily seen that the canonical isomorphism $\Delta \otimes_{\kappa} P_0 \otimes_{\kappa} Q_0 \to (\Delta \otimes_{\kappa} P_0) \otimes_{\mathcal{A}} (\Delta \otimes_{\kappa} Q_0)$ is a Δ - Δ -isomorphism such that the diagram

is commutative. Hence $\beta \colon [\phi_0] \mapsto [\phi]$ is a homomorphism from $P_{K} (\bigoplus K u_{\sigma}/K)^{(G)}$ to $P_{K}(\varDelta/B)^{(G)}$.

THEOREM 2.15. There is a commutative diagram with exact rows: $U(K) \longrightarrow \operatorname{Aut} (\bigoplus Ku_{\mathfrak{a}}/K)^{(G)} \longrightarrow P_{K}(\bigoplus Ku_{\mathfrak{a}}/K)^{(G)} \longrightarrow \operatorname{Pic}_{K}(K)^{\mathcal{G}}$ $\| (1) \qquad \alpha \downarrow \approx \qquad (2) \qquad \beta \checkmark \qquad r \checkmark$ $U(K) \longrightarrow \operatorname{Aut} (\varDelta/B)^{(G)} \longrightarrow P_{K}(\varDelta/B)^{(G)} \longrightarrow \operatorname{Pic}_{K}(B)^{\mathcal{G}}$ $\longrightarrow C_{0}(\bigoplus Ku_{\mathfrak{a}}/K) \longrightarrow B(\bigoplus Ku_{\mathfrak{a}}/K) \longrightarrow H^{1}(G, \operatorname{Pic}_{K}(K)) \longrightarrow H^{3}(G, U(K))$ $\downarrow \approx \qquad \delta \downarrow \qquad \varepsilon \downarrow \qquad \|$ $\longrightarrow C_{0}(\varDelta/B) \longrightarrow B(\varDelta/B) \longrightarrow \overline{H}^{1}(G, \operatorname{Pic}_{0}(B)) \longrightarrow H^{3}(G, U(K))$

where α is Aut $(\bigoplus Ku_{\sigma}/K)^{(G)} \xrightarrow{\approx} Z^{1}(G, U(K)) \xrightarrow{\approx} Aut (\Delta/B)^{(G)}$ (cf. Remark to Th. 2.12). and β is the homomorphism defined above.

Proof. By Cor. to Prop. 2.9 and the definition of $\overline{H}^1(G, \operatorname{Pic}_0(B))$, ε is surjective, and hence so is δ . As γ is injective, so is β , if (1) and (2) are commutative. Therefore it suffices to prove that (1) and (2) are commutative. However the commutativity of (1) is evident. To prove the commutativity of (2), let $\alpha(f_0) = f$. Then, for any $\sigma \in G$, there exists uniquely $c_{\sigma} \in U(K)$ such that $f(x_{\sigma}) = c_{\sigma}x_{\sigma}$ for all $x_{\sigma} \in J_{\sigma}$. Then $f_0(u_{\sigma}) =$ $c_{\sigma}u_{\sigma}$ for all $\sigma \in G$, and so $(x_{\sigma} \otimes u_{f_0})x_{\tau} = x_{\sigma}x_{\tau} \otimes u_{\tau-1}u_{f_0}u_{\tau} = x_{\sigma}x_{\tau} \otimes u_{\tau-1}c_{\tau}u_{\tau}u_{f_0}$ $= x_{\sigma}x_{\tau} \otimes \tau^{-1}(c_{\tau})u_{f_0} = x_{\sigma} \cdot f(x_{\tau}) \otimes u_{f_0}$ in $\Delta \otimes {}_{K}Ku_{f_0}$, where $x_{\sigma} \in J_{\sigma}, x_{\tau} \in J_{\tau}$ (cf. the definition of β). This means that (2) is commutative.

Proof. Let f be in Aut $(A/B)^{(G)}$. Then $f(J_{\sigma}) = J_{\sigma}$ for all $\sigma \in G$, so f induces canonically an automorphism of $\Delta/B = \bigoplus J_{\sigma}/B$. Then the commutativity of (1) is evident. Next we define a homomorphism $P_{K}(A/B)^{(G)} \to P_{K}(\Delta/B)^{(G)}$. Let $\phi: P \to M$ be in $P_{K}(A/B)^{(G)}$. For the sake of simplicity, we may assume that P is a submodule of M. Then $J_{\sigma}P = J_{\sigma} \otimes {}_{B}P = PJ_{\sigma} = P \otimes {}_{B}J_{\sigma}$ in M for all $\sigma \in G$. We construct $\bigoplus J_{\sigma}P$, formally. Then this is isomorphic to $\Delta \otimes_{B}P$ canonically, as B-B-modules. Similarly $\oplus PJ_{\sigma} \xrightarrow{\approx} P \otimes_{B}\Delta$. Since $J_{\sigma}P = PJ_{\sigma}$, we have an isomorphism $\Delta \otimes_{B}P \xrightarrow{\approx} P \otimes_{B}\Delta$, as B-B-modules. It is easily seen that this isomorphism satisfies the condition of Lemma 1.2. Thus $\overline{\phi}: P \to \Delta \otimes_{B}P$, $p \mapsto 1 \otimes p$ is in $P_{K}(\Delta/B)^{(G)}$. Let $\psi: Q \to U$ be another element in $P_{K}(A/B)^{(G)}$. Then $[\phi][\psi]: P \otimes_{B}Q \to M \otimes_{A}U$. On the other hand, we have $[\overline{\phi}][\overline{\psi}]: P \otimes_{B}Q \to (\Delta \otimes_{B}P) \otimes_{A}(\Delta \otimes_{B}Q)$ is a Δ - Δ -isomorphism such that the diagram

$$P \otimes {}_{B}Q \xrightarrow{\qquad \qquad \downarrow} (\Delta \otimes {}_{B}P) \otimes_{a} (\Delta \otimes {}_{B}Q)$$

is commutative. Hence the mapping $[\phi] \mapsto [\bar{\phi}]$ is a group homomorphism. Finally, the commutativity of (2) is evident from the definition of the homomorphism $P_{\kappa}(A/B)^{(G)} \to P_{\kappa}(\Delta/B)^{(G)}$. Evidently $1 \to \operatorname{Aut} (A/\Sigma J_o) \to \operatorname{Aut} (A/B)^{(G)} \to \operatorname{Aut} (\Delta/B)^{(G)}$ is exact. Then the commutativity of Th. 2.16 implies that

Aut $(A / \Sigma J_{\mathfrak{g}}) \longrightarrow P_{\kappa}(A / B)^{(G)} \longrightarrow P_{\kappa}(\Delta / B)^{(G)}$

is exact. Thus we have

COROLLARY. The following diagram is commutative, and two rows are exact:

Remark. If $L \subseteq K$ then Aut $(A/B)^G$ is a subgroup of Aut $(A/B)^{(G)}$. On the other hand, if $V_d(B) = K$ then Aut $(\Delta/B)^{(G)} = \text{Aut}(\Delta/B)$, because Hom $(_BJ_{\sigma B}, _BJ_{\tau B}) = 0$ for any $\sigma \neq \tau$ (cf. [17; § 6]).

§3. In this section, G is a group, and $B \supseteq T$ are rings with a common identity. We fix a group homomorphism $G \to \operatorname{Aut}_{\iota}(B/T)$ (the group of all *T*-automorphisms of B/T), $\sigma \mapsto \overline{\sigma}$, and we consider B as a G-group. K and F are centers of B and T, respectively. We put $\Delta_1 = \bigoplus_{\sigma \in G} Bu_{\sigma}/B$, which is a crossed product of B and G with trivial factor set: $u_{\sigma}u_{\tau} = u_{\sigma\tau}, u_{\sigma}b = \sigma(b)u_{\sigma}$. We denote by C_1 the center of Δ_1 . Then, applying Th. 2.12 in §2 to this generalized crossed product, we obtain an exact sequence

$$1 \longrightarrow U(C_1) \cap U(K) \longrightarrow U(K) \longrightarrow \operatorname{Aut} (\varDelta_1/B)^{(G)} \longrightarrow P_K(\varDelta_1/B)^{(G)}$$
$$\longrightarrow \operatorname{Pic}_K(B)^G \longrightarrow C_0(\varDelta_1/B) \longrightarrow B(\varDelta_1/B)$$
$$\longrightarrow \overline{H}^1(G, \operatorname{Pic}_0(B)) \longrightarrow H^3(G, U(K)) ,$$

where Aut $(\mathcal{A}_1/B)^{(G)} \xrightarrow{\approx} Z^1(G, U(K))$ and $C_0(\mathcal{A}_1/B) \xrightarrow{\approx} H^2(G, U(K)).$

We begin this section with the following

PROPOSITION 3.1. The following two exact sequences consist of G-homomorphisms:

$$1 \longrightarrow U(K) \cap U(F) \longrightarrow U(K) \longrightarrow \mathfrak{G}(B/T) \longrightarrow P(B/T) \longrightarrow \operatorname{Pic}(B) ,$$

$$1 \longrightarrow U(F) \longrightarrow U(V_{\mathcal{B}}(T)) \longrightarrow \mathfrak{G}(B/T) \longrightarrow \operatorname{Pic}(T) .$$

Proof. The exactness was proved in Th. 1.4 and Prop. 1.6. Canonically $\mathfrak{G}(B/T)$ is a *G*-group, and the homomorphism $G \to \operatorname{Aut}(B/T)$ induces a homomorphism $G \to \operatorname{Aut}(K)$, by restriction. By Th. 1.5, there is a homomorphism $\operatorname{Aut}(B/T) \to P(B/T)$, and this defines a *G*-group P(B/T), by conjugation. Then it is evident that $P(B/T) \to \operatorname{Pic}(B)$ is a *G*-homomorphism. Next we shall show that $\mathfrak{G}(B/T) \to P(B/T)$ is a *G*homomorphism. Let $\sigma \in \operatorname{Aut}(B/T)$, and $X \in \mathfrak{G}(B/T)$. Then $\sigma(X) \in \mathfrak{G}(B/T)$, and the image of X in P(B/T) is $\phi_X \colon X \to B, x \mapsto x$. On the other hand the image of σ in P(B/T) is $\phi_{\sigma} \colon T \to Bu_{\sigma}, t \mapsto tu_{\sigma}$. Then there is a commutative diagram

$$\begin{array}{cccc} T \otimes_T X \otimes_T T \longrightarrow Bu_{\sigma} \otimes_B B \otimes_B Bu_{\sigma^{-1}} \\ \downarrow^{\sigma} & & & \alpha \downarrow \approx \\ \sigma(X) & \longrightarrow & B \end{array},$$

where α is the canonical one. This shows that $\mathfrak{G}(B/T) \to P(B/T)$ is a *G*-homomorphism. It is easily seen that $U(V_B(T)) \to \mathfrak{G}(B/T)$, $d \mapsto Td$ is a *G*-homomorphism.

We denote by $\mathfrak{G}(B/T)^{(G)}$ the group $\{X \in \mathfrak{G}(B/T) | X(\bar{\sigma}) = \bar{\sigma} \text{ for all } \sigma \in G\}$, where $\bar{\sigma}$ denotes the image of σ in Aut (B/T) (cf. Prop. 1.1). In § 1, we have seen that $\mathfrak{G}(B/T)^{(G)} = \{X \in \mathfrak{G}(B/T) | u(X, \bar{\sigma}, 1) \in K\} = \{X \in \mathfrak{G}(B/T) | for any <math>\sigma \in G$, there exists $c_{\sigma} \in U(K)$ such that $c_{\sigma}x = \sigma(x)$ for all $x \in X\}$. We denote by $P^{\kappa}(B/T)^{(G)}$ the subgroup of $P^{\kappa}(B/T)$ (cf. § 1), which consists of all $[\phi]$ satisfying (**).

(**) For any $\sigma \in G$, there exists a *B*-*B*-isomorphism $f_{\sigma}: M \to Bu_{\sigma} \otimes {}_{B}M \otimes {}_{B}Bu_{\sigma^{-1}}$ such that the diagram

$$P \xrightarrow{\phi} M$$

$$\downarrow f_{\sigma}$$

$$Bu_{\sigma} \otimes {}_{B}M \otimes {}_{B}Bu_{\sigma-1}$$

is commutative, where " ϕ is the map $p \mapsto u_{\sigma} \otimes \phi(p) \otimes u_{\sigma^{-1}}(p \in P)$. The proof that $P^{\kappa}(B/T)^{(G)}$ is a subgroup is the following

PROPOSITION 3.2. $P^{\kappa}(B/T)^{(G)}$ is a subgroup of $P^{\kappa}(B/T)$.

Proof. Let $\phi: P \to M$ and $\psi: Q \to U$ be two representations of an element of $P^{\kappa}(B/T)^{(G)}$, and let the diagram

$$\begin{array}{ccc} Q & \stackrel{\Psi}{\longrightarrow} U \\ \alpha \Big| \approx & \beta \Big| \approx \\ P & \stackrel{\Phi}{\longrightarrow} M \end{array}$$

be commutative, where α is a *T*-*T*-isomorphism, and β is a *B*-*B*-isomorphism. For any σ in *G*, there is a *B*-*B*-isomorphism $f_{\sigma}: M \to Bu_{\sigma} \otimes_{B} M \otimes_{B} Bu_{\sigma^{-1}}$ such that the diagram

$$P \xrightarrow{\phi} M$$

$$\downarrow f_{\sigma}$$

$$Bu_{\sigma} \otimes {}_{B}M \otimes {}_{B}Bu_{\sigma-1}$$

is commutative. Then a *B*-*B*-isomorphism $g_{\sigma}: U \to Bu_{\sigma} \otimes_{B} U \otimes_{B} Bu_{\sigma^{-1}}$ is determined by the commutativity of the following diagram:

$$Q \xrightarrow{\psi} U \xrightarrow{g_{\sigma}} Bu_{\sigma} \otimes {}_{B}U \otimes {}_{B}Bu_{\sigma^{-1}},$$

$$\alpha \downarrow \approx \qquad \beta \downarrow \approx \qquad 1 \otimes \beta \otimes 1 \downarrow \approx$$

$$P \xrightarrow{\phi} M \xrightarrow{f_{\sigma}} Bu_{\sigma} \otimes {}_{B}M \otimes {}_{B}Bu_{\sigma^{-1}}$$

that is, $g_{\sigma} = (1 \otimes \beta \otimes 1)^{-1} f_{\sigma} \beta$. It is easily seen that $g_{\sigma} \psi(q) = u_{\sigma} \otimes \psi(q)$ $\otimes u_{\sigma^{-1}}(q \in Q)$, and hence $P^{\kappa}(B/T)^{(G)}$ is well defined. It is evident that $P^{\kappa}(B/T)^{(G)}$ is closed under multiplication. Finally $f_{\sigma} \colon {}_{B}M_{B} \to {}_{B}Bu_{\sigma} \otimes {}_{B}M \otimes {}_{B}Bu_{\sigma^{-1}B}$ induces a *B*-*B*-isomorphism Hom_r $({}_{B}M, {}_{B}B) \xrightarrow{\approx} Hom_{\tau} ({}_{B}Bu_{\sigma} \otimes {}_{B}M \otimes {}_{B}Bu_{\sigma^{-1}}, {}_{B}B)$, and there is a canonical *B*-*B*-isomorphism $Bu_{\sigma} \otimes {}_{B}Hom_{\tau} ({}_{B}M, {}_{B}B) \otimes {}_{B}Bu_{\sigma^{-1}} \to Hom_{\tau} ({}_{B}Bu_{\sigma} \otimes {}_{B}M \otimes {}_{B}Bu_{\sigma^{-1}}, {}_{B}B), u_{\sigma} \otimes h \otimes u_{\sigma^{-1}} \mapsto (u_{\sigma} \otimes x \otimes u_{\sigma^{-1}} \to \sigma(x^{h}))(x \in M)$. Then we have a commutative diagram:

where γ is the canonical homomorphism $f \mapsto (\phi(p) \to p^f) \ (p \in P)$. This completes the proof.

THEOREM 3.3. There is an exact sequence

$$U(K) \longrightarrow \mathfrak{G}(B/T)^{(G)} \longrightarrow P^{K}(B/T)^{(G)} \longrightarrow \operatorname{Pic}_{K}(B)^{G}$$
.

Proof. For X in $\mathfrak{G}(B/T)$, the image of X in $\operatorname{Pic}^{\kappa}(B/T)$ is the canonical inclusion map $\phi: X \to B$. Then ${}^{\sigma}\phi$ is $X \to B, x \mapsto \sigma(x)$. Therefore $[\phi]$ is in $\operatorname{Pic}^{\kappa}(B/T)^{(G)}$ if and only if, for any $\sigma \in G$, there is a $c_{\sigma} \in U(K)$ such that $c_{\sigma}x = \sigma(x)$ for all $x \in X$, that is, $X \in \mathfrak{G}(B/T)^{(G)}$. Then the exactness of the present sequence follows from Th. 1.4.

THEOREM 3.4. There is a commutative diagram with exact rows:

Proof. The isomorphism $U(K) \xrightarrow{\alpha} U(K)$ is $c \mapsto c^{-1}$. Let $X \in \mathfrak{G}(B/T)^{(G)}$. Then, for any σ in G, there exists uniquely $c_{\sigma} \in U(K)$ such that $c_{\sigma}x = \sigma(x)$ for all $x \in X$. If is easily seen that $c_{\sigma\tau} = c_{\sigma} \cdot \sigma(c_{\tau})$ for all $\sigma, \tau \in G, c_1 = 1$. Then $c_{\sigma}(\sigma \in G)$ defines an automorphism $\rho \colon \sum_{\sigma} b_{\sigma} u_{\sigma} \mapsto \sum_{\sigma} b_{\sigma} c_{\sigma} u_{\sigma}$. We define $\mathfrak{G}(B/T)^{(G)} \xrightarrow{\beta} \operatorname{Aut} (\mathcal{A}_1/B)^{(G)}, X \mapsto \rho.$ The commutativity of (1) is easily seen. Next we shall define $P^{\kappa}(B/T)^{(G)} \xrightarrow{\gamma} P_{\kappa}(\mathcal{A}_1/B)^{(G)}$. Let $\phi: P \to M$ be in $P^{\kappa}(B/T)^{(G)}$. Then, for any $\sigma \in G$, there exists a *B*-*B*-isomorphism $f_{\sigma}: M \to Bu_{\sigma} \otimes {}_{B}M \otimes {}_{B}Bu_{\sigma^{-1}}$ such that $f_{\sigma}\phi = {}^{\sigma}\phi$. Then f_{σ} induces an isomorphism $f'_{\sigma} \colon M \otimes {}_{B}Bu_{\sigma} \xrightarrow{f_{\sigma} \otimes 1} Bu_{\sigma} \otimes {}_{B}M \otimes {}_{B}Bu_{\sigma^{-1}} \otimes {}_{B}Bu_{\sigma} \xrightarrow{*} Bu_{\sigma} \otimes {}_{B}M,$ where * is induced by the canonical map $Bu_{\sigma^{-1}} \otimes {}_{B}Bu_{\sigma} \rightarrow B$. As is easily seen, $f'_{\sigma}(\phi(p) \otimes u_{\sigma}) = u_{\sigma} \otimes \phi(p) \ (p \in P)$. Taking direct sum, we have an isomorphism $\Delta_1 \otimes {}_{B}M \xrightarrow{\approx} M \otimes {}_{B}\Delta_1$, and it is easy to check that this isomorphism satisfies the condition of Lemma 1.2. Thus we have $\bar{\phi}: M \to \bar{\phi}$ $\Delta_1 \otimes {}_{B}M, m \mapsto 1 \otimes m$, in $P_{K}(\Delta_1/B)^{(G)}$ (cf. § 2). Let $\psi \colon Q \to U$ be another element in $P^{\kappa}(B/T)^{(G)}$. Then the canonical isomorphism $\Delta_1 \otimes {}_{B}M \otimes {}_{B}U \xrightarrow{\approx}$ $(\varDelta_1 \otimes {}_BM) \otimes {}_{\varDelta_1}(\varDelta_1 \otimes {}_BU)$ is a $\varDelta_1 - \varDelta_1$ -isomorphism such that the diagram

is commutative. Hence the map $\phi \to \overline{\phi}$ is a homomorphism. Finally we shall show the commutativity of (2). Let $1 = \sum_{i} x_{i}' x_{i} (x_{i}' \in X^{-1}, x_{i} \in X)$.

Then $\Delta_1 \otimes {}_B B \ni u_{\sigma} \otimes 1 = \sum_i u_{\sigma} x'_i \otimes x_i$, so $(u_{\sigma} \otimes 1)u_{\tau} = (\sum_i u_{\sigma} x'_i \otimes x_i)u_{\tau} =$ $(\sum_i \sigma(x'_i)u_\sigma \otimes x_i)u_\tau = \sum_i \sigma(x'_i)u_\sigma u_\tau \otimes x_i = \sum_i u_\sigma x'_i u_\tau \otimes x_i = \sum_i u_\sigma x'_i u_\tau x_i \otimes 1 =$ $\sum_{i} u_{\sigma} x_{i}' x_{i} c_{\tau} u_{\tau} \otimes \mathbf{1} = u_{\sigma} \cdot \rho(u_{\tau}) \otimes \mathbf{1}. \quad \text{Hence } \mathcal{A}_{1} \otimes_{B} B \xrightarrow{\approx} \mathcal{A}_{1} u_{\sigma}, u_{\sigma} \otimes \mathbf{1} \mapsto u_{\sigma} u_{\sigma} \text{ is a}$ Δ_1 - Δ_1 -isomorphism. Hence (2) is commutative. This completes the proof. The next Cor. 1 is follows from Th. 3.4.

COROLLARY 1. The following diagram is commutative, and two rows are exact:

where K and F are centers of B and T, respectively.

COROLLARY 2. If $B^{G} = T$ then two homomorphisms $\mathfrak{S}(B/T)^{(G)} \rightarrow$ Aut $(\varDelta_1/B)^{(G)}$ and $P^{\kappa}(B/T)^{(G)} \rightarrow P_{\kappa}(\varDelta_1/B)^{(G)}$ are monomorphisms. Therefore, in this case, $\mathfrak{S}(B/T)^{(G)}$ is an abelian group.

COROLLARY 3. If B/T is a finite G-Galois extension, then all vertical maps in Th. 3.4 are isomorphisms.

Proof. It suffices to prove that γ is surjective, by Cor. 2, Th. 1.4. and Th. 1.5, because the center of Δ_1 is F in this case. Let $\overline{\phi}: M \to \overline{M}$ be in $P_{K}(\mathcal{A}_{1}/B)^{(G)}$, and let $M \subseteq \overline{M}$. Then, $u_{\sigma}M = Mu_{\sigma}$ ($\sigma \in G$), and this yields a left Δ_1 -module $M: u_{\sigma} * m = u_{\sigma} m u_{\sigma-1}$ $(m \in M, \sigma \in G)$. Then, by [8; Th. 1.3], $M = B \otimes_{T} M_{0}$, where $M_{0} = \{m \in M | u_{\sigma}m = mu_{\sigma} \text{ for all } \sigma = G\}$. Similarly $M = M_0 \otimes_T B$, and the inclusion map $\phi: M_0 \to M$ is in $P^{\kappa}(B/T)^{(G)}$, because ${}_{T}M_{0T} \xrightarrow{\approx} {}_{T}\operatorname{Hom}_{r}({}_{4}B,{}_{4}M)_{T}$ is a Morita module. By the proof of Th. 3.4, $\gamma(\phi) = \overline{\phi}$ is easily seen.

PROPOSITION 3.5. If $V_B(T) = K$ then $\mathfrak{G}(B/T)^{(G)} = \mathfrak{G}(B/T)$.

Proof. Let $X \in \mathfrak{G}(B/T)$, and let $1 = \sum_i a_i a'_i (a_i \in X, a'_i \in X^{-1})$, and $\sigma \in G$. Then $u = \sum_i a_i \cdot \sigma(a'_i) \in V_B(T) = K$, and $u \cdot \sigma(x) = x$ for all $x \in X$ (cf. § 1).

§4. Morita invariance of the exact sequence in §2.

In this section we shall cast a glance at the Morita invariance of the exact sequence in Th. 2.12. We fix two Morita modules ${}_{A}M_{A'} \supseteq {}_{B}P_{B'}$ such that $M = A \otimes {}_{B}P = P \otimes {}_{B'}A'$ (cf, [19]), where $B \subseteq A$ and $B' \subseteq A'$. We put $V_{A}(A) = L, V_{A'}(A') = L', V_{B}(B) = K$, and $V_{B'}(B') = K'$. There is an isomorphism $V_{A}(B) \to V_{A'}(B'), c \mapsto c'$ such that cp = pc' for all $p \in P$, and this induces $L \xrightarrow{\approx} L'$ and $K \xrightarrow{\approx} K'$, by [19; Prop. 3.3]. Further, by [19; Th. 3.5], Aut $(A/B) \xrightarrow{\approx} Aut (A'/B'), \sigma \mapsto \sigma'$, where $\sum \sigma(a_i)p_i =$ $\sum q_j \cdot \sigma'(a'_j)$ for all $\sum a_i p_i = \sum q_j a'_j (a_i \in A, p_i, q_j \in P, a'_j \in A')$ in M. Then it is evident the diagram

is commutative. Let $\sigma \mapsto \sigma'$ under the isomorphism Aut $(A/B) \to$ Aut (A'/B'). Then $Au_{\sigma} \otimes {}_{A}M \to M \otimes {}_{A'}A'u_{\sigma'}, u_{\sigma} \otimes p \mapsto p \otimes u_{\sigma'} (p \in P)$ is an *A*-*A'*-isomorphism. Hence

is a commutative diagram, where $\operatorname{Pic}(A) \to \operatorname{Pic}(A'), [X] \mapsto [X']$ is the isomorphism such that $X \otimes_A M \xrightarrow{\approx} M \otimes_{A'} X'$ as A-A'-modules. There is an isomorphism $\mathfrak{S}(A/B) \to \mathfrak{S}(A'/B'), Y \mapsto Y'$ such that YP = PY' (cf. [19; Prop. 3.3]). Then the following diagram is commutative:

$$\begin{array}{ccc} U(V_A(B)) & \longrightarrow \ \textcircled{B}(A/B) & \longrightarrow \ \operatorname{Pic}(B) \\ \approx & & & \swarrow & \approx & \downarrow \ast \\ U(V_{A'}(B')) & \longrightarrow \ \textcircled{B}(A'/B') & \longrightarrow \ \operatorname{Pic}(B') \end{array}$$

where $*: [W] \mapsto [W']$ is the isomorphism such that $W \otimes_B P \xrightarrow{\approx} P \otimes_{B'} W'$ as B-B'-modules. The isomorphism $P(A/B) \to P(A'/B')$, $\phi: Q \to U \mapsto \phi': Q' \to U'$ is defined by the commutativity of the diagram

for some *B-B'*-isomorphism α and some *A-A'*-isomorphism β . In fact, we put $Q' = \operatorname{Hom}_{\tau}({}_{B}P, {}_{B}B) \otimes {}_{B}Q \otimes {}_{B}P$ and $U' = \operatorname{Hom}_{\tau}({}_{A}M, {}_{A}A) \otimes {}_{A}U \otimes {}_{A}M$, and take the canonical isomorphisms $P \otimes {}_{B'}Q' \xrightarrow{\approx} Q \otimes {}_{B}P$ and $M \otimes {}_{A'}U'$ $\xrightarrow{\approx} U \otimes {}_{A}M$. Then it is clear that the following diagrams are commutative:

$$\operatorname{Aut} (A/B) \longrightarrow P(A/B) \longrightarrow \operatorname{Pic} (B)$$

$$\approx \downarrow \qquad \approx \downarrow \qquad \approx \downarrow$$

$$\operatorname{Aut} (A'/B') \longrightarrow P(A'/B') \longrightarrow \operatorname{Pic} (B')$$

$$\mathfrak{G}(A/B) \longrightarrow P(A/B) \longrightarrow \operatorname{Pic} (A)$$

$$\approx \downarrow \qquad \approx \downarrow \qquad \approx \downarrow$$

$$\mathfrak{G}(A'/B') \longrightarrow P(A'/B') \longrightarrow \operatorname{Pic} (A')$$

We now fix a commutative diagram

consisting of group homomorphisms. Put $\Delta = \bigoplus J_{\sigma}/B$ and $\Delta' = \bigoplus J'_{\sigma}/B'$. Then we have

THEOREM 4.1. There exists a commutative diagram

where all vertical maps are isomorphisms.

Proof. First we shall show that there is an isomorphism $C(\Delta/B)$ $\xrightarrow{\approx} C(\Delta'/B'), \oplus U_{\sigma}/B \mapsto \oplus U'_{\sigma}/B'$. Put $P^* = \operatorname{Hom}_r(_BP, _BB)$ and $P^* \otimes _BU_{\sigma}$ $\otimes P = U'_{\sigma}$. Then, for any $\sigma \in G$, there is a canonical *B-B'*-isomorphism $f_{\sigma}: U_{\sigma} \otimes _BP \to P \otimes _{B'}P^* \otimes _BU_{\sigma} \otimes _BP = P \otimes _{B'}U'_{\sigma}$. The multiplication in $\oplus U'_{\sigma}/B$ is defined by the commutativity of the diagram

The isomorphism $\oplus f_{\sigma}: (\oplus U_{\sigma}) \otimes_{B} P \to P \otimes_{B'} (\oplus U'_{\sigma})$ satisfies the condition in Lemma 1.2, and f_{σ} induces an isomorphism $U_{\sigma} \otimes_{B} P \to P \otimes_{B'} U'_{\sigma}$, that is, $\oplus U_{\sigma}/B$ and $\oplus U'_{\sigma}/B'$ defined above are equivalent as generalized crossed products. In particular, Δ/B and Δ'/B' are equivalent. The isomorphism Pic $(B) \to \text{Pic } (B')$ induces the isomorphism $\text{Pic}_{K} (B)^{[G]} \to$ $\text{Pic}_{K'} (B')^{[G]}$, $[W] \mapsto [P^* \otimes_{B} W \otimes_{B} P]$, where $P^* = \text{Hom}_{\tau} ({}_{B}P, {}_{B}B)$. We put $W' = P^* \otimes_{B} W \otimes_{B} P$. Then $W^{*'} \xrightarrow{\approx} W'^*$ canonically, where $W'^* =$ $\text{Hom}_{\tau} ({}_{B'}W', {}_{B'}B')$. Noting this fact, we can see that the diagram

$$\begin{array}{ccc} \operatorname{Pic}_{\kappa} \left(B \right)^{[G]} \longrightarrow C(\varDelta/B) \\ & & \downarrow \\ \operatorname{Pic}_{\kappa'} \left(B' \right)^{[G]} \longrightarrow C(\varDelta'/B') \end{array}$$

is commutative. The isomorphism $\operatorname{Pic}_0(B) \to \operatorname{Pic}_0(B')$ induces the isomorphism $Z^1(G, \operatorname{Pic}_0(B)) \to Z^1(G, \operatorname{Pic}_0(B'))$ (cf. Cor. to Prop. 2.9), and it is evident the diagram

is commutative. The facts that the isomorphism $P(\Delta/B) \to P(\Delta'/B')$ induces $P_K(\Delta/B)^{(G)} \xrightarrow{\approx} P_{K'}(\Delta'/B')^{(G)}$, and that the isomorphism $\operatorname{Aut}(\Delta/B) \to \operatorname{Aut}(\Delta'/B')$ induces $\operatorname{Aut}(\Delta/B)^{(G)} \xrightarrow{\approx} \operatorname{Aut}(\Delta'/B')^{(G)}$ are easily checked. After these remarks it is easy to complete the proof.

If we take a commutative diagram

then each $g_{\sigma}: Au_{\sigma} \otimes {}_{A}M \to M \otimes {}_{A'}A'u'_{\sigma}, u_{\sigma} \otimes p \mapsto p \otimes u'_{\sigma}(p \in P)$ is an A-A'isomorphism, and $\oplus g_{\sigma}: (\oplus Au_{\sigma}) \otimes {}_{A}M \to M \otimes {}_{A'}(\oplus A'u'_{\sigma})$ satisfies the condition of Lemma 1.2, so that $\oplus Au_{\sigma}/B$ and $\oplus A'u'_{\sigma}/B'$ with trivial factor

set are equivalent as generalized crossed products. Therefore Th. 4.1 is applicable to this case.

§5. In this section we fix a Morita module $_{A/B}M_{B^{*}/A^{*}}$ (cf. [19]) and a commutative diagram

of group homomorphisms, where $\alpha: X \mapsto \sigma$ is defined by $(xm) \cdot \sigma(b^*) = x(mb^*)(x \in X, m \in M, b^* \in B^*)$ (cf. [19; Th. 1.5]), and $A \supseteq B$ and $B^* \supseteq A^*$ are rings. For any c in $V_A(B)$, there is a $c' \in V_{B^*}(A^*)$ such that cm = mc' for all $m \in M$. Then the map $c \mapsto c'^{-1}$ is a group isomorphism $U(V_A(B)) \to U(V_{B^*}(A^*))$, and this induces isomorphisms $U(K) \to U(K^*)$, $U(L) \to U(L^*)$, where $K = V_B(B), K^* = V_{B^*}(B^*), L = V_A(A)$, and $L^* = V_{A^*}(A^*)$. The following diagram is commutative:

$$U(V_{A}(B)) \longrightarrow \operatorname{Aut} (A/B)$$

$$\downarrow^{(\operatorname{inverse})} \qquad \uparrow^{\alpha^{*}}$$

$$U(V_{B^{*}}(A^{*})) \longrightarrow \mathfrak{G}(B^{*}/A^{*})$$

where $\alpha^* : X^* \mapsto \sigma^*$ is defined by $(\sigma^*(a)m)x^* = a(mx^*)(x^* \in X^*, m \in M, a \in A)$, or equivalently, $\sigma^*(a)(my^*) = (am)y^*(y^* \in X^{*-1})$.

PROPOSITION 5.1. Aut $(A/B)^{(G)} \xrightarrow{\approx} \mathfrak{G}(B^*/A^*)^{(G)}$.

Proof. Let $X \mapsto \sigma$ under the isomorphism $\mathfrak{S}(A/B) \to \operatorname{Aut}(B^*/A^*)$, and let $\sigma^* \mapsto X^*$ under the isomorphism $\operatorname{Aut}(A/B) \to \mathfrak{S}(B^*/A^*)$. Then it suffices to prove that $X(\sigma^*) \mapsto \sigma(X^*)$ under $\operatorname{Aut}(A/B) \to \mathfrak{S}(B^*/A^*)$. Let $\tau \leftrightarrow \sigma(X^*)$ under $\operatorname{Aut}(A/B) \to \mathfrak{S}(B^*/A^*)$. There is a $u \in U(V_A(B))$ such that $X(\sigma^*)(a) = u \cdot \sigma^*(a)u^{-1}$ $(a \in A)$ (cf. § 1). Then $u \cdot \sigma^*(x) = x$ for all $x \in X$, and so $u \cdot \sigma^*(x)m = xm$ for all $m \in M$. Let $y^* \in X^{*-1}$. Then $(xm) \cdot \sigma(y^*)$ $= x(my^*) = u \cdot \sigma^*(x)(my^*) = u((xm)y^*) = (xm)y^*u'$, so that $\sigma(y^*) = y^*u'$ for all $y^* \in X^{*-1}$, where um = mu' for all $m \in M$. Then, for any $a \in A$, $\tau(a)(m \cdot \sigma(y^*)) = (am) \cdot \sigma(y^*) = (am)y^*u' = u((am)y^*) = u \cdot \sigma^*(a)(my^*) =$ $u \cdot \sigma^*(a)u^{-1} \cdot u(my^*)$. But $u(my^*) = my^*u' = m \cdot \sigma(y^*)$. Hence, $\tau(a) =$ $X(\sigma^*)(a)$ for all $a \in A$.

PROPOSITION 5.2. There is an isomorphism $P(A|B) \xrightarrow{\approx} P(B^*|A^*)$.

Proof. Let $\phi: P \to N$ be in P(A/B). Put $_{B^*}P'_{B^*} = \operatorname{Hom}_r(_BM, _BB) \otimes _BP \otimes _BM$ and $_{A^*}N'_{A^*} = \operatorname{Hom}_r(_AM, _AA) \otimes _AN \otimes _AM$. Then there are canonical isomorphisms $_BM \otimes _{B^*}P'_{B^*} \to _BP \otimes _BM_{B^*}$ and $_AM \otimes _{A^*}N'_{A^*} \to _AN \otimes _AM_{A^*}$. Then $\phi': N' \to P'$ in $P_{K^*}(B^*/A^*)$ is defined by the commutativity of

Let $\psi: Q \to U$ be another element in P(A/B), and $\psi': U' \to Q'$ is the one defined by ψ . Then the following diagram is commutative:

$$\begin{array}{cccc} M \otimes_{B^*} P' \otimes_{B^*} Q' \longrightarrow P \otimes_{B} M \otimes_{B^*} Q' \longrightarrow P \otimes_{B} Q \otimes_{B} M \\ \approx \uparrow & \approx \uparrow & \approx \uparrow \\ M \otimes_{A^*} N' \otimes_{A^*} U' \longrightarrow N \otimes_{A} M \otimes_{A^*} U' \longrightarrow N \otimes_{A} U \otimes_{A} M \end{array}$$

On the other hand we have a diagram

$$M \otimes_{B^{*}}(P \otimes_{B}Q)' \xrightarrow{*} M \otimes_{B^{*}}P' \otimes_{B^{*}}Q' \longrightarrow P \otimes_{B}Q \otimes_{B}M$$

$$\uparrow \qquad (1) \qquad \uparrow \qquad (2) \qquad \uparrow$$

$$M \otimes_{A^{*}}(N \otimes_{A}U)' \longrightarrow M \otimes_{A^{*}}N' \otimes_{A^{*}}U' \longrightarrow N \otimes_{A}U \otimes_{A}M$$

where (2) and (1) + (2) are commutative, and * is induced by $(P \otimes_B Q)' \xrightarrow{\approx} P' \otimes_{B^*} Q'$. Hence (1) is commutative, and this proves that the map $[\phi] \mapsto [\phi']$ is a homomorphism. Similarly we can define a homomorphism $P(B^*/A^*) \to P(A/B)$. Hence $P(A/B) \xrightarrow{\approx} P(B^*/A^*), [\phi] \mapsto [\phi']$.

THEOREM 5.3. $\oplus J_{\sigma}/B$ and $\oplus B^*u_{\sigma}/B^*$ are equivalent by ${}_{B}M_{B^*}$, as generalized crossed products. Therefore Th. 4.1 is applicable to this case.

Proof. For any σ in G, the map $J_{\sigma} \otimes_{B} M \to M \otimes_{B^{*}} B^{*} u_{\sigma}$, $x \otimes m \mapsto xm \otimes u_{\sigma}$ is a *B-B*^{*}-isomorphism, and the following diagram is commutative:

THEOREM 5.4. There is a commutative diagram

$$U(K) \longrightarrow \operatorname{Aut} (A/B)^{(G)} \longrightarrow P_{K}(A/B)^{(G)} \longrightarrow \operatorname{Pic}_{K} (B)$$

$$\approx \downarrow \qquad (1) \qquad \approx \downarrow \qquad (2) \qquad \approx \downarrow \qquad (3) \qquad \approx \downarrow$$

$$U(K^{*}) \longrightarrow \mathfrak{G}(B^{*}/A^{*})^{(G)} \longrightarrow P^{K^{*}}(B^{*}/A^{*})^{(G)} \longrightarrow \operatorname{Pic}_{K^{*}} (B^{*})$$

Proof. It suffices to prove that $P(A/B) \xrightarrow{\approx} P(B^*/A^*)$ induces $P_{K}(A/B)^{(G)} \xrightarrow{\approx} P^{K^*}(B^*/A^*)^{(G)}$, and that (1), (2), (3) are commutative. Now, $J_{\sigma} \otimes_{B}M \xrightarrow{\approx} M \otimes_{B^*}B^*u_{\sigma}, x \otimes m \mapsto xm \otimes u_{\sigma}$, as *B*-*B**-modules. Let $\phi: P \to N$ be in $P_{K}(A/B)^{(G)}$. Then, for any σ in *G*, there exists an isomorphism $f_{\sigma}: {}_{B}J_{\sigma} \otimes_{B}P \otimes_{B}J_{\sigma^{-1}B} \to {}_{B}P_{B}$ such that

is commutative. Then a B^*-B^* -isomorphism $f'_{\sigma}: P' \to B^*u_{\sigma} \otimes_{B^*}P' \otimes_{B^*}B^*u_{\sigma^{-1}}$ is defined by the commutativity of

Thus $[\phi']$ is in $P^{K^*}(B^*/A^*)^{(G)}$, and hence $P_K(A/B)^{(G)} \xrightarrow{\approx} P^{K^*}(B^*/A^*)^{(G)}$. The commutativity of (1) and (3) is easily seen. To prove the commutativity of (2), let $\sigma \in \operatorname{Aut}(A/B)^{(G)}$, and $\sigma \mapsto X$ under the isomorphism $\operatorname{Aut}(A/B)^{(G)} \to \mathfrak{G}(B^*/A^*)^{(G)}$. Then $MX = M \otimes_{A^*} X \xrightarrow{\approx} Au_{\sigma} \otimes_A M$, $m \otimes x \mapsto u_{\sigma} \otimes mx$ is an $A \cdot A^*$ -isomorphism. And it is easy to see that the diagram

$$\begin{array}{cccc} M \otimes {}_{A^*\!X} & \xrightarrow{\approx} & Au_{\sigma} \otimes {}_{A}M \\ & & & \uparrow \\ M \otimes {}_{B^*\!B^*} & \xrightarrow{\approx} & B \otimes {}_{B}M \end{array}$$

is commutative. Hence (2) is commutative. This completes the proof.

§6. PROPOSITION 6.1. If B/T is a trivial finite G-Galois extension then $P_{\kappa}(\mathcal{A}_1/B)^{(G)} \to \operatorname{Pic}_{\kappa}(B)^G \to 1$ is exact and splits, where \mathcal{A}_1 is a crossed product of B and G with trivial factor set (Cf. [16; Cor. 2].)

Proof. B is the direct sum of (G: 1) copies of T. Put $e_{\sigma} = (0, \dots, 0, 1, 0, \dots, 0)$ (the σ -component is 1). Then $\sum_{\sigma} e_{\sigma} = 1$, $e_{\sigma}e_{\tau} = \delta_{\sigma,\tau}e_{\sigma}$, and $B = \sum \oplus Te_{\sigma}$. The operation of G on B is given by $\tau(e_{\sigma}) = e_{\tau\sigma}$. Let $[P] \in \operatorname{Pic}_{\kappa}(B)^{G}$. Then ${}_{B}Bu_{\sigma} \otimes {}_{B}P_{B} \xrightarrow{\approx} {}_{B}P \otimes {}_{B}Bu_{\sigma_{B}}$ for all $\sigma \in G$. Multiplying e_{1} on the right, we have ${}_{B}Bu_{\sigma}e_{1} \otimes {}_{B}e_{1}P_{B} \xrightarrow{\approx} {}_{B}Pe_{\sigma} \otimes {}_{B}e_{\sigma}Bu_{\sigma_{B}}$ for all $\sigma \in G$. Hence $h_{\sigma}: {}_{T}e_{1}P_{T} \xrightarrow{\approx} {}_{T}e_{\sigma}P_{T}$ for all $\sigma \in G$, because ${}_{T}e_{\sigma}B_{T} = {}_{T}e_{\sigma}T_{T} \xrightarrow{\approx} {}_{T}T_{T}, e_{\sigma}t \mapsto t(t \in T)$. It is easily seen that $[e_{1}P] \in \operatorname{Pic}_{F}(T)$, where F is the center of T. Put $e_{1}P = P_{0}$, and let $(P_{0})_{G}$ be the module of all $G \times G$ matrices over P_{0} , and let P' be its diagonal part. Then it is evident that $(P_{0})_{G}$ is canonically a two-sided $(T)_{G}$ -Morita module, where $(T)_{G}$ is the ring of all $G \times G$ matrices over T. Indifying B with the diagonal part of $(T)_{G}, {}_{B}P'_{B}$ is isomorphic to ${}_{B}P_{B}$. And $(T)_{G} \otimes {}_{B}P' \xrightarrow{\approx} (P_{0})_{G}$ as left $(T)_{G}$, right B-modules, canonically. Since $e_{\sigma}(\sigma \in G)$ is a basis for $B_{T}, \mathcal{A}_{1} = \operatorname{Hom}_{1}(B_{T}, B_{T}) \xrightarrow{\approx} (T)_{G}$. Then we can easily see that the canonical map $P' \to (T)_{G} \otimes {}_{B}P'$ is in $P_{K}((T)_{G}/B)^{(G)}$.

PROPOSITION 6.2. If Δ/B is a group ring then the sequence $P_{\kappa}(\Delta/B) \rightarrow \text{Pic}_{\kappa}(B) \rightarrow 1$ is exact, and splits.

Proof. Let $[P] \in \operatorname{Pic}_{\kappa}(B)$. Then there is a *B-B*-isomorphism $BG \otimes_{B} P \to P \otimes_{B} BG$, $\sigma \otimes p \mapsto p \otimes \sigma(\sigma \in G)$, and this isomorphism satisfies the condition in Lemma 1.2.

Remark. The above proposition can be generalized to the case that $\Delta = \sum \bigoplus Bu_{\sigma}, u_{\sigma}b = bu_{\sigma}(b \in B), u_{\sigma}u_{\tau} = a_{\sigma,\tau}u_{\sigma\tau}$ with $a_{\sigma,\tau} \in U(K)$. The proof is analogous to the above one.

PROPOSITION 6.3. Let A, B, L, and K be rings as in §2, and fix a group homomorphism $J: G \to \mathfrak{S}(A/B)$. Suppose that B/K is separable and that $K \subseteq L$. Then

 $P_{K}(A/B)^{(G)} \xrightarrow{\approx} \operatorname{Aut} (A/B)^{(G)} \times \operatorname{Pic}_{K}(K)$,

and this induces

$$P^{L}(A/B)^{(G)} \xrightarrow{\approx} \operatorname{Aut} (A/B \cdot L)^{(G)} \times \operatorname{Pic}_{K}(K)$$
.

Proof. Let $\phi: P \to M$ be in $P_K(A/B)$. Then there is an automorphism f of $V_A(B)/K$ such that $f(c)\phi(p) = \phi(p)c$ for any $c \in V_A(B), p \in P$, and the map $[\phi] \mapsto f$ is a group homomorphism from $P_K(A/B)$ to Aut $(V_A(B)/K)$ (cf. [19; Prop. 3.3]). Then the map Aut $(A/B) \to P_K(A/B) \to \text{Aut}(V_A(B)/K)$

is the restriction to $V_A(B)$. Let U be a B-B-module such that bu = ubfor all $b \in K, u \in U$. Put $B^e = B \otimes_{\kappa} B^{\circ p}$. Then U may be considered as a left B^e -module. By [14; Th. 1.1], $_{B^e}U \xrightarrow{\approx} \operatorname{Hom}_r(_{B^e}B^e, _{B^e}B) \otimes_{\kappa}\operatorname{Hom}_r(_{B^e}B, _{B^e}U)$, and so $U = B \otimes_{\kappa} V_U(B)$. In particular, $A = B \otimes_{\kappa} V_A(B)$. Hence $\operatorname{Aut}(A/B)$ $\xrightarrow{\approx} \operatorname{Aut}(V_A(B)/K)$ by restriction. Let $\overline{f} | V_A(B) = f$, and assume that $\phi \in P_{\kappa}(A/B)^{(G)}$. Then $J_{\sigma} \cdot \phi(P) = \phi(P)J_{\sigma} = \overline{f}(J_{\sigma})\phi(P)$, because $J_{\sigma} = B \cdot V_{J_{\sigma}}(B)$. Hence $\overline{f}(J_{\sigma}) = J_{\sigma}$ for all $\sigma \in G$. Therefore the image of ϕ in $\operatorname{Aut}(A/B)$ belongs to $\operatorname{Aut}(A/B)^{(G)}$. Hence the map $\operatorname{Aut}(A/B)^{(G)}$ $\rightarrow P_{\kappa}(A/B)^{(G)} \rightarrow \operatorname{Aut}(A/B)^{(G)}$ is the identity map. Combining this with Prop. 2.2, we know that $P_{\kappa}(A/B)^{(G)} \xrightarrow{\approx} \operatorname{Aut}(A/B)^{(G)} \times \operatorname{Im} \alpha$, where $\alpha \colon P_{\kappa}(A/B)^{(G)} \rightarrow \operatorname{Pic}_{\kappa}(B)^{G}$ is the one as in Prop. 2.2. By Remark to Lemma 2.4, $\operatorname{Pic}_{\kappa}(K) \xrightarrow{\approx} \operatorname{Pic}_{\kappa}(B), [P_0] \mapsto [B \otimes_{\kappa} P_0]$. Then the canonical map $B \otimes_{\kappa} P_0 \rightarrow A \otimes_{\kappa} P_0$ is in $P_{\kappa}(A/B)^{(G)}$. Therefore $\operatorname{Im} \alpha \xrightarrow{\approx} \operatorname{Pic}_{\kappa}(K)$. Thus we have the first assertion. The second assertion is obvious.

COROLLARY. Let $L \supseteq K$ be commutative rings, and we fix a group homomorphism $G \to \operatorname{Aut}(L/K)$. Then

$$P^{L}(L/K)^{(G)} = P^{L}(L/K) \xrightarrow{\approx} \operatorname{Pic}_{\kappa}(K)$$
. (cf. §3)

Proof. Let $\sigma \in G$. Then, for any $[P_0] \in \operatorname{Pic}_K(K)$, $(Lu_{\sigma} \otimes_K P_0) \otimes_L Lu_{\sigma^{-1}}$ $\xrightarrow{\approx} L \otimes_K P_0$, $xu_{\sigma} \otimes p_0 \otimes u_{\sigma^{-1}} y \mapsto xy \otimes p_0$, as *L-L*-modules.

Remark. By the above Cor, the sequence

$$\mathfrak{G}(L/K)^{(G)} \longrightarrow P^L(L/K)^{(G)} \longrightarrow \operatorname{Pic}_L(L)^G$$

is isomorphic to

 $\mathfrak{G}(L/K)^{(G)} \longrightarrow \operatorname{Pic}_{\kappa}(K) \longrightarrow \operatorname{Pic}_{L}(L)^{G}$.

(Cf. Th. 3.4, [8], and [16].)

PROPOSITION 6.4. Let $A \supseteq B$ be rings, and L the center of A. Assume that $A \otimes_L V_A(B) | A$ as left A, right $V_A(B)$ -modules, and $V_A(V_A(B)) = B$. Then

$$P^{L}(A/B) \xrightarrow{\approx} \mathfrak{G}(A/B) \times Im \alpha$$

where $\alpha: P^{L}(A/B) \rightarrow \operatorname{Pic}_{L}(A)$ is the one as in Th. 3.4. (Cf. [14], [19].)

Proof. By [19; Th. 1.4], Aut
$$(V_{\mathcal{A}}(B)/L) \xrightarrow{\approx} \mathfrak{G}(A/B)$$
, and the map

 $\mathfrak{G}(A/B) \longrightarrow P^{L}(A/B) \longrightarrow \operatorname{Aut}\left(V_{A}(B)/L\right) \xrightarrow{\approx} \mathfrak{G}(A/B)$

is the identity (cf. [19; Prop. 3.3]). Then, by Th. 1.4, we can complete the proof.

REFERENCES

- M. Auslander and O. Goldman: The Brauer group of a commutative ring, Trans. Amer. Math. Soc., 19 (1960), 367-409.
- [2] G. Azumaya: Algebraic theory of simple rings (in Japanese), Kawade Syobô, Tokyo, 1952.
- [3] G. Azumaya: Maximally central algebras, Nagoya Math. J., 2 (1951), 119-150.
- [4] G. Azumaya: Completely faithful modules and self injective rings, Nagoya Math. J., 27 (1966), 697-708.
- [5] H. Bass: The Morita Theorems, Lecture note at Univ. of Oregon, 1962.
- [6] H. Bass: Lectures on topics in algebraic K-theory, Tata Institute of Fundamental Research, Bombay, 1967.
- [7] H. Bass: Algebraic K-theory, Benjamin, 1968.
- [8] S. U. Chase, D. K. Harrison and A. Rosenberg: Galois Theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc., 52 (1965).
- [9] S. U. Chase and A. Rosenberg: Amitzur complex and Brauer group, Mem. Amer. Math. Soc., 52 (1965).
- [10] F. R. DeMeyer: Some note on the general Galois theory of rings, Osaka J. Math., 2 (1965), 117-127.
- [11] F. R. DeMeyer and E. Ingraham: Separable algebras over commutative rings, Springer, 1971.
- [12] D. K. Harrison: Abelian extensions of commutative rings, Mem. Amer. Math. Soc., 52 (1965).
- [13] K. Hirata: Some types of separable extensions of rings, Nagoya Math. J., 33 (1968), 108-115.
- [14] K. Hirata: Separable extensions and centralizers of rings, Nagoya Math. J., 35 (1969), 31-45.
- [15] T. Kanzaki: On Galois algebras over a commutative ring, Osaka J. Math., 2 (1965), 309-317.
- [16] T. Kanzaki: On generalized crossed product and Brauer group, Osaka J. Math.,
 5 (1968), 175-188.
- [17] Y. Miyashita: Finite outer Galois theory of non-commutative rings, J. Fac. Sci. Hokkaido Univ., Ser. I, 19 (1966), 114-134.
- [18] Y. Miyashita: Galois extensions and crossed products, J. Fac. Sci. Hokkaido Univ., Ser. I, 20 (1968), 122–134.
- [19] Y. Miyashita: On Galois extensions and crossed products, J. Fac. Sci. Hokkaido Univ., Ser. I, 21 (1970), 97-121.
- [20] K. Morita: Duality for modules and its application to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyôiku Daigaku, 6 (1958), 83-142.

Tokyo University of Education