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0. Summary

This paper contains results related to Titchmarsh's convolution theorem and valid for
R3, the additive group of R" with the discrete topology. The method of proof consists in
transferring the problem to R" with the usual topology by a procedure which has been
used earlier, for instance in Helson [3].

In Section 1, the classical support theorems are generalized to R||. In [1],
Titchmarsh's convolution theorem [6] on R was generalized to convolutions of
functions belonging to certain weighted l/-spaces on R. Section 2 contains a corres-
ponding generalization to weighted /2(Rd).

It should be observed that convolutions of elements / and g in (̂RJj) can be
interpreted as convolutions of bounded discrete measures on R". Hence, in that case the
support theorem (Theorem 4.33 of Hdrmander [5]) is directly applicable to give the
results of our Theorems 1 and 3. So the novelty in our theorems lies in the fact that
they apply for instance to the case when it is only assumed f,g e/2(R3), together with
support conditions. It is not known whether it suffices to assume fel1(Rd),gel''(R'i),
when p > 2.

1. Theorems on the convex hull of the support

The points on the vector space R" are denoted A=(A1,...,An). On R" we will alternate
between the usual and the discrete topology. In the latter case the space is denoted R|j.
The space RJ is a discrete group under addition, and its dual group is bR", the Bohr
compactification of R". For t e R", e, denotes the element of bR", which corresponds to
the character k\->exp(iAt) on R"d. The set of elements e, forms a Borel measurable
subgroup R" of bR", since tr-*e, is continuous. The Fourier transformation SF from R|j
to bR" is formally defined by

with the inverse
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where m is the normalized Haar measure on the compact group bR". For convenience
we assume in the sequel that all functions in L f̂cR") are chosen Borel measurable.

Let feUibR"). Then (x,t)^f(x + et) is a Borel function on bR" x R". We put

and observe that Jx is Borel measurable on R" for every xebR". Taking into account
the invariance of m, Fubini's theorem gives

J J \fx(t)\(
l + \t\rn'1dtdm(x)= J \?(x)\dm(x) J (1 +\t\y-1 dt<oo, (1)

i>R" R" »R" R"

where dt stands for integration with respect to the n-dimensional Lebesgue measure.

(2)

Hence there is a RJ-invariant Borel measurable set E with mE = 1 such that

whenever xeE. Thus, if xeE, then ?xeS/"(R"), the Schwartz space of tempered
distributions, and fx has an inverse Fourier transform fxe£f"(R"). In this paper it is
convenient to use the relation

iX'dt,teRn, (3)
R"

as the formal definition of inverse Fourier transformation on R".
In the following, for any subset F of R" or RJJ, chF denotes its convex hull with

respect to the basic vector space R" and / denotes the closure of F in the topology of
R". For any complex-valued / on R3,

while the support for functions or distributions on R" is defined in the sense of
distributions.

Lemma 1. Let JeL\bR"), f=3F~lf. Then

supp/, = supp/,

for almost every x e bR".

Proof. For any $ e ̂ "(R"), the function

https://doi.org/10.1017/S0013091500004697 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004697


CONVOLUTION THEOREMS OF TITCHMARSH TYPE ON DISCRETE R" 451

g(x)=j$(t)?(x-e,)dt (4)

R"

is defined on E, the set where (2) holds. Fubini's theorem shows that geL1(bti") and

g = 5F-"g = 4>f, (5)
with <p defined by (3). For xeE, (4) gives

gx{s)=$$(t)fx(s-t)dt,seR'>,
R"

and hence gx is continuous, and its distributional inverse Fourier transform gx satisfies

g = <t>U (6)

It follows from (1), applied to g, that gx = 0 for almost every xeE if and only if g = 0
almost everywhere on bR". Hence (5) and (6) show that

<j)fx = O for almost every xeE if and only if $/=0. (7)

Let us define \ji(x) as 0, if gx = Q, and as 1 elsewhere on bR". Then \j/ e L}(bR"), and is
constant on the cosets of R"o. By a known device (see for instance the proof of Theorem
9 in Helson [3]) this implies that \p is constant almost everywhere on bR". Hence the set
where gx vanishes has either measure 0 or 1, and we can conclude from (6) and (7) that

<t>fx^O for almost every xeE if (and only if) <£/"#(). (8)

The lemma follows easily from (7) and (8) by varying 0 in a suitable denumerable
subset of 2>(R").

Definition 1. If f=&r~1f, g = ̂ ~1g, with f, g, Jgel}{bR"), we define convolution
f*g of f andg by

Theorem 1. Let f=3F~1f, g = &r~1g, with / , g, fgeL}(bRn), and with supp/ and
suppg bounded. Then

ch supp / * g=ch supp / + ch supp g.

Proof. By Lemma 1 we have, for almost every x e bR",

fx e Sr{R"), supp gx = supp g,
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?JX e ST(Rn), supp (/ * g)x=supp / * g.

Hence fx and gx have compact support, for these values of x. But then the
Titchmarsh support theorem in R" (see for instance Hormander [5, Theorem 4.3.3])
implies that

ch supp fx*gx = ch supp / , + c h supp gx,

and it remains to prove that

fx*gx = (f*gh- (9)

Here fx * gx is, of course, convolution in ordinary distribution sense. Since fx and gx

have compact support, fx and gx are continuous almost everywhere on R" and

W , **«)=/,£,
The Fourier transform of the right hand member of (9) is by Definition 1

and (9) is proved.

Parseval's relation shows that Definition 1 is applicable in the case when /,£e/2(RJ),
and that

f*g(X)= I m-v)g{V),AeRn
d. (10)

veRg

We have then the following more precise theorem.

Theorem 2. Let f,gel2(Rj), with supp/ and suppg bounded. Then

ch supp/ * g = ch supp/ -f ch supp g.

Proof. Since Theorem 1 holds, it is enough to discuss the points on the boundary (with
respect to the topology of R") of ch supp f*g. This is done by induction in n. For n = 1,
the theorem is an obvious consequence of (10). So let us assume that «^2 and that the
theorem is true for the dimension n—l. Let P be any support hyperplane of
chsupp(/*g), and let Px and P2 be the corresponding parallel support hyperplanes of
chsupp/ and chsuppg, respectively, such that P = P,+P2- (We have here used
Theorem 1.) Denote by f',g' and (f *g)' the functions obtained by multiplying f,g and
f*g with the characteristic functions of Pu P2 and P, respectively. (10) shows that

(f*g)'=f'*g',

and the induction assumption gives easily
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(ch supp / * g) n P - ch supp (/ * g)' = ch supp / ' + c h supp g'=(ch supp / + c h supp g) n P.

By varying P we obtain the theorem.

In the case n=\, we have the following theorem, which is slightly more general than
Theorem 1.

Theorem 3. Let f=&~lj, g=&r~1g, with f,g,?geL\bR), and with supp/ and
suppg bounded from below. Then

inf supp/* g = inf supp/+inf supp g.

Proof. It is a known fact (Hoffman [4, pp. 132-133]), that for a function £ in H\R.),
the exponential function in the product representation of the extension of £ to the upper
half-plane, determines inf supp k, with k defined in accordance with (3). It follows easily
from this that if &,fi,y = &fieL1(R), then

inf supp y = inf supp a + inf supp /?, (11)

if the terms to the right are >—oo. By (2) and Lemma 1, the assumptions of the
theorem imply that (11) holds with

W = A(t)(i+1) - \ ${t)=gx(t)(i+ty2,

for almost every x. Easy considerations show that this implies

inf supp (/*#)* = inf supp/x + inf supp gx,

for almost every x, and then Lemma 1 gives the desired result.

Remark. In the case /e/2(Rd),g£/2(R,,) Theorem 1 is a consequence of Helson's
theory of cocycles [3]. (See Helson [2, p. 480].)

2. Generalized Titchmarsh theorems

Let Q ̂  R3, with il open in the topology of R". If / is a function on £1 such that, for
every Xsf i with K compact in R", / coincides on K with a function in &r~lL1, we say
with a slight abuse of language that / is in ^~lLi locally on Q. If gl,g2e&~lLl, and if
both gl and g2 coincide with / on K, Lemma 1 applied to gl —g2 shows that gx and g2

coincide on the interior of K, for almost every x. Hence it is possible to extend the
mappings / -» / „ for almost every x, in Section 1, to mappings from the family of
functions locally in ^ " 1 L 1 on SI to 2>'{£l) in such a way that the relation g=f on an
open set fi'sfl, implies that fx=gx on Q', for almost every x. The following lemma is
then an obvious extension of Lemma 1.

Lemma 2. Let f be locally J^" 'L1 on SI. Then
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for almost every x e bR".

We will in the following assume that n = \. Let w be a decreasing positive function on
Rd. We define

/2(Rrf) is the space of all / with fwel2(Rd). For every complex-valued / on Rd,f
denotes the product of/ and the characteristic function of (n, n + 1].

Let fell(Rd), gell^Rj). Then, by Parseval's relation,

neZ bR neZ XeRd

and

neZ frR neZ /ieRd

(12) and (13) show that (2) holds with / replaced by any of the functions

X |/fw(n+l)2and £ |?|2w1(n+ I)2,

REZ neZ

and we obtain, for almost every x,

I J|(?)xW|2(l+N)-2^w(n+l)2<oo, (14)
neZ R

| n+l)2<oo. (15)
neZ R

The Schwartz inequality shows that (/*g)(A) is well defined by (10), if A^O. Let
NeZ, N^4. (12) and (13) show that

h= % (/n~2*fJV""+/"~1 *gN~n+fn*gN~")

neZ

belongs to &~lL}, and

h = / * g , on (JV-l.N + 1]. (16)
By (14) and (15) we have, for almost every x,

neZ

https://doi.org/10.1017/S0013091500004697 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004697


CONVOLUTION THEOREMS OF TITCHMARSH TYPE ON DISCRETE R" 455

with convergence in distribution sense. Note that Lemma 1 shows that

supp (/m)x £ [m, m +1], supp (#"% £ [m, m + 1],

for every m e Z and almost every x.
Let <f>e@(R), with supp0^[0,1/3]. Then an easy calculation, using (16), shows that,

for almost every x,

K*<t>*4>={fx*<t>)*(gx*<t>), (17)

on (N —1/3, N+ 1). The right hand member of this equality is well defined on [2, oo),
since (14) and (15) show that

(18)
R

and

(19)
R

Since N _ 4 was arbitrary, we have the following conclusion of (17) and Lemma 2.

Lemma 3. Let fe li(Rd),g e /«,(Rd), and

Then, for almost every x, (18) and (19) hold, and for every <f>e!&(R), with
[0,1/3],

=O, for A£4.

We are now in a position to prove the following theorem.

Theorem 4. Suppose that log w is convex in ( — oo,0] and concave in [0, oo), and that

Hm l ^ > 0 , i i r n : ^ ) < 0 , (20)

where a>\, b>\, I/a +1/6 = 1, and where at least one of the limits is infinite. Let
feli(Rd), gell,(R<i)> both not identically vanishing. If

f*g(Z)=0, for all AgO,

then infsupp/> — oo, infsuppg> — oo.

Proof. By Lemma 3 we obtain, for almost every x, that
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for k £4, if <£e^(R), supp<^[0,1/3], and that (18) and (19) hold. By Theorem 1 of [1],

supp(/x * <t>) and supp(gx * <p)

are bounded from below unless one of the sets is empty. This implies, by varying cf>, that
infsupp/, and infsuppgx are finite, for almost every x. Hence the same holds, by
Lemma 2, for inf supp/ and inf suppg.

Theorem 5. / / infsupp/> — oo, the conclusion of Theorem 4 holds with (20) changed
to the weaker condition

H m log|logw(i)|-logA_oo

A-oo ^/log X

Proof. Here we apply instead Theorem 2 of [1] in the preceding proof.

Let us form the space l2JRd) of all / on Rrf
+ wi th /we / 2 (R d

+ ) . Both /^Rd) and
are Hilbert spaces. For a ̂  0, (right) translation Ta is defined by

TJ(k)=f(k-a),

if fel2(Rd), while

\f(k-a),k>a,

if/e/2(Rd
+). Ta is a contraction, if we assume that w decreases. /J,(Rd) or /2(R/) is called

unicellular, if all closed translation-invariant subspaces are of the form

{/:/(*) = 0, if x^b) or {/:/(*) = 0, if x<b).

Theorem 3 is trivially extendable to arbitrary functions which belong locally to I2 and
have supports bounded from below. By this and Theorems 4 and 5 (cf. the discussion on
p. 299 of [1]) we find easily the following.

Theorem 6. /2(R) and /2(R/) are unicellular, if w satisfies the assumptions of Theorem
4 and Theorem 5, respectively.

Remark. It is not known whether the results in this paper can be extended to
convolutions of functions which are locally in I" and /*, where p#2 , and p and q are
conjugate exponents. It would be of particular interest to know whether Theorem 3
holds if the assumption J,g,?gell(bR) is changed to
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or to the stronger assumption

fell(Rd),gec0(Rd).
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