CONVOLUTION THEOREMS OF TITCHMARSH TYPE ON DISCRETE R["]

by YNGVE DOMAR

(Received 21st March 1988)

0. Summary

This paper contains results related to Titchmarsh's convolution theorem and valid for \mathbf{R}_{d}^{n} , the additive group of \mathbf{R}^{n} with the discrete topology. The method of proof consists in transferring the problem to \mathbf{R}^{n} with the usual topology by a procedure which has been used earlier, for instance in Helson [3].

In Section 1, the classical support theorems are generalized to \mathbf{R}_d^n . In [1], Titchmarsh's convolution theorem [6] on **R** was generalized to convolutions of functions belonging to certain weighted \mathbf{L}^p -spaces on **R**. Section 2 contains a corresponding generalization to weighted $l^2(\mathbf{R}_d)$.

It should be observed that convolutions of elements f and g in $l^1(\mathbf{R}_d^n)$ can be interpreted as convolutions of bounded discrete measures on \mathbf{R}^n . Hence, in that case the support theorem (Theorem 4.33 of Hörmander [5]) is directly applicable to give the results of our Theorems 1 and 3. So the novelty in our theorems lies in the fact that they apply for instance to the case when it is only assumed $f, g \in l^2(\mathbf{R}_d^n)$, together with support conditions. It is not known whether it suffices to assume $f \in l^1(\mathbf{R}_d^n), g \in l^p(\mathbf{R}_d^n)$, when p > 2.

1. Theorems on the convex hull of the support

The points on the vector space \mathbb{R}^n are denoted $\lambda = (\lambda_1, \dots, \lambda_n)$. On \mathbb{R}^n we will alternate between the usual and the discrete topology. In the latter case the space is denoted \mathbb{R}^n_d . The space \mathbb{R}^n_d is a discrete group under addition, and its dual group is $b\mathbb{R}^n$, the Bohr compactification of \mathbb{R}^n . For $t \in \mathbb{R}^n$, e_i denotes the element of $b\mathbb{R}^n$, which corresponds to the character $\lambda \mapsto \exp(i\lambda t)$ on \mathbb{R}^n_d . The set of elements e_i forms a Borel measurable subgroup \mathbb{R}^n_o of $b\mathbb{R}^n$, since $t \mapsto e_i$ is continuous. The Fourier transformation \mathscr{F} from \mathbb{R}^n_d to $b\mathbb{R}^n$ is formally defined by

$$\hat{f}(x) = \mathscr{F}f(x) = \sum_{\lambda \in \mathbf{R}^n_A} f(\lambda) \langle x, \lambda \rangle, x \in b\mathbf{R}^n,$$

with the inverse

$$f(\lambda) = \mathscr{F}^{-1}\hat{f}(\lambda) = \int_{B\mathbb{R}^n} \hat{f}(x) \langle x, -\lambda \rangle dm(x), \lambda \in \mathbb{R}^n_d,$$

where *m* is the normalized Haar measure on the compact group $b\mathbf{R}^n$. For convenience we assume in the sequel that all functions in $L^1(b\mathbf{R}^n)$ are chosen Borel measurable.

Let $\hat{f} \in L^1(b\mathbf{R}^n)$. Then $(x,t) \mapsto \hat{f}(x+e_t)$ is a Borel function on $b\mathbf{R}^n \times \mathbf{R}^n$. We put

$$\hat{f}(x+e_t)=\hat{f}_x(t),$$

and observe that \hat{f}_x is Borel measurable on \mathbb{R}^n for every $x \in b\mathbb{R}^n$. Taking into account the invariance of *m*, Fubini's theorem gives

$$\int_{\mathbf{R}^n} \int_{\mathbf{R}^n} |\hat{f}_x(t)| (1+|t|)^{-n-1} dt \, dm(x) = \int_{b\mathbf{R}^n} |\hat{f}(x)| \, dm(x) \int_{\mathbf{R}^n} (1+|t|)^{-n-1} \, dt < \infty, \tag{1}$$

where dt stands for integration with respect to the *n*-dimensional Lebesgue measure. Hence there is a \mathbb{R}_0^n -invariant Borel measurable set E with mE = 1 such that

$$\int_{\mathbb{R}^{n}} |\hat{f}_{x}(t)| (1+|t|)^{-n-1} dt < \infty,$$
(2)

whenever $x \in E$. Thus, if $x \in E$, then $\hat{f}_x \in \mathscr{S}'(\mathbb{R}^n)$, the Schwartz space of tempered distributions, and \hat{f}_x has an inverse Fourier transform $f_x \in \mathscr{S}'(\mathbb{R}^n)$. In this paper it is convenient to use the relation

$$\phi(\lambda) = \int_{\mathbb{R}^n} \widehat{\phi}(t) e^{-i\lambda t} dt, \ \lambda \in \mathbb{R}^n,$$
(3)

as the formal definition of inverse Fourier transformation on \mathbb{R}^n .

In the following, for any subset F of \mathbb{R}^n or \mathbb{R}^n_d , ch F denotes its convex hull with respect to the basic vector space \mathbb{R}^n and \overline{F} denotes the closure of F in the topology of \mathbb{R}^n . For any complex-valued f on \mathbb{R}^n_d ,

$$\operatorname{supp} f = \{\lambda \in \mathbf{R}^n_d, f(\lambda) \neq 0\},\$$

while the support for functions or distributions on \mathbf{R}^n is defined in the sense of distributions.

Lemma 1. Let $\hat{f} \in L^1(b\mathbf{R}^n)$, $f = \mathscr{F}^{-1}\hat{f}$. Then

$$\operatorname{supp} f_x = \operatorname{supp} f,$$

for almost every $x \in b\mathbf{R}^n$.

Proof. For any $\hat{\phi} \in \mathscr{S}(\mathbb{R}^n)$, the function

450

CONVOLUTION THEOREMS OF TITCHMARSH TYPE ON DISCRETE R^{*} 451

$$\hat{g}(x) = \int_{\mathbb{R}^n} \hat{\phi}(t) \hat{f}(x - e_t) dt$$
(4)

is defined on E, the set where (2) holds. Fubini's theorem shows that $\hat{g} \in L^1(b\mathbb{R}^n)$ and

$$g = \mathscr{F}^{-1}\hat{g} = \phi f, \tag{5}$$

with ϕ defined by (3). For $x \in E$, (4) gives

$$\hat{g}_x(s) = \int_{\mathbf{R}^n} \hat{\phi}(t) \hat{f}_x(s-t) \, dt, \ s \in \mathbf{R}^n,$$

and hence \hat{g}_x is continuous, and its distributional inverse Fourier transform g_x satisfies

$$g = \phi f_x. \tag{6}$$

It follows from (1), applied to \hat{g} , that $\hat{g}_x = 0$ for almost every $x \in E$ if and only if $\hat{g} = 0$ almost everywhere on $b\mathbf{R}^n$. Hence (5) and (6) show that

$$\phi f_x = 0$$
 for almost every $x \in E$ if and only if $\phi f = 0$. (7)

Let us define $\psi(x)$ as 0, if $g_x = 0$, and as 1 elsewhere on $b\mathbf{R}^n$. Then $\psi \in L^1(b\mathbf{R}^n)$, and is constant on the cosets of \mathbf{R}_0^n . By a known device (see for instance the proof of Theorem 9 in Helson [3]) this implies that ψ is constant almost everywhere on $b\mathbf{R}^n$. Hence the set where g_x vanishes has either measure 0 or 1, and we can conclude from (6) and (7) that

$$\phi f_x \neq 0$$
 for almost every $x \in E$ if (and only if) $\phi f \neq 0$. (8)

The lemma follows easily from (7) and (8) by varying ϕ in a suitable denumerable subset of $\mathcal{D}(\mathbf{R}^n)$.

Definition 1. If $f = \mathcal{F}^{-1}\hat{f}$, $g = \mathcal{F}^{-1}\hat{g}$, with \hat{f} , \hat{g} , $\hat{f}\hat{g} \in L^1(b\mathbf{R}^n)$, we define convolution f * g of f and g by

$$f \ast g = \mathscr{F}^{-1}(\widehat{f}\widehat{g}).$$

Theorem 1. Let $f = \mathcal{F}^{-1}\hat{f}$, $g = \mathcal{F}^{-1}\hat{g}$, with \hat{f} , \hat{g} , $\hat{f}\hat{g} \in L^1(b\mathbf{R}^n)$, and with supp f and supp g bounded. Then

$$\operatorname{ch} \operatorname{supp} f \ast g = \operatorname{ch} \operatorname{supp} f + \operatorname{ch} \operatorname{supp} g.$$

Proof. By Lemma 1 we have, for almost every $x \in b\mathbf{R}^n$,

$$\hat{f}_x \in \mathscr{S}'(\mathbf{R}^n)$$
, supp $f_x = \overline{\operatorname{supp} f}$,
 $\hat{f}_x \in \mathscr{S}'(\mathbf{R}^n)$, supp $g_x = \overline{\operatorname{supp} g}$,

$$\hat{f}_x \hat{g}_x \in \mathscr{S}'(\mathbf{R}^n)$$
, $\operatorname{supp}(f * g)_x = \operatorname{supp} f * g$.

Hence f_x and g_x have compact support, for these values of x. But then the Titchmarsh support theorem in \mathbb{R}^n (see for instance Hörmander [5, Theorem 4.3.3]) implies that

ch supp
$$f_x * g_x =$$
 ch supp f_x + ch supp g_x ,

and it remains to prove that

$$f_x * g_x = (f * g)_x. \tag{9}$$

Here $f_x * g_x$ is, of course, convolution in ordinary distribution sense. Since f_x and g_x have compact support, \hat{f}_x and \hat{g}_x are continuous almost everywhere on \mathbb{R}^n and

$$\mathcal{F}(f_x * g_x) = \hat{f}_x \hat{g}_x$$

The Fourier transform of the right hand member of (9) is by Definition 1

$$(\hat{f}\hat{g})_x = \hat{f}_x\hat{g}_x$$

and (9) is proved.

Parseval's relation shows that Definition 1 is applicable in the case when $f, g \in l^2(\mathbb{R}^n_d)$, and that

$$f * g(\lambda) = \sum_{v \in \mathbf{R}_d^n} f(\lambda - v)g(v), \ \lambda \in \mathbf{R}_d^n.$$
⁽¹⁰⁾

We have then the following more precise theorem.

Theorem 2. Let $f, g \in l^2(\mathbb{R}^n_d)$, with supp f and supp g bounded. Then

$$\operatorname{ch} \operatorname{supp} f \ast g = \operatorname{ch} \operatorname{supp} f + \operatorname{ch} \operatorname{supp} g.$$

Proof. Since Theorem 1 holds, it is enough to discuss the points on the boundary (with respect to the topology of \mathbb{R}^n) of ch supp f * g. This is done by induction in n. For n=1, the theorem is an obvious consequence of (10). So let us assume that $n \ge 2$ and that the theorem is true for the dimension n-1. Let P be any support hyperplane of ch supp (f * g), and let P_1 and P_2 be the corresponding parallel support hyperplanes of ch supp f and ch supp g, respectively, such that $P=P_1+P_2$. (We have here used Theorem 1.) Denote by f', g' and (f * g)' the functions obtained by multiplying f, g and f * g with the characteristic functions of P_1 , P_2 and P, respectively. (10) shows that

$$(f \ast g)' = f' \ast g',$$

and the induction assumption gives easily

452

 $(\operatorname{ch} \operatorname{supp} f * g) \cap P = \operatorname{ch} \operatorname{supp} (f * g)' = \operatorname{ch} \operatorname{supp} f' + \operatorname{ch} \operatorname{supp} g' = (\operatorname{ch} \operatorname{supp} f + \operatorname{ch} \operatorname{supp} g) \cap P.$

By varying P we obtain the theorem.

In the case n=1, we have the following theorem, which is slightly more general than Theorem 1.

Theorem 3. Let $f = \mathcal{F}^{-1}\hat{f}$, $g = \mathcal{F}^{-1}\hat{g}$, with $\hat{f}, \hat{g}, \hat{f}\hat{g} \in L^1(b\mathbf{R})$, and with supp f and supp g bounded from below. Then

$$\inf \operatorname{supp} f * g = \inf \operatorname{supp} f + \inf \operatorname{supp} g.$$

Proof. It is a known fact (Hoffman [4, pp. 132-133]), that for a function \hat{k} in $H^1(\mathbf{R})$, the exponential function in the product representation of the extension of \hat{k} to the upper half-plane, determines inf supp k, with k defined in accordance with (3). It follows easily from this that if $\hat{\alpha}, \hat{\beta}, \hat{\gamma} = \hat{\alpha}\hat{\beta} \in L^1(\mathbf{R})$, then

$$\inf \operatorname{supp} \gamma = \inf \operatorname{supp} \alpha + \inf \operatorname{supp} \beta, \tag{11}$$

if the terms to the right are $> -\infty$. By (2) and Lemma 1, the assumptions of the theorem imply that (11) holds with

$$\hat{\alpha}(t) = \hat{f}_x(t)(i+t)^{-2}, \ \hat{\beta}(t) = \hat{g}_x(t)(i+t)^{-2},$$

for almost every x. Easy considerations show that this implies

$$\inf \operatorname{supp}(f * g)_x = \inf \operatorname{supp} f_x + \inf \operatorname{supp} g_x,$$

for almost every x, and then Lemma 1 gives the desired result.

Remark. In the case $f \in l^2(\mathbf{R}_d), g \in l^2(\mathbf{R}_d)$ Theorem 1 is a consequence of Helson's theory of cocycles [3]. (See Helson [2, p. 480].)

2. Generalized Titchmarsh theorems

Let $\Omega \subseteq \mathbb{R}^n_d$, with Ω open in the topology of \mathbb{R}^n . If f is a function on Ω such that, for every $K \subseteq \Omega$ with K compact in \mathbb{R}^n , f coincides on K with a function in $\mathscr{F}^{-1}L^1$, we say with a slight abuse of language that f is in $\mathscr{F}^{-1}L^1$ locally on Ω . If $g^1, g^2 \in \mathscr{F}^{-1}L^1$, and if both g^1 and g^2 coincide with f on K, Lemma 1 applied to $g^1 - g^2$ shows that g_x^1 and g_x^2 coincide on the interior of K, for almost every x. Hence it is possible to extend the mappings $f \to f_x$, for almost every x, in Section 1, to mappings from the family of functions locally in $\mathscr{F}^{-1}L^1$ on Ω to $\mathscr{D}'(\Omega)$ in such a way that the relation g=f on an open set $\Omega' \subseteq \Omega$, implies that $f_x = g_x$ on Ω' , for almost every x. The following lemma is then an obvious extension of Lemma 1.

Lemma 2. Let f be locally $\mathcal{F}^{-1}L^1$ on Ω . Then

 $\operatorname{supp} f_x = \overline{\operatorname{supp} f},$

for almost every $x \in b\mathbf{R}^n$.

We will in the following assume that n=1. Let w be a decreasing positive function on \mathbf{R}_{d} . We define

$$w_1(\lambda) = 1/w(-\lambda), \ \lambda \in \mathbf{R}_d.$$

 $l_w^2(\mathbf{R}_d)$ is the space of all f with $fw \in l^2(\mathbf{R}_d)$. For every complex-valued f on \mathbf{R}_d, f^n denotes the product of f and the characteristic function of (n, n+1].

Let $f \in l_w^2(\mathbf{R}_d)$, $g \in l_{w_1}^2(\mathbf{R}_d)$. Then, by Parseval's relation,

$$\sum_{n\in\mathbb{Z}}\int_{b\mathbb{R}}|\widehat{f^{n}(x)}|^{2}\,dx\,w(n+1)^{2}=\sum_{n\in\mathbb{Z}}\sum_{\lambda\in\mathbb{R}_{d}}|f^{n}(\lambda)|^{2}w(n+1)^{2}<\infty,$$
(12)

and

$$\sum_{n \in \mathbb{Z}} \int_{b\mathbb{R}} |\widehat{g^{n}(x)}|^{2} dx w_{1}(n+1)^{2} = \sum_{n \in \mathbb{Z}} \sum_{\lambda \in \mathbb{R}_{d}} |g^{n}(\lambda)|^{2} w_{1}(n+1)^{2} < \infty,$$
(13)

(12) and (13) show that (2) holds with \hat{f} replaced by any of the functions

$$\sum_{n\in\mathbb{Z}} |\widehat{f^n}|^2 w(n+1)^2 \text{ and } \sum_{n\in\mathbb{Z}} |\widehat{g^n}|^2 w_1(n+1)^2,$$

and we obtain, for almost every x,

$$\sum_{n \in \mathbb{Z}} \int_{\mathbb{R}} |(\widehat{f^n})_x(t)|^2 (1+|t|)^{-2} dt w(n+1)^2 < \infty,$$
(14)

$$\sum_{n \in \mathbb{Z}} \int_{\mathbb{R}} |(\widehat{g^n})_x(t)|^2 (1+|t|)^{-2} dt \, w_1(n+1)^2 < \infty.$$
(15)

The Schwartz inequality shows that $(f * g)(\lambda)$ is well defined by (10), if $\lambda \ge 0$. Let $N \in \mathbb{Z}$, $N \ge 4$. (12) and (13) show that

$$h = \sum_{n \in \mathbb{Z}} \left(f^{n-2} * g^{N-n} + f^{n-1} * g^{N-n} + f^n * g^{N-n} \right)$$

belongs to $\mathcal{F}^{-1}L^1$, and

$$h = f * g$$
, on $(N - 1, N + 1]$. (16)

By (14) and (15) we have, for almost every x,

$$h_{x} = \sum_{n \in \mathbb{Z}} \{ (f^{n-2})_{x} * (g^{N-n})_{x} + (f^{n-1})_{x} * (g^{N-n})_{x} + (f^{n})_{x} * (g^{N-n})_{x} \},\$$

454

with convergence in distribution sense. Note that Lemma 1 shows that

$$\operatorname{supp}(f^m)_x \subseteq [m, m+1], \operatorname{supp}(g^m)_x \subseteq [m, m+1],$$

for every $m \in \mathbb{Z}$ and almost every x.

Let $\phi \in \mathcal{D}(\mathbf{R})$, with supp $\phi \leq [0, 1/3]$. Then an easy calculation, using (16), shows that, for almost every x,

$$h_x * \phi * \phi = (f_x * \phi) * (g_x * \phi), \tag{17}$$

on (N-1/3, N+1). The right hand member of this equality is well defined on $[2, \infty)$, since (14) and (15) show that

$$\int_{\mathbf{R}} |f_x * \phi(\lambda)|^2 w(\lambda+1)^2 \, d\lambda < \infty \tag{18}$$

and

$$\int_{\mathbb{R}} |g_x * \phi(\lambda)|^2 w_1(\lambda+1)^2 \, d\lambda < \infty.$$
(19)

Since $N \ge 4$ was arbitrary, we have the following conclusion of (17) and Lemma 2.

Lemma 3. Let $f \in l^2_w(\mathbf{R}_d), g \in l^2_{w_1}(\mathbf{R}_d)$, and

$$f * g(\lambda) = 0, \ \lambda \geq 0.$$

Then, for almost every x, (18) and (19) hold, and for every $\phi \in \mathscr{D}(\mathbf{R})$, with supp $\phi \subseteq [0, 1/3]$,

$$(f_x * \phi) * (g_x * \phi)(\lambda) = 0$$
, for $\lambda \ge 4$.

We are now in a position to prove the following theorem.

Theorem 4. Suppose that log w is convex in $(-\infty, 0]$ and concave in $[0, \infty)$, and that

$$\lim_{\lambda \to -\infty} \frac{\log w(\lambda)}{|\lambda|^{a}} > 0, \quad \lim_{\lambda \to \infty} \frac{\log w(\lambda)}{\lambda^{b}} < 0, \quad (20)$$

where a > 1, b > 1, 1/a + 1/b = 1, and where at least one of the limits is infinite. Let $f \in l^2_w(\mathbf{R}_d)$, $g \in l^2_{w_1}(\mathbf{R}_d)$, both not identically vanishing. If

$$f * g(\lambda) = 0$$
, for all $\lambda \leq 0$,

then $\inf \operatorname{supp} f > -\infty$, $\inf \operatorname{supp} g > -\infty$.

Proof. By Lemma 3 we obtain, for almost every x, that

$$(f_x * \phi) * (g_x * \phi)(\lambda) = 0,$$

for $\lambda \ge 4$, if $\phi \in \mathcal{D}(\mathbf{R})$, supp $\phi \le [0, 1/3]$, and that (18) and (19) hold. By Theorem 1 of [1],

$$\operatorname{supp}(f_x * \phi) \text{ and } \operatorname{supp}(g_x * \phi)$$

are bounded from below unless one of the sets is empty. This implies, by varying ϕ , that inf supp f_x and inf supp g_x are finite, for almost every x. Hence the same holds, by Lemma 2, for inf supp f and inf supp g.

Theorem 5. If inf supp $f > -\infty$, the conclusion of Theorem 4 holds with (20) changed to the weaker condition

$$\lim_{\lambda \to \infty} \frac{\log |\log w(\lambda)| - \log \lambda}{\sqrt{\log \lambda}} = \infty.$$

Proof. Here we apply instead Theorem 2 of [1] in the preceding proof.

Let us form the space $l_w^2(\mathbf{R}_d^+)$ of all f on \mathbf{R}_d^+ with $fw \in l^2(\mathbf{R}_d^+)$. Both $l_w^2(\mathbf{R}_d)$ and $l_w^2(\mathbf{R}_d^+)$ are Hilbert spaces. For $a \ge 0$, (right) translation T_a is defined by

$$T_a f(\lambda) = f(\lambda - a),$$

if $f \in l^2(\mathbf{R}_d)$, while

$$T_a f(\lambda) = \begin{cases} f(\lambda - a), \ \lambda \ge a, \\ 0, \ 0 \le \lambda < a, \end{cases}$$

if $f \in l^2(\mathbf{R}_d^+)$. T_a is a contraction, if we assume that w decreases. $l_w^2(\mathbf{R}_d)$ or $l_w^2(\mathbf{R}_d^+)$ is called *unicellular*, if all closed translation-invariant subspaces are of the form

$$\{f: f(x) = 0, \text{ if } x \leq b\} \text{ or } \{f: f(x) = 0, \text{ if } x < b\}.$$

Theorem 3 is trivially extendable to arbitrary functions which belong locally to l^2 and have supports bounded from below. By this and Theorems 4 and 5 (cf. the discussion on p. 299 of [1]) we find easily the following.

Theorem 6. $l_w^2(\mathbf{R})$ and $l_w^2(\mathbf{R}_d^+)$ are unicellular, if w satisfies the assumptions of Theorem 4 and Theorem 5, respectively.

Remark. It is not known whether the results in this paper can be extended to convolutions of functions which are locally in l^p and l^q , where $p \neq 2$, and p and q are conjugate exponents. It would be of particular interest to know whether Theorem 3 holds if the assumption $\hat{f}, \hat{g}, \hat{f} \hat{g} \in l^1(b\mathbf{R})$ is changed to

$$f \in l^1(\mathbf{R}_d), g \in l^\infty(\mathbf{R}_d),$$

or to the stronger assumption

$$f \in l^1(\mathbf{R}_d), g \in c_0(\mathbf{R}_d).$$

REFERENCES

1. Y. DOMAR, Extensions of the Titchmarsh convolution theorem with applications in the theory of invariant subspaces, *Proc. London Math. Soc.* (3) 46 (1983), 288-300.

2. H. HELSON, Cocycles in harmonic analysis, Actes du Congrès international des mathématiciens 1970 (Gauthier-Villars, Paris, 1971).

3. H. HELSON, Analyticity on compact abelian groups, Algebras in Analysis (Academic Press, London 1975), 2-62.

4. K. HOFFMAN, Banach Spaces of Analytic Functions (Prentice-Hall, Englewood Cliffs, N.J., USA 1962).

5. L. HÖRMANDER, The Analysis of Linear Partial Differential Operators. Vol. 1 (Springer, Berlin 1983).

6. E. C. TITCHMARSH, The zeros of certain integral functions. Proc. London Math. Soc. (2) 25 (1926), 283-302.

DEPARTMENT OF MATHEMATICS UPPSALA UNIVERSITY THUNBERGSVAGEN 3, S-752 38 UPPSALA, SWEDEN