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Abstract

In this paper we characterize boundedly laterally complete Riesz spaces, boundedly laterally complete
Riesz spaces with the lateral boundedness property and Riesz spaces in which every principal ideal is
finite dimensional. The characterizations are given in terms of extension properties of certain Riesz
homomorphisms.
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1. Introduction

In the theory of Riesz spaces and in particular in the theory of Banach lattices
much has been done in the area of extending positive linear maps (see for
instance [4], [5], [7], [9], [12], [14] and [19]). In contrast, relatively little is known
about extending Riesz homomorphisms. One reason for this is that Riesz homo-
morphisms simply do not occur as often as positive linear maps.

Results about extending Riesz homomorphisms can be found in [1] (Theorem
23.16), [6] (Theorems 17B and 17C), [13], [16], [17] (Theorem 19.9) and [21].

In [7] it is proved that weak a-distributivity of a-Dedekind complete Riesz
spaces can be characterized completely by means of extension of certain positive
linear maps. An inspection of the methods in [7] yields that we need only consider
Riesz homomorphisms for the characterization of weak a-distributivity.

In this paper we will characterize other classes of Riesz spaces in terms of
extension properties of Riesz homomorphisms. Where in [7] the main difficulty is
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the preservation of a continuity condition which is natural with respect to the
measure theory behind it, in this paper the continuity conditions are mild and in
fact necessary to get any Riesz homomorphic extension at all. In this way quite
different results are obtained.

Our standard reference books for the general theory of vector lattices will be
[11] and [15]. However, we will assume that all Riesz spaces considered are
Archimedean.

This paper is part of a thesis [3] written by the author under supervision of
Professor Dr. A. C. M. Van Rooij.

2. The extension problem

The extension problem considered in this paper is the following.

Suppose E, F are Riesz spaces, / c E is an ideal and q>: I —* F
is a Riesz homomorphism. Does there exist a Riesz homomorphism
<f>: E -» Fsuch that *|/ = (p?

An investigation of Theorem 61.4 in [15] tells us that, without restrictions on <JP,
even if F = R the answer may be ' no', unless £ is of a particularly simple form
(Theorem 0.8.4 in [3]). Some continuity condition is necessary to get more positive
answers. Basically we will consider two different continuity restrictions on <p
which are defined next.

DEFINITION 2.1. Suppose we have three Riesz spaces /, E and F and / is an
ideal in E. Assume furthermore that <p: / -* F is a Riesz homomorphism. We say
that <p is o(I, E, F)-continuous (or in short, o-continuous) if for all / ' e E +

{fig)] g e !•> 0 < g < / } is order bounded.

DEFINITION 2.2. Suppose we have three Riesz spaces /, E and F and / is an
ideal in E. Assume furthermore that qp: / -* F is a Riesz homomorphism. We say
that <jp is c{I, E, F)-continuous (or in short, c-continuous) if for all sequences
( / n ) n e N in / with/n -» 0 relatively uniformly in E we have <?(/„) -» 0 relatively
uniformly in F.

It is not difficult to prove that each o-continuous map is c-continuous and that
not every c-continuous map is o-continuous. We will say that a pair of Riesz
spaces (E, F) has property (o/) (respectively (c/)) if for every ideal / c E and
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every o-continuous (respectively c-continuous) Riesz homomorphism <p: / -» F
there exists a Riesz homomorphism $: E -» F such that $ 17 = <p.

We now come to the key definition in this paper.

DEFINITION 2.3. A Riesz space F is said to be an o-extensor if {E, F) has
property (ol) for all Riesz spaces E; F is said to be a c-extensor if (£, F) has
property (c/) for all Riesz spaces E.

3. 0-Extensors

We recall from [1] that a Riesz space is said to be laterally complete if the
supremum of every disjoint subset of its positive cone exists. Similarly, a Riesz
space F is said to be boundedly laterally complete if the supremum of every order
bounded disjoint subset of F+ exists. In this section we will prove that the class of
all boundedly laterally complete Riesz spaces coincides with the class of all
o-extensors. Before stating and proving that o-extensors are boundedly laterally
complete we introduce some notations.

For any infinite set fl we define k (52) to be the space of those functions
/ : fi -» R for which there are a finite subset A of fi and a real number c such that
/ I a\A = c- The number c naturally belonging to an element / o f k{0,) will be
written as/(oo). Furthermore c^Q) = { /e k{U)\ f = 0 outside a finite set}.

PROPOSITION 3.1. Every o-extensor is boundedly laterally complete.

PROOF. Suppose F is an o-extensor. Suppose furthermore, that A = {fx\\ & A]
is a disjoint set in F+ majorized by g e F+. If A is a finite set, clearly sup^4 exists.
Therefore, assume A is infinite. The set of disjoint subsets of F+ which are
disjoint with A is a partially ordered set in which each chain has an upper bound.
According to Zorn's lemma there exists a set B = {/ | ju e T} which is maximal
with the property of being disjoint with A.

Define <p: cm(A U T)• - F by <p(/) = EA e A/(X)/x + E ^ r / W A - Evidently
<p is a Riesz homomorphism.

Define S: fc(A) e C(K)(r) -» F by S(/ , / ' ) = EXeA(/(X) - / (oo)) / x + /(ao)g
+ £/ler/'(/ i)/M- Because g > f\ for all X e F it follows that 5 is a positive linear
map. Because 5 | Coo(Aur) = <p, <p is o(c00(A U F), A:(A) © ^ ( F ) , F)-continuous.
Therefore, there exists a Riesz homomorphism 0: A;(A)©c0 0 (A)^F which
extends <p.
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Define /0 = $(lA,0) A g. Remark that f0 > fx for all X G A. Because $ is a
Riesz homomorphism it follows that for all X G A we have |$(1A, 0) - 2/A| =
|$(1A - 21X, 0)| = $(lA,0) and moreover (<i>(lA,0) - O(lx,0)) A/x = 0 for all
X G A. We claim that/0 is the supremum of A.

For suppose it is not and let fx be an element of F such that fx > / x for all
X G A, while f0 A fx < /„. Because (/0 - A) + A / x < (/0 - / x ) A /A < (*(lA,0)
- O(1A, 0)) A / x = 0 for all X G A, we find (/0 - (/„ A fx)) A / x = 0 for all
X G A. This contradicts the maximality of B because /0 - (/0 A / : ) is not in B
(use the fact that $ is a Riesz homomorphism) and non-zero.

It is not difficult at all to show that every Dedekind complete Riesz space is an
o-extensor. In fact the extension formula as used in 17B of [6] yields the result
immediately. It is well known that a Riesz space is Dedekind complete if and only
if it is boundedly laterally complete as well as uniformly complete (see [2] or [20]).
The problem in proving the converse of Proposition 3.1 is the absence of uniform
completeness. However, every boundedly laterally complete Riesz space does have
the projection property (see [20]) and this turns out to be very helpful.

A Riesz space is said to be universally complete if it is both laterally complete
and Dedekind complete. A universal completion G of a Riesz space F is a
universally complete Riesz space containing F as an order dense Riesz subspace,
or more precisely, having an order dense Riesz subspace which is Riesz isomor-
phic to F. For every Riesz space F there exists a universal completion and every
two universal completions of F are Riesz isomorphic. (A nice proof of the
existence of universal completions can be found in [23].) Suppose F is a Riesz
space and G is the universal completion of F. By the Maeda-Ogasawara represen-
tation theorem there exists an extremally disconnected compact Hausdorff space
X such that G and CX(X) are Riesz isomorphic (where C°°(X) is the set of all
extended real continuous functions/on A'with the property that {x G X\ \f{x)\
< oo } is dense in X). We identify the image of F under this isomorphism with F.
For each / e C00(Ar) define Wf= {x G A^there exists a neighborhood ux of x
and gx G F such that f\u = gx\ u }. In this situation we have the following
lemma.

LEMMA 3.2. Suppose F is boundedly laterally complete. 7 / / G C ° ° ( I ) + is
dominated by g G F+ and Wf is dense in X, then f G F.

PROOF. Let us assume that F is boundedly laterally complete. We will first
prove that, if g G F+ and U ¥= 0 is an open subset of X, then there exists a
clopen subset V of U, V ¥= 0 , such that gV G F. Let U c X be open and
g G F+. Because F is order dense in C°°{X) there exists an h G F such that
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0 < h < lu. Define V = clo{y G X\ h(y) =£ 0} and notice that g\v is the image
of g under the projection onto the band generated by h in C°°(X). From the fact
that / itself has the projection property combined with the order denseness of F in
CX(X) we infer that g\v <= F.

Now suppose/ G C°°( X)+,f < g £ f + and W îs dense in X. Choose s/ to be a
maximal collection of clopen pairwise disjoint subsets of X such that/I ^ G F for
all £/ e ja .̂ Using the result of the first part of this proof it follows that U ^ ^ F is
dense in X. Define h = F-sup {/I ^ | C/ G jaf}. Because F is a normal sublattice of
C°°( X) (see Lemma 13.21 of [11]) we find that

h = C°°(*)-sup{/ l j Ues/}.

Thus ft = / on a dense subset of X and thus h = f e. F.

We can now prove the converse of Proposition 3.1.

PROPOSITION 3.3. Every boundedly laterally complete Riesz space is an o-
extensor.

PROOF. Suppose F is bounded laterally complete. Let £ be a Riesz space, / c E
an ideal and <p: I -» F an o-continuous Riesz homomorphism. Let X be an
extremally disconnected compact Hausdorff space such that F is an order dense
Riesz subspace of C°°(X). Take a n y / e E+. By the o-continuity of <p we know
that {(p(j)\ j G [0, / ] n / } is order bounded in F and hence in C°°(X). Define
for each x G X, g(x) = sup{<p(y)(x)| j e [0,/] n / } . The preceding remark
shows that (xGA' |g(x:)<oo}is the complement of a meagre set and even that
almost every point of X has a neighbourhood on which g is bounded. Define
X1 = [x G X I there exists a neighbourhood of x on which g is bounded} and
Xo= {x G X\ there exists; e / + such that <pO')(x) > 0}.

Clearly, Xo is open and g = 0 on JT\ clo( AQ). Furthermore Zo U (X\ clo(X0))
is dense in X. We will now show that for ^ ( / ) = C00(Ar)-sup{<p(y)| j G [0, / ] n
/ } we have W^f) D ( I o n (XXCIOCXQ))) n X^ Therefore, suppose a Xo n Xv

Choose j0 G /, j0 > 0 such that <pOo)(a) ^ 0. By multiplying j0 with a large
enough scalar we may assume that for a clopen neighbourhood W of a we have
•POo)!^ > SUP{#(*)| •* G W}lw Now / A 70 G / n [0, / ] . Using this, the par-
ticular choice of y0 and because pointwise suprema are less than or equal to
suprema, we derive the following:

For all x G W,

sup <p(j/\jo)\(x)
[0,/]nl J

> vUo)(x) A sup [<p(j)(x)] > g(x); thus a
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If we take a e JCXCIO^Q) n Xx then it follows more simply that a e ^ ( / )
because we have g\ X\c\o(x0) ~ ®- Also, <p(/) is dominated by an upper bound of
{q>(j)\ / e / n [0, /]} in F. Lemma 3.2 tells us now that ^ ( / ) e F. Because
/ c E is an ideal we find that / -> y(f) ( / e E+) is additive. We leave it to the
reader to extend / >-* <p(/) ( / e if+) to a Riesz homomorphism $: £ -» F such
that $ | 7 = <p by means of Lemma 2.10 in [11].

We have now proved the following characterization of boundedly laterally
complete Riesz spaces.

THEOREM 3.4. For a Riesz space F the following are equivalent.
(1) F is boundedly laterally complete.
(2) F is an o-extensor.

We close this section with the remark that an example of a space which is
boundedly laterally complete but not Dedekind complete is the space of all
equivalence classes of bounded, countably valued and Lebesgue measurable
functions on [0,1].

4. c-Extensors

As we remarked before, every o-continuous Riesz homomorphism is c-continu-
ous. As a result every c-extensor is an o-extensor and thus boundedly laterally
complete. Our first step in the search for c-extensors is a lemma proving that
every universally complete Riesz space is a c-extensor.

LEMMA 4.1. Suppose X is an extremally disconnected compact Hausdorff space.
Then C^^X) is a c-extensor.

Furthermore, let I c E be an ideal and 0: / -> C°°(X) a c(I,E,Cx(X))
continuous Riesz homomorphism. Denote A = {x e A'l there exists h e / such that
<p(h)(x) ¥= 0}. Then there exists a Riesz homomorphism 3>: E -* C^^X) such that
$ | , = <p and for all f e E+ there is a collection of clopen subsets {Vt\ t e T} of
such that

(1) v, n vy= 0 «// # /',
(2) For each t e T there exists /i, e / n [0, / ] with lK < <p(/i,),
(3) For allt e T there exists n e N such that $ ( / ) | K = <p(/ A nh,)\ K,
(4) (J,e T Vt is a dense subset of A,
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°°PROOF. Suppose / c E is an ideal and <p: / -> C°°(X) is a c(/, £, C°
continuous Riesz homomorphism. We define A = {x G X\ there exists g £ / such
that <p(g)(x) # 0}. The collection of all sets of characteristic functions in the
ideal generated by<p(/)inC°c(A')is partially ordered by inclusion. Every chain
in it has a maximal element. Choose, by Zorn's lemma, a maximal disjoint set
{\v\ s G 5} in the ideal generated by <p(/) in C°°( Z).

Suppose x & A\\JseSUs and V is an open subset of X containing x but
disjoint from UseSUs. Then we can find g G / such that q)(g)(x) > 1 which
easily leads to a contradiction with the maximality of {lyj-s G S}. This shows
that UseS Us is a dense subset of A and hence U j e S Us = A.

For every $ G S choose hs G / + such that 1^ < <p(hs). If/ G E+ and x G Xwe
define /7(x) = sup{(p(g)(x)| g G [0, / ] n / } and we remark that ^(x) G [0, oo].

Let s e i . On Us we can give a somewhat more tractable formula for If.

lf(x) = sup{<p(/A nh,)(x)\n e N} for all x G L .̂

Indeed, take x G {/,. If //(*) = oo then

lf(x) A sup{n<p(/ij(x)|« G N} = SU P {H<P(/O(X) |H e N} = oo = / / x ) .

If /^(x) < oo then lf(x) A sup{n(p(/ix)(x)| n G N} = ^(x) also. This means that
in either case

/ ,(*) = /,(*) A sup{n9(*,)(x)|/i e N }

= sup{<p(g)(x) A n<p(h,)(x)\ne N,ge/o[0 , / ]}

= sup{<p(g A nhx){x)\n e N, g G / n[0, / ] }

< s u p { v ( / A »*,)(*)! » e N } <lf(x)

for all x G Lf.
We know that «"1/2(/A n/is) -» 0 relatively uniformly with respect to / .

Because q> is c-continuous it follows that «"1^2<p(/ A nhs) < enFs with en —* 0 and
F, G C°°( A'). We will now prove that

l/(y) < °° a nd '/is continuous at>> ify G t/5 and Fs(y) < oo.

Therefore, takej G US such that F / ^ ) < oo. Then for all g G [0, / ] n / we see
that [«"1/2<p(g) A rV2)(y) < [«-1/2<p(g) A «1/2<p(M(>0 < ^ ^ ( j ) - 0. In this
manner we find an n0 G N such that for all g G [0, / ] n / we have riQ1/2<p(g)(y)
< «o/2, i.e. <p(g)(y) < n0 and /^(^) < oo. Instead of doing this work at the point

y only, we can do the same on a neighbourhood V of y on which Fs is bounded
and which contains points of Us only. Suppose Kis a neighbourhood of y as in the
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preceding line. We then find an nQ G N such that for all g G / n [0, / ] and for all

y' <= V, « o 1 / 2 < P ( g ) ( / ) < n1/2. Thus

(**) lf(y')

= sup{[<p(g) A

W e infer that lf \ v = <p(/ A nhs)\ v for some n G N. In particular, lf is con-

t inuous a t / . We now define B = {x G X | there exists j e S such that Fs(x) < oo

and x G [^}.
5 is an open dense subset of /I and by the preceding arguments If is continuous

on B. Thus we can extend lf to a continuous function / * G CX(X) such that
/ *| , r = 0. Because <p(g)| B < / *| B = lf \ B for g G / n [0, / ] , it follows that
/*> <P(g) for all g e / n [0, / ] . Also, if h > <p(g) for all g G / n [0, / ] , then
^1 B > / *\B and hence h>f*. Therefore / * = sup{(p(G)| g G / n [0, / ]} . By
applying Lemma 2.10 in [11] again, we extend the map / • - » / * ( / £ £+) to a
Riesz homomorphism 0: £ -» Coo(A') such that $ | 7 = <p. So far we have proved
that C°°(X) is a c-extensor.

For the second part of the lemma, we take the Riesz homomorphism $ which
has been constructed above. Suppose / G E+. To prove (5) we refer to the
construction. With the aid of Zorn's lemma once more, we take a maximal
collection of clopen subsets {Vt\ t G T) of X with (1), (2) and (3). The proof of
(4), in using the arguments that led to the statement (**) above and the
maximality { Vt\ t G T}, is left to the reader.

The important definition in this section is the following.

DEFINITION 4.2. A Riesz space F is said to have the lateral boundedness property
if a disjoint set B c F+ is order bounded whenever for any sequence ( / n ) n e N of
elements of B and any sequence (a n ) n e N of positive real numbers decreasing to
zero, anfn -» 0 relatively uniformly.

Certainly, CX(X) has the lateral boundedness property. Therefore, the follow-
ing proposition is a generalization of Lemma 4.1.

PROPOSITION 4.3. / / a Riesz space F is boundedly laterally complete and has the
lateral boundedness property, then F is a c-extensor.
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P R O O F . Suppose we are dealing with the following instance of the extension

problem:

/ <z E

F c C°°(X)
In this diagram F is a Riesz space which is boundedly laterally complete and has
the lateral boundedness property, C°°(X) is its universal completion, / and E are
Riesz spaces, / is an ideal in E and <p is a Riesz homomorphism. Denote again
A = {x e X\ there exists/ e / such that <p(f)(x) * 0}. Let $ be the extension of
(jp which was produced in Lemma 4.1, such that for all/ e E we have <!>(/) | j< = 0.
Take any / e E+. Choose a collection of clopen subsets {Vt\.t e T) of X and a
set of functions {h,\ t e T} c / + such that (l)-(5) of Lemma 4.1 are valid.

For all t G T we define/, = f*lVi (where/* = $( / ) ) . First of all, for all t e T,
/ r e f b y the following reasoning. If j> e clo{x\ft(x) > 0} then, according to (**)
above there are a neighbourhood Uy oi y and gy e F such that/,(>>) I ^ = gy\ a-
Moreover, if ^ e (clo{.x|/,(x) > 0})c then more easily we can find such Uy and
g . According to Lemma 3.2,/, e F. We will now apply the lateral boundedness
property to show that {/,| t e 71} is order bounded. Therefore, suppose (a,) , e N is
a sequence of real numbbers decreasing to zero. Let (/, ),-eN be a sequence of
elements of { f\ t e T }.

(*) «,/,, = «,-/*Vf, = « ,<P( /A «,(A<()1^ < <p(«/(/A «(,^J).

As a,(f A ntht) -* 0 relatively uniformly in is (with respect to / ) , we know by
c-continuity of <p that qp(a,(/ A «, A,)) -» 0 relatively uniformly in F, and
because of (*), aj, -» 0 relatively uniformly in F. The lateral boundedness
property now shows that { / J / G T } is order bounded in F and because
F is boundedly laterally complete /** = sup{/,|/ e 7"} exists in F. Certainly
/ **l B^ f *\ B where B is as in the proof of Lemma 4.1. We will not repeat the
calculations of Lemma 4.1 to show that Wf* is dense in X. It follows that/* is in
Fby Lemma 3.2, because/ * is dominated b y / **. Thus, O(£) c F.

We will now prove the main theorem of this section.

THEOREM 4.4. Suppose F is any Riesz space. Then the following are equivalent.
(1) F is a c-extensor.
(2) F is boundedly laterally complete and has the lateral boundedness property.

PROOF. (2) => (1) has been proved in Proposition 4.3. Conversely, suppose F is
a c-extensor. It follows that F is an o-extensor and thus boundedly laterally
complete by Proposition 3.1. The remaining thing to do is to prove that F has the
lateral boundedness property. Therefore, suppose that { / S | J G S} C F + is a
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disjoint set such that for every sequence ( / n ) n e N of elements of {fs\ s G 5} and
for any sequence (a n ) n e N of positive real numbers decreasing to zero, <*„/„ -» 0
relatively uniformly.

Define co(S) = {/: S -> R| for each e > 0, {s G S\ \f(s)\ > e} is finite}.
Suppose a G co(S)+ and supp(a)( = {s G S\ a(s) =£ 0}) = {su s2,...}. Let a, =
a(Si) (/' G N),. Because aJSt -* 0 relatively uniformly in F, {ajs\ i e N} is order
bounded. Because Fis boundedly laterally complete, sup{a,/s | / G N} exists.

Therefore, it is easy to define a Riesz homomorphism <p: co(S) -> F such that
<p(a) = sup{a(s)fs\ s G S] (a G co(S)+). Suppose an G CO(S) for all n G N and
an —> 0 with respect to b G /°°(S). Then there exist a sequence of positive
numbers (e n ) n e N which converges to zero such that \an\ < enb. Now define a:
S -> R by a(s) = supn e N(l / fa)an(s) and prove by the pigeon hole principle
that a G co(S). It follows that an -» 0 relatively uniformly with respect to a. Thus
<p is c(co(5), /°°(5), F)-continuous and can be extended to a Riesz homomor-
phism 4>: /°°(5) -» F. Surely,/, < 0>(ls) for all s <= S. Thus, {/J 5 e S} is order
bounded in F.

Of course, the lateral boundedness property is the lateral version of the well
known boundedness property (see page 51 in [18]). For that reason, as every Riesz
space with the boundedness property also has the lateral boundedness property, it
is a corollary of the Propositions 5.13 and 5.14 in [18] that some special classes of
Riesz spaces can be identified as being oextensors.

PROPOSITION 4.5. Each of the following conditions on E implies that E is a
c-extensor.

(1) E contains an order unit and is Dedekind complete.
(2) The positive cone in E is countably generated and E is Dedekind complete.
(3) E is a Dedekind complete perfect sequence space.

Thus, the following spaces are c-extensors: RN; /°°; C(X) if X is compact and
extremally disconnected. It is interesting to observe that not every boundedly
laterally complete Riesz space with the lateral boundedness property has the
boundedness property.

EXAMPLE 4.6. An example of a boundedly laterally complete Riesz space with
the lateral boundedness property but without the boundedness property.

For the moment, in this example, we think of R as equipped with the discrete
topology. On RN we consider the product topology. For u G R" we write Vu =
{x G RN| xt: = w,; if / < «}; 38 is the space of all Borel measurable functions on
RN. As usual, a set A c RN is called meagre if there exist countably many closed
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sets An c RN such that A c UneN^4n and for all n G N, An has empty interior.
Because RN is completely metrizable, the Baire theorem yields that RN is not
meagre (Corollary 25.4 in [22]) and also that (for every u G R", n G N) VU is not
meagre because Vu is open and closed. (*)

Furthermore, we will need the fact that {Vu\ u G R", n G N} forms a base for
the topology on RN. Denote M = {/ e ^?|supp(/) is meagre}. It is easily seen
that M is a a-ideal in 2. Thus, F:= 38/M is Archimedean and the natural Riesz
homomorphism m: 3) -* F is a a-homomorphism (i.e. preserves countable
suprema).

Remark (*) tells us that C(RN) can be identified naturally as a Riesz subspace
of F. In fact, C(RN) is an order dense Riesz subspace of F. The latter can be
proved along the lines of Theorem 14.9 and page 112, d => c, in [11]. We will refer
to it as (**). From [11] we also adopt the convention on the use of the term
'almost everywhere'. Though our example is not going to be F, but the universal
completion of F, we start with giving a proof of the fact that F does not have the
boundedness property.

Therefore, consider B = {nlyj u G R, n G N). Certainly, sup{/(/)| / G B} =
oo for all / G RN. We are going to prove that tr{B) is not order bounded. Suppose
ir(B) is order bounded, i.e. there exists g e ^ such that for all / G ^?, g > f
almost everywhere. Let n G N. Because Vu O [g < n] is meagre for all u G RN, we
can find closed sets Auj ( j e N ) with empty interior such that Vu n [g < n] c
U^-i Auj and Auj c Vu. Now UusR» Auj is closed for eachy e N and VuC\[g<
n] c Uj^i\JueK>Auj. So, trying to prove that [g < n] is meagre, we are done if
UuGR- Auj has empty interior. If Uu e R AuJ did nor have empty interior we could
find V, with t G Rm for some m > n such that Vt c UueR» ^a>>. Thus, V, c >4uj

for some u e R", which is impossible. The result is now that [g < oo] is meagre
which is impossible also. Thus, our assumption on ir(B) was not correct, i.e. -n(B)
is not order bounded.

However, every countable subset of ir(B) is order bounded as is shown next.
Suppose B1 c B is countable and n0 e N. Define iT= {u e R"°| there exists
« G N and w G R" such that n\v^ G 5 X and « > n0 and «(&) = w(A:) for all
k < «0}. Then {«Vj n\Vu G 5 X and n > n0} is a countable set so T^is countable.
Let x £ UwEir Vw. Assume furthermore that n l^ G BX and n > n0. Then n\v{x)
= 0. Thus outside U^^^- Kw, sup/eBj / < «0 pointwise, i.e. the pointwise supre-
mum is finite outside a small set. (A set A is called small here if for every n G N
there exist ux, u2,... e R" such that A c UJiiK,,..) This implies that the pointwise
supremum is finite almost everywhere, because a small set, being contained in a
closed set with empty interior is meagre.

Let G be the universal completion of F. Every universally complete Riesz space
has the lateral boundedness property. However, does G have the boundedness
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property? Again we consider the set ir(B). TO check whether TT{B) is order
bounded we will use a theorem by Fremlin [8]. The latter theorem states that
ff(.B) is order bounded in G if and only if it is a dominable subset of F, i.e. for
every / e F + \ { 0 } there exists 0 < g e f and a positive integer k satisfying
(kf- h) + > gforallh e ir{B).

Suppose n(B) is a dominable set of F. In particular, we can find 0 < g £ ^
and k e N such that for all n e N and all w e R",

(***) (kltf* — nly) > g almost everywhere.

By (**) we can even choose g e C(RN). This implies that we can find e > 0 and
M G R" for some n e N such that g > elv. Choose n' ^ k and «' e R"' such that
n' > n and 1/(7) = u'(j) for ally < n. It follows that (kl^ - « '1K,) + | ^, = 0
while g I , / . > £ . Because Fu, is not meagre this is in contradiction with (***).

This means that ir(B) is not a dominable subset of F and neither order
bounded in G. However, every countable subset of ir(B) has a supremum in G,
because even in F every countable subset of TT{B) has a supremum. Hence G does
not have the boundedness property.

5. Riesz spaces in which every principal ideal is finite

In this final section we will characterize Riesz spaces in which every principal
ideal is finite dimensional. We refer the interested reader for other characteriza-
tions to [10].

To prove our result here, we need the following easy lemma, whose proof we
omit.

LEMMA 5.1. Suppose E is a Riesz space, I c E is an ideal and <p: I —> R is a
non-zero Riesz homomorphism. If I' 3 / and ip: / ' -» R is a Riesz homomorphism
that extends <p then ^ ( e ) = sup{(p(/')| / e [0, e] C\ I} for all e e / ' + .

In particular, any extension I' —» R of<p coincides with \p.

THEOREM 5.2. For a Riesz space E the following are equivalent.
(1) (E, F) has property (ol)for all Riesz spaces F.
(2) (E, F) has property (cl)for all Riesz spaces F.
(3) There exists a set S such that E and c^S) are Riesz isomorphic.
(4) Every principal ideal in E is finite dimensional.

PROOF. The equivalence of (3) and (4) is part of Theorem 6.14 in [15]; (3) => (2)
is left to the reader and (2) => (1) is trivial. We will prove (1) => (4) by contradic-
tion.
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Suppose (E, F) has property (ol) for all Riesz spaces F, though for some
/ G E+, ( / ) (the principal ideal generated by/ ) is not finite dimensional. By the
Maeda Ogawasara representation theorem there exists an extremally disconnected
compact Hausdorff space X, such that E is an order dense Riesz subspace of
C°°(A'). As ( /) is not finite dimensional there exists an infintie set A c X such
that for all a e A, 0 < f(a) < oo. Choose a subset {yn\n e N) c A and a
disjoint set of functions { ^ J m e N j c CX(X)+ such that gm(yn) = Smn for all
m, n e N. Because £ is an order dense subset of CX(X), for each n e N we can
find an /„' e £ such that 0 < /„' < gn. Define /„=/„ ' A / e £ for all n e N.
Choose for each n e N, xn e A" such that 0 < f(xn) < oo, and a clopen subset
£/„ c X such that xn n £/„ and U,<MJj= 0 Hi* j .

Define F = {(A, g ) | / i e £ , g e £ and h \ Un = g | ̂  for all but at most finitely
many n e N). Let (/1? / 2 , . . . ) be the ideal generated by {/J n e N} in E. Define
cp: (f1,f2,...)-*Fby <p(g)=(g,h) ( g e ( / 1 , / 2 , . . . ) ) . Remark that F is a
(non-uniformly complete) Riesz space and q> is an o-continuous Riesz homomor-
phism. Thus we can find a Riesz homomorphism $: E -» £ such that $ | (/j /2, >
= qp. Define for each (/i, g) e F, (/i, g)x = h and (A, g)2 = g. Define further-
more ^B>1: ( /) -» R and ^n>2: ( /) -» R by VB>1(g) = (*(g))i(*,,) (g e (/)),
respectively ^M>2 = (^(g))2(xn) (g G (/)).

In this situation it follows by Lemma 5.1 that ^n.iif) — 2^ n 2 ( / ) . It therefore
follows that $ ( / ) cannot be an element of F.
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