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Abstract
We prove the compatibility of local and global Langlands correspondences for GL𝑛 up to semisimplification for
the Galois representations constructed by Harris-Lan-Taylor-Thorne [10] and Scholze [18]. More precisely, let
𝑟𝑝 (𝜋) denote an n-dimensional p-adic representation of the Galois group of a CM field F attached to a regular
algebraic cuspidal automorphic representation 𝜋 of GL𝑛 (A𝐹 ). We show that the restriction of 𝑟𝑝 (𝜋) to the
decomposition group of a place 𝑣 � 𝑝 of F corresponds up to semisimplification to rec(𝜋𝑣 ), the image of 𝜋𝑣 under
the local Langlands correspondence. Furthermore, we can show that the monodromy of the associated Weil-Deligne
representation of 𝑟𝑝 (𝜋)

��Gal𝐹𝑣
is ‘more nilpotent’ than the monodromy of rec(𝜋𝑣 ).
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1. Introduction

Let F be an imaginary CM (or totally real) field, and let 𝜋 be a regular algebraic (i.e., 𝜋∞ has the same
infinitesimal character as an irreducible algebraic representation 𝜌𝜋 of RS𝐹

Q
GL𝑛) cuspidal automorphic

representation of GL𝑛 (A𝐹 ). In Harris-Lan-Taylor-Thorne [10] and in Scholze [18], the authors construct
a continuous semisimple representation (depending on a choice of a rational prime p and an isomorphism
𝚤 : Q𝑝

∼
−→ C)

𝑟𝑝,𝚤 (𝜋) : Gal(𝐹/𝐹) −→ GL𝑛 (Q𝑝),

which satisfies the following: For every finite place 𝑣 � 𝑝 of F such that 𝜋 and F are both unramified at
v, 𝑟𝑝,𝚤 (𝜋) is unramified at v and

WD( 𝑟𝑝,𝚤 (𝜋)
��
𝐺𝐹𝑣
)𝑠𝑠 = 𝚤−1 rec𝐹𝑣 (𝜋𝑣 ⊗ | det | (1−𝑛)/2𝑣 )𝑠𝑠 . (1.1)

Here, rec𝐹𝑣 as normalized in [11] denotes the local Langlands correspondence for 𝐹𝑣 , and WD(𝑟𝑣 )
denotes the Weil-Deligne representation associated to the the p-adic Galois representation 𝑟𝑣 of the
decomposition group 𝐺𝐹𝑣 := Gal(𝐹𝑣/𝐹𝑣 ). In this paper, we extend local-global compatibility up to
semisimplification (1.1) to all primes 𝑣 � 𝑝 of F. In particular, we prove the following theorem:

Theorem 1. Keeping the notation of the previous paragraph, let 𝑣 � 𝑝 be a prime of F. Then

WD( 𝑟𝑝,𝚤 (𝜋)
��
𝐺𝐹𝑣
)𝑠𝑠 = 𝚤−1 rec𝐹𝑣 (𝜋𝑣 ⊗ | det | (1−𝑛)/2𝑣 )𝑠𝑠 .

In fact, our methods allow us to ‘bound’ the monodromy of WD( 𝑟𝑝,𝚤 (𝜋)
��
𝐺𝐹𝑣
)Frob−𝑠𝑠 by the mon-

odromy of rec𝐹𝑣 (𝜋𝑣 | det | (1−𝑛)/2𝑣 ). In the past, such versions of local-global compatibility have been
used for proving the nonvanishing of certain Selmer groups (see, for example, Bellaiche-Chenevier [3]).
Using the notation introduced in Definition 8.2, we can generalize the above theorem to the following:

Theorem 2. Keeping the notation of the first paragraph, let 𝑣 � 𝑝 be a prime of F. Then

WD( 𝑟𝑝,𝚤 (𝜋)
��
𝐺𝐹𝑣
)Frob−𝑠𝑠 ≺ 𝚤−1 rec𝐹𝑣 (𝜋𝑣 ⊗ | det | (1−𝑛)/2𝑣 ),

where ‘Frob-ss’ denotes Frobenius semisimplification.

The above theorems are already known when such 𝜋 are conjugate self-dual, by work of Caraiani [6],
Shin [19] and Chenevier-Harris [9]. In particular, in [6, 19], the authors prove the stronger statement
that the monodromy of WD( 𝑟𝑝,𝚤 (𝜋)

��
𝐺𝐹𝑣
)Frob−𝑠𝑠 is equal to that of rec𝐹𝑣 (𝜋𝑣 ⊗ | det | (1−𝑛)/2𝑣 ) under the

added hypothesis that 𝜋 is conjugate self-dual. When removing the ‘conjugate self-dual’ hypothesis
for a given 𝜋, one can no longer expect to find the corresponding Galois representations in the etale
cohomology of Shimura varieties, and so the authors of [10] construct 𝑟𝑝,𝚤 (𝜋) instead using an p-adic
interpolation argument. To prove Theorem 1, we must reconstruct the Galois representations 𝑟𝑝,𝚤 (𝜋) as
in [10] while studying the Hecke action at all primes 𝑣 � 𝑝. We summarize the argument below.

Let 𝜋 be a regular algebraic cuspidal automorphic representation on GL𝑛 (A𝐹 ). Let G denote the qua-
sisplit unitary similitude group of signature (𝑛, 𝑛) associated to 𝐹2𝑛 and alternating form

(
0 1𝑛
−1𝑛 0

)
, where

the similitude factor GL1 is defined over Q (not F). It has a maximal parabolic 𝑃 = {GL1 ×(
∗ ∗
0 ∗ )} ⊂ 𝐺
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with Levi 𝐿 = {GL1 ×
(
∗ 0
0 ∗

)
} ⊂ 𝑃. However, note that 𝐿 � GL1 ×RS𝐹

Q
GL𝑛. For all sufficiently large

positive integers M, let

Π(𝑀) = Ind𝐺 (A𝑝,∞)

𝑃 (A𝑝,∞)
(1 × 𝚤−1(𝜋 ⊗ || det | |𝑀 ) 𝑝,∞),

(where Ind denotes unnormalized induction). The authors of [10] prove that Π(𝑀) is a subrepresentation
of the space of overconvergent p-adic automorphic forms on G of some possibly nonclassical weight
and finite slope. Classical cusp forms on this space base change via the trace formula to GL2𝑛 to isobaric
sums of conjugate self-dual cuspidal automorphic representations, and they have Galois representations
satisfying full local-global compatibility. Now, at all primes 𝑣 � 𝑝 of F which split over 𝐹+ (equivalently,
at all primes away from p where G splits), take the Bernstein centers associated to a finite union of
Bernstein components containing Π(𝑀)𝑣 as the Hecke algebras acting on spaces of p-adic and classical
cusp forms on G of arbitrary integral (not necessarily classical) weight. For each 𝜎 ∈ 𝑊𝐹𝑣 , the image
of the Bernstein centers contains Hecke operators whose eigenvalue on a p-adic cusp form Π′ of G is
equal to

tr rec𝐹𝑣 (Π
′
𝑣 ⊗ | det | (1−2𝑛)/2

𝑣 ) (𝜎).

If Π′ is classical, then local-global compatibility is already known, and so the eigenvalue is also equal to

tr WD( 𝑟𝑝 (Π′)
��
𝐺𝐹𝑣
)𝑠𝑠 (𝜎),

where 𝑟𝑝 (Π′) : 𝐺𝐹 → GL2𝑛 (Q𝑝) denotes the Galois representation associated to Π′. By showing that
there are linear combinations of classical cusp forms of G whose Hecke eigenvalues are congruent mod
𝑝𝑘 to those of Π(𝑀) for each positive k, we are able to construct a continuous pseudorepresentation
𝑇 : 𝐺𝐹 → Q𝑝 satisfying the following: for every place 𝑣 � 𝑝 of F which is split over 𝐹+ and each
𝜎𝑣 ∈ 𝑊𝐹𝑣 ,

𝑇 (𝜎𝑣 ) = tr rec𝐹𝑣 (Π(𝑀)𝑣 ⊗ | det | (1−2𝑛)/2
𝑣 ) (𝜎𝑣 ).

This implies that there is a continuous semisimple Galois representation 𝑟𝑝,𝚤 (Π(𝑀)) : 𝐺𝐹 →

GL2𝑛 (Q𝑝) whose trace is equal to T, and so for all primes v of F which are split over 𝐹+ and lie
above any rational prime other than p,

WD( 𝑟𝑝,𝚤 (Π(𝑀))
��
𝐺𝐹𝑣
)𝑠𝑠 � 𝚤−1 rec𝐹𝑣 (Π(𝑀)𝑣 ⊗ | det | (1−2𝑛)/2

𝑣 )𝑠𝑠 .

Thus, if 𝜖𝑝 denotes the p-adic cyclotomic character, then WD( 𝑟𝑝,𝚤 (Π(𝑀)) ⊗ 𝜖−𝑀𝑝
��
𝐺𝐹𝑣
)𝑠𝑠 is isomorphic

to

𝚤−1 rec𝐹𝑣 (𝜋𝑣 | det | (1−𝑛)/2𝑣 )𝑠𝑠 ⊕ (𝚤−1 rec𝐹𝑐 𝑣
(𝜋𝑐𝑣 | det | (1−𝑛)/2𝑐𝑣 )𝑠𝑠)∨,𝑐 ⊗ 𝜖1−2𝑛−2𝑀

𝑝 .

Because we construct 𝑟𝑝,𝚤 (Π(𝑀)) for each sufficiently large positive integer M, it is now group theory
to isolate an n-dimensional subquotient 𝑟𝑝,𝚤 (𝜋) : 𝐺𝐹 → GL𝑛 (Q𝑝) satisfying

WD( 𝑟𝑝,𝚤 (𝜋)
��
𝐺𝐹𝑣
)𝑠𝑠 = 𝚤−1 rec𝐹𝑣 (𝜋𝑣 ⊗ | det | (1−𝑛)/2𝑣 )𝑠𝑠,

when 𝑣 � 𝑝 is a prime of F which is split over 𝐹+. Using the patching lemma of Sorensen [21], we can re-
move the assumption that v must split over 𝐹+ and therefore conclude Theorem 1𝑠𝑠 . We then use idempo-
tents constructed by Schneider-Zink [17] and properties of ∧𝑘𝑟𝑝,𝚤 (Π(𝑀)) and ∧𝑘 rec𝐹𝑣 (BC(Π(𝑀))𝑣 )
to ‘bound’ the monodromy of WD(𝑟𝑝,𝚤 (𝜋))Frob−𝑠𝑠 by the monodromy of rec𝐹𝑣 (𝜋𝑣 ⊗ | det | (1−𝑛)/2𝑣 ).
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4 I. Varma

Notation and conventions

Let 𝐹+ be a totally real field, and let 𝐹0 denote an imaginary quadratic field. We set 𝐹 = 𝐹0𝐹
+, and c

will denote the nontrivial element of Gal(𝐹/𝐹+). Let p denote a rational prime that splits in 𝐹0. Let n
denote a positive integer, and if 𝐹+ = Q, assume 𝑛 > 2. In the sequel, ℓ will always denote a rational
prime such that ℓ ≠ 𝑝. Fix 𝚤 : Q𝑝

∼
−→ C.

For any field K, we will once and for all choose an algebraic closure 𝐾 of K, and 𝐺𝐾 will denote the
absolute Galois group of 𝐾 over K. If 𝐾0 ⊂ 𝐾 is a subfield and S is a finite set of primes of 𝐾0, then we
will denote by 𝐺𝑆

𝐾 the maximal continuous quotient of 𝐺𝐾 in which all primes of K not lying above an
element of S are unramified.

If K is an arbitrary number field and v is a finite place of K, let 𝜛𝑣 denote the uniformizer of 𝐾𝑣

and 𝑘 (𝑣) is the residue field of v. Denote the absolute value on K associated to v by | · |𝑣 , which is
normalized so that |𝜛𝑣 |𝑣 = (#𝑘 (𝑣))−1. If v is a real place of K, then |𝑥 |𝑣 := ±𝑥, and if v is complex,
then |𝑥 |𝑣 = 𝑐𝑥𝑥. Let

| | · | |𝐾 =
∏
𝑣

| · |𝑣 : A×𝐾 −→ R
×
>0.

If 𝑟 : 𝐺𝐾𝑣 → GL𝑛 (Q𝑝) denotes a continuous representation of 𝐺𝐾𝑣 where 𝑣 � 𝑝 is finite, then we
will write WD(𝑟) for the corresponding Weil-Deligne representation of the Weil group 𝑊𝐾𝑣 of 𝐾𝑣 (see
section 1 of Taylor-Yoshida [24]). A Weil-Deligne representation is denoted as (𝑟,𝑉, 𝑁) = (𝑟, 𝑁) =
(𝑉, 𝑁), where V is a finite-dimensional vector space over Q𝑝 , 𝑟 : 𝑊𝐹𝑣 → GL(𝑉) is a representation
with open kernel and 𝑁 (𝑟) = 𝑁 : 𝑉 → 𝑉 is a nilpotent endomorphism satisfying

𝑟 (𝜎)𝑁𝑟 (𝜎)−1 = |Art−1
𝐹𝑣
(𝜎) |𝐹𝑣𝑁

(here, Art𝐹𝑣 : 𝐹×𝑣
∼
−→ 𝑊𝑎𝑏

𝐹𝑣
denotes the local Artin map, normalized as in [24]). We say (𝑟,𝑉, 𝑁) is

Frobenius semisimple if r is semisimple. We denote the Frobenius semisimplification of (𝑟,𝑉, 𝑁) by
(𝑟,𝑉, 𝑁)Frob−𝑠𝑠 , and the semisimplification of (𝑟,𝑉, 𝑁) is (𝑟,𝑉, 𝑁)𝑠𝑠 = (𝑟𝑠𝑠 , 𝑉, 0) (see section 1 of
[24]).

If 𝜋 is an irreducible smooth representation of GL𝑛 (𝐾𝑣 ) over C, we will write rec𝐾𝑣 (𝜋) for the
Weil-Deligne representation of 𝑊𝐾𝑣 corresponding to 𝜋 by the local Langlands correspondence (see
Harris-Taylor [11] or Henniart [12]). If 𝜋1 and 𝜋2 are irreducible smooth representations of GL𝑛1 (𝐾𝑣 )

(resp. GL𝑛2 (𝐾𝑣 )), then there is an irreducible smooth representation 𝜋1 � 𝜋2 of GL𝑛1+𝑛2 (𝐾𝑣 ) over C
satisfying

rec𝐾𝑣 (𝜋1 � 𝜋2) = rec𝐾𝑣 (𝜋1) ⊕ rec𝐹𝑣 (𝜋2).

Let G be a reductive group over 𝐾𝑣 , and let P be a parabolic subgroup of G with unipotent radical N
and Levi L. For a smooth representation 𝜋 of 𝐿(𝐾𝑣 ) on a vector space 𝑉𝜋 over a field Ω of characteristic
0, we define Ind𝐺 (𝐾𝑣 )

𝑃 (𝐾𝑣 )
𝜋 to be the representation of 𝐺 (𝐾𝑣 ) by right translation on the set of locally

constant functions 𝜑 : 𝐺 (𝐾𝑣 ) → 𝑉𝜋 such that 𝜑(ℎ𝑔) = 𝜋(ℎ)𝜑(𝑔) for all ℎ ∈ 𝑃(𝐹𝑣 ) and 𝑔 ∈ 𝐺 (𝐾𝑣 ).
When Ω = C, define normalized induction as

n-Ind𝐺 (𝐾𝑣 )

𝑃 (𝐾𝑣 )
𝜋 = Ind𝐺 (𝐾𝑣 )

𝑃 (𝐾𝑣 )
𝜋 ⊗ | det(ad (ℎ) |Lie 𝑁 ) |

1/2
𝑣 .

2. Recollections

We recall the setup of Harris-Lan-Taylor-Thorne [10], including the unitary similitude group, and the
Shimura variety (and various compactifications) associated to the unitary group, as well as their integral
models. This will allow us to define automorphic vector bundles defined on these integral models, whose
global sections will be the space of classical and p-adic automorphic forms.
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2.1. Unitary group

We define an integral unitary similitude group, which is associated to the following data. If Ψ𝑛 denotes
the 𝑛×𝑛 matrix with 1’s on the anti-diagonal and 0’s elsewhere, then let 𝐽𝑛 denote the following element
of GL2𝑛 (Z):

𝐽𝑛 =

(
0 Ψ𝑛

−Ψ𝑛 0

)
.

Let D−1
𝐹 denote the inverse different of O𝐹 , and define the 2𝑛-dimensional lattice Λ = (D−1

𝐹 )
𝑛 ⊕ O𝑛

𝐹 .
Let G be the group scheme over Z defined by

𝐺 (𝑅) = {(𝑔, 𝜇) ∈ AutO𝐹 ⊗Z𝑅 (Λ ⊗Z 𝑅) × 𝑅× : 𝑡𝑔𝐽𝑛
𝑐𝑔 = 𝜇𝐽𝑛}

for any ring R. Over Z[1/Disc(𝐹/Q)], it is a quasi-split connected reductive group which splits over
O𝐹 [1/Disc(𝐹/Q)], where 𝐹 denotes the normal closure of 𝐹/Q. Let 𝜈 : 𝐺 → GL1 be the multiplier
character sending (𝑔, 𝜇) ↦→ 𝜇.

If 𝑅 = Ω is an algebraically closed field of characteristic 0, then

𝐺 × SpecΩ � {(𝜇, 𝑔𝜏) ∈ G𝑚 × GLHom(𝐹,Ω)
2𝑛 : 𝑔𝜏𝑐 = 𝜇𝐽𝑛

𝑡𝑔−1
𝜏 𝐽𝑛 ∀𝜏 ∈ Hom(𝐹,Ω)}.

Fix the lattice Λ(𝑛) � (D−1
𝐹 )

𝑛 consisting of elements of Λ whose last n coordinates are equal to
0, and define Λ′

(𝑛)
� O𝑛

𝐹 consisting of elements of Λ whose first n coordinates are equal to 0. Let
𝑃+
(𝑛)

denote the subgroup of G preserving Λ(𝑛) . Write 𝐿 (𝑛) ,lin for the subgroup of 𝑃+
(𝑛)

consisting of
elements with 𝜈 = 1 which preserve Λ′

(𝑛)
, and write 𝐿 (𝑛) ,herm for the subgroup of 𝑃+

(𝑛)
which act

trivially on Λ/Λ(𝑛) and preserve Λ′
(𝑛)

. Then 𝐿 (𝑛) ,lin � RSO𝐹

Z
GL𝑛 and 𝐿 (𝑛) ,herm � G𝑚, and we can

define 𝐿 (𝑛) := 𝐿 (𝑛) ,lin × 𝐿 (𝑛) ,herm.
Finally, let 𝐺 (A∞)ord,× := 𝐺 (A𝑝,∞) × 𝑃+

(𝑛)
(Z𝑝), and 𝐺 (A∞)ord = 𝐺 (A𝑝,∞) × 𝜍Z≥0

𝑝 𝑃+
(𝑛)
(Z𝑝), where

𝜍𝑝 ∈ 𝐿 (𝑛) ,herm (Q𝑝) � Q×𝑝 denotes the unique element with multiplier 𝑝−1.

2.2. Level structure

If 𝑁2 ≥ 𝑁1 ≥ 0 are integers, then let 𝑈𝑝 (𝑁1, 𝑁2) be the subgroup of elements of 𝐺 (Z𝑝) which mod𝑝𝑁2

lie in 𝑃+
(𝑛)
(Z/𝑝𝑁2Z) and map to 1 in 𝐿 (𝑛) ,lin(Z/𝑝

𝑁1Z). If𝑈 𝑝 is an open compact subgroup of 𝐺 (A𝑝,∞),
we write 𝑈 𝑝 (𝑁1, 𝑁2) for 𝑈 𝑝 ×𝑈𝑝 (𝑁1, 𝑁2).

If 𝑁 ≥ 0 is an integer, we write 𝑈𝑝 (𝑁) for the kernel of the map 𝑃+
(𝑛)
(Z𝑝) → 𝐿 (𝑛) ,lin (Z/𝑝

𝑁Z). In
addition, 𝑈𝑝 (𝑁) will also denote the image of this kernel inside 𝐿 (𝑛) ,lin (Z𝑝).

2.3. Shimura variety

Fix a neat open compact subgroup U (as defined in section 0.6 of Pink [16]), and let S be a locally
noetherian scheme over Q. Recall from §3.1 in [10] that a polarized G-abelian scheme with U-level
structure is an abelian scheme A over S of relative dimension 𝑛 · [𝐹 : Q] along with the following data:

◦ An embedding 𝚤 : 𝐹 ↩→ End0(𝐴) such that Lie 𝐴 is locally free of rank n over 𝐹 ⊗Q O𝑆 .
◦ A polarization 𝜆 : 𝐴→ 𝐴∨

◦ U-level structure [𝜂].

For more precise definitions, see §3.1.1 of [10]. Denote by 𝑋𝑈 the smooth quasi-projective scheme over
Q which represents the functor that sends a locally noetherian scheme 𝑆/Q to the set of quasi-isogeny
classes of polarized G-abelian schemes with U-level structure. Let [(𝐴univ, 𝚤univ, 𝜆univ, [𝜂univ])] denote
the universal equivalence class of polarized G-abelian varieties with U-level structure. Allowing U to
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vary, the inverse system {𝑋𝑈 } has a right 𝐺 (A∞) action, with finite etale transition maps 𝑔 : 𝑋𝑈 → 𝑋𝑈 ′

whenever 𝑈 ′ ⊃ 𝑔−1𝑈𝑔.
For each U, denote by Ω1

𝐴univ/𝑋𝑈
the sheaf of relative differentials on 𝐴univ. Let Ω𝑈 denote the Hodge

bundle (i.e., the pullback by the identity section of Ω1
𝐴univ/𝑋𝑈

). It is locally free of rank 𝑛 · [𝐹 : Q] and
does not depend on 𝐴univ.

For each neat open compact subgroup 𝑈 ⊂ 𝐺 (A∞), there is a normal projective scheme 𝑋min
𝑈 over

SpecQ together with a 𝐺 (A∞)-equivariant dense open embedding

𝑗𝑈 : 𝑋𝑈 ↩→ 𝑋min
𝑈 ,

which is known as the minimal compactification of 𝑋𝑈 . Let the boundary be denoted by 𝜕𝑋min
𝑈 =

𝑋min
𝑈 \ 𝑗𝑈 𝑋𝑈 . The inverse system {𝑋min

𝑈 } also has a right 𝐺 (A∞)-action. Furthermore, there is a normal
projective flat Z(𝑝) scheme Xmin

𝑈 whose generic fiber is 𝑋min
𝑈 . We will denote the ample line bundle

on Xmin
𝑈 constructed in Propositions 2.2.1.2 and 2.2.3.1 in Lan [14] by 𝜔𝑈 . Its pullback to 𝑋𝑈 is

identified with ∧𝑛 [𝐹 :Q]Ω𝑈 , and the system {𝜔𝑈 } over {Xmin
𝑈 } has an action of 𝐺 (A𝑝,∞ ×Z𝑝). If we let

𝑋
min
𝑈 = Xmin

𝑈 ⊗Z(𝑝) F𝑝 , there is a canonical 𝐺 (A𝑝,∞)-invariant section Hasse𝑈 ∈ 𝐻0(𝑋
min
𝑈 , 𝜔⊗(𝑝−1)

𝑈 )

constructed in Corollaries 6.3.1.7-8 in [14] satisfying

𝑔∗Hasse𝑔−1𝑈𝑔 = Hasse𝑈 ∀𝑔 ∈ 𝐺 (A𝑝,∞ × Z𝑝).

Denote by 𝑋
min 𝑛−ord
𝑈 the zero locus in 𝑋

min
𝑈 of Hasse𝑈 .

Lemma 2.1. The nonzero locus 𝑋
min
𝑈 \𝑋

min 𝑛−ord
𝑈 is relatively affine over 𝑋

min
𝑈 . Furthermore, it is affine

over F𝑝 .

Proof. The nonzero locus over 𝑋
min
𝑈 is associated to the sheaf of algebras(

⊕∞𝑖=0𝜔
⊗(𝑝−1)𝑎𝑖
𝑈

)
/(Hasse𝑎𝑈 −1) ∀𝑎 ∈ Z>0.

Over F𝑝 , it is associated to the algebra(
⊕∞𝑖=0𝐻

0(𝑋
min
𝑈 , 𝜔⊗(𝑝−1)𝑎𝑖)

)
/(Hasse𝑎𝑈 −1) ∀𝑎 ∈ Z>0.

We conclude the lemma. �

2.4. Ordinary locus

Now let S denote a locally Noetherian scheme over Z(𝑝) , and fix a neat open compact sub-
group 𝑈 𝑝 along with two positive integers 𝑁2 ≥ 𝑁1. Then the ordinary locus is a smooth quasi-
projective scheme X ord

𝑈 𝑝 (𝑁1 ,𝑁2)
over Z(𝑝) representing the functor which sends S to the the set of

prime-to-p quasi-isogeny classes of ordinary, prime-to-p quasi-polarized G-abelian schemes with
𝑈 𝑝 (𝑁1, 𝑁2)-level structure as defined in §3.1 of [10]. It is a partial integral model of 𝑋𝑈 𝑝 (𝑁1 ,𝑁2) .
Let [Auniv, 𝚤univ, 𝜆univ, [𝜂univ]]/X ord

𝑈 𝑝 (𝑁1 ,𝑁2)
denote the universal equivalence class of ordinary prime-to-

p quasi-polarized G-abelian schemes with 𝑈 𝑝 (𝑁1, 𝑁2)-level structure up to quasi-isogeny. Finally, let
𝑋

ord
𝑈 𝑝 (𝑁1 ,𝑁2) = X ord

𝑈 𝑝 (𝑁1 ,𝑁2)
⊗Z(𝑝) F𝑝 , which forms an inverse system each with a right 𝐺 (A∞)ord-action.

Furthermore, the map

𝜍𝑝 : 𝑋ord
𝑈 𝑝 (𝑁1 ,𝑁2+1) → 𝑋

ord
𝑈 𝑝 (𝑁1 ,𝑁2)
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is the absolute Frobenius map composed with the forgetful map X ord
𝑈 𝑝 (𝑁1 ,𝑁2+1)

→ X ord
𝑈 𝑝 (𝑁2 ,𝑁2)

for any
𝑁2 ≥ 𝑁1 ≥ 0. If 𝑁2 > 0, then 𝜍𝑝 defines a finite flat map

𝜍𝑝 : X ord
𝑈 𝑝 (𝑁1 ,𝑁2+1) → X ord

𝑈 𝑝 (𝑁1 ,𝑁2)

with fibers of degree 𝑝𝑛2 [𝐹+:Q] (see §3.1 of [10]).
For each 𝑈 𝑝 (𝑁1, 𝑁2) such that 𝑈 𝑝 is neat, there is a partial minimal compactification of the ordinary

locus X ord
𝑈 𝑝 (𝑁1 ,𝑁2)

denoted by X ord,min
𝑈 𝑝 (𝑁1 ,𝑁2)

. By Theorem 6.2.1.1 in [14], this compactification of the
ordinary locus is a normal quasi-projective scheme over Z(𝑝) together with a dense open 𝐺 (A∞)ord-
equivariant embedding

𝑗𝑈 𝑝 (𝑁1 ,𝑁2) : X ord
𝑈 𝑝 (𝑁1 ,𝑁2)

↩→ X ord,min
𝑈 𝑝 (𝑁1 ,𝑁2)

.

Its generic fiber is 𝑋min
𝑈 𝑝 (𝑁1 ,𝑁2)

, but unlike Xmin
𝑈 𝑝 (𝑁1 ,𝑁2)

, it is not proper. Furthermore, by Proposi-
tion 6.2.2.1 in [14], the induced action of 𝑔 ∈ 𝐺 (A∞)ord on {X ord,min

𝑈 𝑝 (𝑁1 ,𝑁2)
} is quasi-finite. Write

𝜕X ord,min
𝑈 𝑝 (𝑁1 ,𝑁2)

= X ord,min
𝑈 𝑝 (𝑁1 ,𝑁2)

− 𝑗𝑈 𝑝 (𝑁1 ,𝑁2)X ord
𝑈 𝑝 (𝑁1 ,𝑁2)

for the boundary, and let 𝔛ord,min
𝑈 𝑝 (𝑁1 ,𝑁2)

be the formal
completion along the special fiber of X ord,min

𝑈 𝑝 (𝑁1 ,𝑁2)
. Note that by Corollary 6.2.2.8 and Example 3.4.5.5

in [14], the natural map

𝔛ord,min
𝑈 𝑝 (𝑁1 ,𝑁

′
2)

∼
−→ 𝔛ord,min

𝑈 𝑝 (𝑁1 ,𝑁2)

is an isomorphism, and so we will drop 𝑁2 from notation. Define

𝑋
ord,min
𝑈 𝑝 (𝑁1 ,𝑁2) = X ord,min

𝑈 𝑝 (𝑁1 ,𝑁2)
⊗Z(𝑝) F𝑝 .

For each 𝑈 𝑝 (𝑁1, 𝑁2), note that there are 𝐺 (A∞)ord,×-equivariant open embeddings

X ord,min
𝑈 𝑝 (𝑁1 ,𝑁2)

↩→ Xmin
𝑈 𝑝 (𝑁1 ,𝑁2)

.

This induces a map on the special fibers

𝑋
ord,min
𝑈 𝑝 (𝑁1 ,𝑁2) ↩→ 𝑋

min
𝑈 𝑝 (𝑁1 ,𝑁2) \𝑋

min,𝑛−ord
𝑈 𝑝 (𝑁1 ,𝑁2) , (2.1)

which is both an open and closed embedding by Proposition 6.3.2.2 of [14]. Note that only when the level
is prime-to-p is the nonzero locus of Hasse𝑈 𝑝 (𝑁1 ,𝑁2) isomorphic to the special fiber of the minimally
compactified ordinary locus. When 𝑁2 > 0, the map in (2.1) is not an isomorphism.

2.5. Toroidal compactifications

We now introduce toroidal compactifications of 𝑋𝑈 and X𝑈 𝑝 (𝑁1 ,𝑁2) , which are parametrized by neat
open compact subgroups of 𝐺 (A∞) and certain cone decompositions defined in [14] and [10]. Let J tor

be the indexing set of pairs (𝑈,Δ) defined in Proposition 7.1.1.21 in [14] or on pages 169–170 in [10],
where U is a neat open compact subgroup and Δ is a U-admissible cone decomposition as defined in
§5.2 of [10]. We will not recall the definition here as it is not necessary for any argument.

If (𝑈,Δ) ∈ J tor, then by Theorem 1.3.3.15 of [14], there is a smooth projective scheme 𝑋𝑈,Δ and a
divisor with simple normal crossings 𝜕𝑋𝑈,Δ ⊂ 𝑋𝑈,Δ equipped with an isomorphism

𝑗𝑈,Δ : 𝑋𝑈
∼
−→ 𝑋𝑈,Δ \ 𝜕𝑋𝑈,Δ
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and a projection 𝜋tor/min : 𝑋𝑈,Δ → 𝑋min
𝑈 such that the following diagram commutes:

𝑋𝑈 ↩→ 𝑋𝑈,Δ

↓ ↓

𝑋𝑈 ↩→ 𝑋min
𝑈 .

The collection {𝑋𝑈,Δ }J tor becomes a system of schemes with a right 𝐺 (A∞)-action via the maps
𝜋 (𝑈,Δ)/(𝑈 ′,Δ′) : 𝑋𝑈,Δ → 𝑋𝑈 ′,Δ′ whenever (𝑈,Δ) ≥ (𝑈 ′,Δ ′) (see page 166 of [10] for the definition of
≥ in this context).

If (𝑈 𝑝 (𝑁1, 𝑁2),Δ) ∈ J tor, then by Theorem 7.1.4.1 of [14], there is a smooth quasi-projective
scheme X ord

𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ
and a divisor with simple normal crossings 𝜕X ord

𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ
⊂ X ord

𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ
equipped with an isomorphism

𝑗ord
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ

: X ord
𝑈 𝑝 (𝑁1 ,𝑁2)

∼
−→ X ord

𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ
\ 𝜕X ord

𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ
;

𝜋ord
tor/min : X ord

𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ
→ X ord,min

𝑈 𝑝 (𝑁1 ,𝑁2)

such that the following diagram commutes:

X ord
𝑈 𝑝 (𝑁1 ,𝑁2)

↩→ X ord
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ

↓ ↓

X ord
𝑈 𝑝)𝑁1 ,𝑁2)

↩→ X ord,min
𝑈 𝑝 (𝑁1 ,𝑁2)

.

The collection {X ord
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ

}J tor becomes a system of schemes with a right 𝐺 (A∞)ord-action via the
maps 𝜋 (𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ)/(𝑈 𝑝′ (𝑁 ′1 ,𝑁

′
2) ,Δ

′) : X ord
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ

→ X ord
𝑈 𝑝′ (𝑁 ′1 ,𝑁2) ,Δ′

whenever (𝑈 𝑝 (𝑁1, 𝑁2),Δ) ≥

(𝑈 𝑝′ (𝑁 ′1, 𝑁2),Δ ′) (see page 167 of [10] for the definition of ≥ in this context).

3. Automorphic bundles

We first define the coherent sheaves on Xmin whose global sections are what we consider to be the finite
part of classical cuspidal automorphic forms on G. They are sheaves originally defined over the toroidal
compactifications 𝑋𝑈,Δ (where they are locally free) and are then pushed forward to 𝑋min via 𝜋tor,min.
We start by recalling some differential sheaves that have already been defined.

3.1. Automorphic bundles on compactifications of the Shimura variety

Recall from the previous section that we have a locally free sheaf Ω𝑈 on 𝑋𝑈 , which is the pullback by
the identity section of the sheaf of relative differentials from 𝐴univ, the universal abelian variety over
𝑋𝑈 . On Xmin

𝑈 , the normal integral model of the minimal compactification of 𝑋𝑈 , there is an ample line
bundle 𝜔𝑈 whose pullback to 𝑋𝑈 is identified with ∧𝑛 [𝐹 :Q]Ω𝑈 .

Any universal abelian variety 𝐴univ/𝑋𝑈 extends to a semi-abelian variety 𝐴Δ/𝑋𝑈,Δ (see remarks
1.1.2.1 and 1.3.1.4 of [14]). Define Ω𝑈,Δ as the pullback by the identity section of the sheaf of relative
differentials on 𝐴Δ . Note that when restricting to the Shimura variety 𝑋𝑈 , the sheaf Ω𝑈,Δ

��
𝑋𝑈 is

canonically isomorphic to Ω𝑈 . Let O𝑋𝑈,Δ (| |𝜈 | |) denote the structure sheaf with 𝐺 (A∞)-action twisted
by | |𝜈 | |.

Let Ecan
𝑈,Δ denote the principal 𝐿 (𝑛) -bundle on 𝑋𝑈,Δ , defined as follows: For a Zariski open W,

Ecan
𝑈,Δ (𝑊) is the set of pairs of isomorphisms
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𝜉0 : O𝑋𝑈,Δ (| |𝜈 | |)
��
𝑊

∼
−→ O𝑊 and 𝜉1 : Ω𝑈,Δ

∼
−→ HomQ(𝑉/𝑉(𝑛) ,O𝑊 ),

where 𝑉 = Λ ⊗ Q = 𝐹2𝑛 and 𝑉(𝑛) = Λ(𝑛) ⊗ Q � 𝐹𝑛. There is an action of ℎ ∈ 𝐿 (𝑛) on Ecan
𝑈,Δ by

ℎ(𝜉0, 𝜉1) = (𝜈(ℎ)
−1𝜉0, 𝜉1 ◦ ℎ

−1).

The inverse system {Ecan
𝑈,Δ } has an action of 𝐺 (A∞).

Let R be any Q-algebra. Fix a representation 𝜌 of 𝐿 (𝑛) on a finite, locally free R-module 𝑊𝜌. Define
the locally free sheaf Ecan

𝑈,Δ ,𝜌 over 𝑋𝑈,Δ × Spec 𝑅 as follows: For a Zariski open W, let Ecan
𝑈,Δ ,𝜌 (𝑊) be the

set of 𝐿 (𝑛) (O𝑊 )-equivariant maps of Zariski sheaves of sets,

Ecan
𝑈,Δ

���
𝑊
→ 𝑊𝜌 ⊗𝑅 O𝑊 .

With fixed 𝜌, the system of sheaves {Ecan
𝑈,Δ ,𝜌} has a 𝐺 (A∞)-action. If Std denotes the representation

over Z of 𝐿 (𝑛) on Λ/Λ(𝑛) , then let 𝜔𝑈,Δ := Ecan
𝑈,Δ ,∧𝑛 [𝐹 :Q] Std∨ . We will write I𝜕𝑋𝑈,Δ for the ideal sheaf in

O𝑋𝑈,Δ , defining the boundary 𝜕𝑋𝑈,Δ . Define the subcanonical extension

E sub
𝑈,Δ ,𝜌 = Ecan

𝑈,Δ ,𝜌 ⊗ I𝜕𝑋𝑈,Δ .

Recall the projection 𝜋tor/min : 𝑋𝑈,Δ → 𝑋min
𝑈 , and define E sub

𝑈,𝜌 = 𝜋tor/min ∗E sub
𝑈,Δ ,𝜌 . The coherent

sheaves defined on 𝑋min
𝑈 are independent of the choice of Δ . If we fix 𝜌, there is an action of 𝐺 (A∞) on

the system {E sub
𝑈,𝜌} indexed by neat open compact subgroups.

Now let 𝜌0 be a representation of 𝐿 (𝑛) on a finite locally free Z(𝑝) -module. By Definition 8.3.5.1
of [14], there is a system of coherent sheaves associated to 𝜌0 over {Xmin

𝑈 } with 𝐺 (A∞)ord,×-action
whose pullback to {𝑋min

𝑈 } is 𝐺 (A∞)-equivariantly identified with {E sub
𝑈,𝜌0⊗Q

}. We will also refer to these
sheaves by E sub

𝑈,𝜌0
. Note that over Xmin

𝑈 ,

E sub
𝑈,𝜌0
⊗ 𝜔𝑈 � E sub

𝑈,𝜌0⊗(∧𝑛 [𝐹 :Q] Std∨) ,

where 𝜔𝑈 denotes the ample line bundle defined on Xmin
𝑈 .

3.2. Automorphic bundles on the ordinary locus

We now define automorphic vector bundles on the system of integral models of the minimally compact-
ified ordinary locus {X ord,min

𝑈 𝑝 (𝑁1 ,𝑁2)
} as well as its formal completion along the special fiber {𝔛ord,min

𝑈 𝑝 (𝑁1)
}.

The global sections of these coherent sheaves will consist of what we consider cuspidal p-adic automor-
phic forms. We first recall some definitions of sheaves defined on X ord

𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ
.

Any universal abelian variety Auniv/X ord
𝑈 𝑝 (𝑁1 ,𝑁2)

extends uniquely to a semi-abelian variety
AΔ/X ord

𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ
by Remarks 1.1.2.1 and 1.3.1.4 of [14]. Define Ωord

𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ
as the pullback by

the identity section of the sheaf of relative differentials on AΔ . The inverse system {Ωord
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ

} has
an action of 𝐺 (A∞)ord,×. There is also a natural map

𝜍𝑝 : 𝜍∗𝑝Ωord
𝑈 𝑝 (𝑁1 ,𝑁2−1) ,Δ → Ωord

𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ
.

Denote by OX ord
𝑈𝑝 (𝑁1 ,𝑁2 ) ,Δ

(| |𝜈 | |) the structure sheaf OX ord
𝑈𝑝 (𝑁1 ,𝑁2 ) ,Δ

with 𝐺 (A∞)ord-action twisted by

| |𝜈 | | (recall that {X ord
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ

} has a right 𝐺 (A∞)ord-action).
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Let Eord,can
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ

denote the principal 𝐿 (𝑛) -bundle on X ord
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ

in the Zariski topology defined
as follows: For a Zariski open W, Eord,can

𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ
(𝑊)) is the set of pairs of isomorphisms

𝜉0 : OX ord
𝑈𝑝 (𝑁1 ,𝑁2 ) ,Δ

(| |𝜈 | |)

����
𝑊

∼
−→ O𝑊 and 𝜉1 : Ωord

𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ
∼
−→ HomZ(Λ/Λ(𝑛) ,O𝑊 ).

(Recall that Λ(𝑛) is the sublattice of Λ = (D−1
𝐹 )

𝑛 ⊕O𝑛
𝐹 consisting of elements whose last n coordinates

are equal to 0.) There is an action of ℎ ∈ 𝐿 (𝑛) on Eord,can
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ

by

ℎ(𝜉0, 𝜉1) = (𝜈(ℎ)
−1𝜉0, 𝜉1 ◦ ℎ

−1).

The inverse system {Eord,can
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ

} has an action of 𝐺 (A∞)ord. Let R be a Z(𝑝) -algebra. Fix a
representation 𝜌 of 𝐿𝑛, (𝑛) on a finite, locally free R-module 𝑊𝜌. Denote the canonical extension
to X ord

𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ ,𝜌
× Spec 𝑅 of the automorphic vector bundle on X ord

𝑈 𝑝 (𝑁1 ,𝑁2)
associated to 𝜌 by

Eord,can
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ ,𝜌

, which is defined as follows: For any Zariski open W, Eord,can
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ ,𝜌

(𝑊) is the set
of 𝐿 (𝑛) (O𝑊 )-equivariant maps of Zariski sheaves of sets

Eord,can
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ

���
𝑊
→ 𝑊𝜌 ⊗𝑅 O𝑊 .

When 𝜌 is fixed, the system of sheaves {Eord,can
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ ,𝜌

} has an action of 𝐺 (A∞)ord. Furthermore, the
inverse of 𝜍∗𝑝 gives a map

(𝜍∗𝑝)
−1 : 𝜍𝑝∗E

ord,can
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ ,𝜌

∼
−→ Eord,can

𝑈 𝑝 (𝑁1 ,𝑁2−1) ,Δ ,𝜌
⊗OXord

𝑈𝑝 (𝑁1 ,𝑁2−1) ,Δ
𝜍𝑝∗OX ord

𝑈𝑝 (𝑁1 ,𝑁2 ) ,Δ
.

Composing (𝜍∗𝑝)−1 with 1 ⊗ tr𝜍𝑝 : Eord,can
𝑈 𝑝 (𝑁1 ,𝑁2−1) ,Δ ,𝜌

⊗ 𝜍𝑝∗OX ord
𝑈𝑝 (𝑁1 ,𝑁2 ) ,Δ

→ Eord,can
𝑈 𝑝 (𝑁1 ,𝑁2−1) ,Δ ,𝜌

gives a

𝐺 (A∞)ord,×-equivariant map

tr𝐹 : 𝜍𝑝∗E
ord,can
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ ,𝜌

→ Eord,can
𝑈 𝑝 (𝑁1 ,𝑁2−1) ,Δ ,𝜌

satisfying tr𝐹 ◦𝜍∗𝑝 = 𝑝𝑛2 [𝐹+:Q] . If Std denotes the representation over Z of 𝐿 (𝑛) on Λ/Λ(𝑛) , then let
𝜔𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ := Eord,can

𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ ,∧𝑛 [𝐹 :Q] Std∨ denote the pullback of 𝜔𝑈 to X ord
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ

. We will write
I𝜕X ord

𝑈𝑝 (𝑁1 ,𝑁2 ) ,Δ
for the ideal sheaf in OX ord

𝑈𝑝 (𝑁1 ,𝑁2 ) ,Δ
defining the boundary 𝜕X ord

𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ
. Define the

subcanonical extension as

Eord,sub
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ ,𝜌

= Eord,can
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ ,𝜌

⊗ I𝜕X ord
𝑈𝑝 (𝑁1 ,𝑁2 ) ,Δ

.

Again, the inverse of 𝜍∗𝑝 gives a map

(𝜍∗𝑝)
−1 : 𝜍𝑝∗E

ord,can
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ ,𝜌

∼
−→ Eord,can

𝑈 𝑝 (𝑁1 ,𝑁2−1) ,Δ ,𝜌
⊗OXord

𝑈𝑝 (𝑁1 ,𝑁2−1) ,Δ
𝜍𝑝∗I𝜕X ord

𝑈𝑝 (𝑁1 ,𝑁2 ) ,Δ
.

Composing (𝜍∗𝑝)−1 with 1 ⊗ tr𝜍𝑝 : Eord,can
𝑈 𝑝 (𝑁1 ,𝑁2−1) ,Δ ,𝜌

⊗ 𝜍𝑝∗I𝜕X ord
𝑈𝑝 (𝑁1 ,𝑁2 ) ,Δ

→ Eord,can
𝑈 𝑝 (𝑁1 ,𝑁2−1) ,Δ ,𝜌

gives

another 𝐺 (A∞)ord,×-equivariant map

tr𝐹 : 𝜍𝑝∗E
ord,sub
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ ,𝜌

→ Eord,sub
𝑈 𝑝 (𝑁1 ,𝑁2−1) ,Δ ,𝜌

satisfying tr𝐹 ◦𝜍∗𝑝 = 𝑝𝑛2 [𝐹+:Q] and compatible with the analogous map defined on {Eord,can
𝑈,Δ ,𝜌 }𝑈 .
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Denote the pushforward by Eord,sub
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌

= 𝜋ord
tor/min ∗E

ord,sub
𝑈 𝑝 (𝑁1 ,𝑁2) ,Δ ,𝜌

. These coherent sheaves defined
on X ord,min

𝑈 𝑝 (𝑁1 ,𝑁2)
are independent of the choice of Δ by Proposition 1.4.3.1 and Lemma 8.3.5.2 in [14].

Note that

Eord,sub
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌

⊗ 𝜔𝑈 𝑝 (𝑁1 ,𝑁2) � Eord,sub
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌⊗(∧𝑛 [𝐹 :Q] Std∨) ,

and by Lemma 5.5 in [10], the pullback of E sub
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌

to X ord,min
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌

is Eord,sub
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌

.

Abusing notation, denote the pullback of Eord,sub
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌

to 𝔛ord,min
𝑈 𝑝 (𝑁1)

by Eord,sub
𝑈 𝑝 (𝑁1) ,𝜌

. It is independent of
𝑁2, and thus, tr𝐹 induces a 𝐺 (A∞)ord,×-equivariant map

tr𝐹 : 𝜍𝑝∗E
ord,sub
𝑈 𝑝 (𝑁1) ,𝜌

→ Eord,sub
𝑈 𝑝 (𝑁1) ,𝜌

over 𝔛ord,min
𝑈 𝑝 (𝑁1)

, and also induces an endomorphism on global sections.

4. Classical and p-adic automorphic forms

Before we define cuspidal automorphic representations on 𝐺 (A∞), 𝐿 (𝑛) (A) and GL𝑚 (A𝐹 ), we first
recall some facts about highest weights of algebraic representations of 𝐿 (𝑛) and G.

4.1. Weights

For each integer 0 ≤ 𝑖 ≤ 𝑛, let Λ(𝑖) denote the elements of Λ for which the last 2𝑛 − 𝑖 coordinates are
zero, and let 𝐵𝑛 denote the Borel of G preserving the chain Λ(𝑛) ⊃ Λ(𝑛−1) ⊃ ... ⊃ Λ(0) . Let 𝑇𝑛 denote
the subgroup of diagonal matrices of G.

Let 𝑋∗(𝑇𝑛/Ω) := Hom(𝑇𝑛×SpecΩ,G𝑚×SpecΩ), and denote byΦ𝑛 ⊂ 𝑋∗(𝑇𝑛/Ω) the set of roots of𝑇𝑛
on Lie𝐺. The subset of positive roots with respect to 𝐵𝑛 will be denoted Φ+𝑛, and Δ𝑛 will denote the set
of simple positive roots. For any ring 𝑅 ⊂ R, let 𝑋∗(𝑇𝑛/Ω)+𝑅 denote the subset of elements 𝑋∗(𝑇𝑛/Ω)⊗Z𝑅
which pair nonnegatively with the simple coroots �̌� ∈ 𝑋∗(𝑇𝑛/Ω) = Hom(G𝑚 × SpecΩ, 𝑇𝑛 × SpecΩ)
corresponding to the elements of 𝛼 ∈ Δ𝑛.

Let Φ(𝑛) ⊂ Φ𝑛 denote the set of roots of 𝑇𝑛 on Lie 𝐿 (𝑛) , and set Φ+
(𝑛)

= Φ(𝑛) ∩ Φ+𝑛 as well as
Δ (𝑛) = Δ𝑛 ∩Φ(𝑛) . If 𝑅 ⊂ R is a subring, then 𝑋∗(𝑇𝑛/Ω)

+
(𝑛) ,𝑅

will denote the subset of 𝑋∗(𝑇𝑛/Ω)(𝑛) ⊗Z 𝑅
consisting of elements which pair nonnegatively with the simple coroot �̌� ∈ 𝑋∗(𝑇𝑛/Ω)(𝑛) corresponding
to each 𝛼 ∈ Δ (𝑛) .

Recall that 𝐿 (𝑛) × SpecΩ � GL1 ×GLHom(𝐹,Ω)
𝑛 , which induces an identification

𝑇𝑛 × SpecΩ � GL1 ×(GL𝑛
1 )

Hom(𝐹,Ω) ,

and hence, 𝑋∗(𝑇𝑛/Ω) � Z
⊕
(Z𝑛)Hom(𝐹,Ω) . Under this isomorphism, the image of 𝑋∗(𝑇𝑛/Ω)+(𝑛) is the set

{(𝑏0, (𝑏𝜏,𝑖)) ∈ Z ⊕ (Z
𝑛)Hom(𝐹,Ω) : 𝑏𝜏,1 ≥ 𝑏𝜏,2 ≥ . . . ≥ 𝑏𝜏,𝑛 ∀𝜏}.

Furthermore, 𝑋∗(𝑇𝑛/Ω)+ is identified with

{(𝑏0, (𝑏𝜏,𝑖)) ∈ Z ⊕ (Z
𝑛)Hom(𝐹,Ω) : 𝑏𝜏,1 ≥ 𝑏𝜏,2 ≥ . . . ≥ 𝑏𝜏,𝑛 and 𝑏𝜏,1 + 𝑏𝜏𝑐,1 ≤ 0 ∀𝜏}.

Denote by Std the representation of 𝐿 (𝑛) on Λ/Λ(𝑛) over Z. Note that the representation ∧𝑛 [𝐹 :Q] Std∨
is irreducible with highest weight (0, (−1, . . . ,−1)𝜏). If 𝜌 is an irreducible algebraic representation of
𝐿 (𝑛) over Q𝑝 , then its highest weight lies in 𝑋∗(𝑇𝑛/Q𝑝

)+
(𝑛)

and uniquely up to isomorphism identifies 𝜌.

Thus, for any 𝑏 ∈ 𝑋∗(𝑇𝑛/Q𝑝
)+
(𝑛)

, let 𝜌𝑏 denote the 𝐿 (𝑛) -representation over Q𝑝 with highest weight 𝑏.
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Define the set of classical highest weights 𝑋∗(𝑇𝑛/Q𝑝
)+cl as any 𝑏 = (𝑏0, (𝑏𝜏,𝑖)𝜏∈Hom(𝐹,Q𝑝)

) ∈

𝑋∗(𝑇𝑛/Q𝑝
)+
(𝑛)

such that 𝑏𝜏,1 + 𝑏𝜏𝑐,1 ≤ −2𝑛.
We next turn to local components of automorphic representations (i.e., smooth representations of

𝐺 (Qℓ ) when ℓ ≠ 𝑝). We relate them to smooth representations of GL2𝑛 (Qℓ) via local base change
defined below.

4.2. Local base change

For a rational prime ℓ ≠ 𝑝, denote the primes of 𝐹+ above Q as 𝑢1, · · · , 𝑢𝑟 , 𝑣1 · · · 𝑣𝑠 , where each
𝑢𝑖 = 𝑤𝑖

𝑐𝑤𝑖 splits in F and none of the 𝑣 𝑗 split in F. Note that

𝐺 (Qℓ) �
𝑟∏
𝑖=1

GL2𝑛 (𝐹𝑤𝑖 ) × 𝐻,

where

𝐻 =

{
(𝜇, 𝑔𝑖) ∈ Q

×
ℓ ×

𝑠∏
𝑖=1

GL2𝑛 (𝐹𝑣𝑖 ) : 𝑡𝑔𝑖𝐽𝑛
𝑐𝑔𝑖 = 𝜇𝐽𝑛 ∀𝑖

}
.

Here, H contains a product
∏𝑠

𝑖=1 𝐺
1 (𝐹+𝑣𝑖 ), where 𝐺1 denotes the group scheme over O𝐹+ defined by

𝐺1 (𝑅) = {𝑔 ∈ AutO𝐹 ⊗O𝐹+
𝑅 (Λ ⊗O𝐹+

𝑅) : 𝑡𝑔𝐽𝑛
𝑐𝑔 = 𝐽𝑛}.

Note that ker 𝜈 � RSO𝐹+

Z
𝐺1. If Π is an irreducible smooth representation of 𝐺 (Qℓ), then

Π =
(
⊗𝑟𝑖=1Π𝑤𝑖

)
⊗ Π𝐻 .

Define BC(Π)𝑤𝑖 := Π𝑤𝑖 and BC(Π)𝑐𝑤𝑖 := Π𝑐,∨
𝑤𝑖

. This does not depend on the choice of 𝑤𝑖 . We call Π
unramified at 𝑣𝑖 if 𝑣𝑖 is unramified over 𝐹+ and

Π𝐺1 (O𝐹+ ,𝑣𝑖
) ≠ (0).

Let 𝐵1 denote the Borel subgroup of 𝐺1 consisting of upper triangular matrices and 𝑇1 the torus
subgroup consisting of diagonal matrices.

If Π is unramified at 𝑣𝑖 , then there is a character 𝜒 of 𝑇1 (𝐹+𝑣𝑖 )/𝑇
1 (O𝐹+ ,𝑣𝑖 ) such that Π |𝐺1 (𝐹+𝑣𝑖 )

and

n-Ind
𝐺1 (𝐹+𝑣𝑖 )

𝐵1 (𝐹+𝑣𝑖 )
𝜒 share an irreducible subquotient with a 𝐺1 (O𝐹+ ,𝑣𝑖 )-fixed vector. Define a map between

the torus of diagonal matrices of GL2𝑛 (𝐹𝑣𝑖 ) and 𝐺1 (O𝐹+ ,𝑣𝑖 ):

N : 𝑇GL2𝑛 (𝐹𝑣𝑖 ) → 𝑇1 (𝐹+𝑣𝑖 ), (4.1)

����
𝑡1 0 0

0
. . . 0

0 0 𝑡2𝑛

���� ↦→
����
𝑡1/

𝑐𝑡2𝑛 0 0

0
. . . 0

0 0 𝑡2𝑛/
𝑐𝑡1

����. (4.2)

We define BC(Π)𝑣𝑖 to be the unique subquotient of

n-IndGL2𝑛 (𝐹𝑣𝑖 )

𝐵GL2𝑛 (𝐹𝑣𝑖 )
𝜒 ◦ N
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with a GL2𝑛 (O𝐹,𝑣𝑖 )-fixed vector, where 𝐵GL2𝑛 (𝐹𝑣𝑖 ) denote the Borel subgroup of upper triangular
matrices.

Lemma 4.1 (Lemma 1.1 in [10]). Suppose that 𝜓 ⊗ 𝜋 is an irreducible smooth representation of

𝐿 (𝑛) (Qℓ) � 𝐿 (𝑛) ,herm (Qℓ) × 𝐿 (𝑛) ,lin(Qℓ) = Q
×
ℓ × GL𝑛 (𝐹ℓ).

1. If v is unramified over 𝐹+ and 𝜋𝑣 is unramified, then n-Ind𝐺 (Q𝑞)

𝑃(𝑛) (Q𝑞 )
(𝜓 ⊗ 𝜋) has a subquotient Π which

is unramified at v. Moreover, BC(Π)𝑣 is the unramified irreducible subquotient of n-IndGL2𝑛 (𝐹𝑣 )

𝐵GL2𝑛 (𝐹𝑣 )

(𝜋𝑐,∨
𝑣 ⊗ 𝜋𝑣 ).

2. If v is split over 𝐹+ and Π is an irreducible subquotient of the normalized induction n-Ind𝐺 (Q𝑞)

𝑃(𝑛) (Q𝑞 )

(𝜓 ⊗ 𝜋), then BC(Π)𝑣 is an irreducible subquotient of n-IndGL2𝑛 (𝐹𝑣 )

𝐵GL2𝑛 (𝐹𝑣 )
(𝜋𝑐,∨

𝑐𝑣 ⊗ 𝜋𝑣 ).

Note that in both cases, BC(Π𝑣 ) does not depend on v.

4.3. Cuspidal automorphic representations

Here, we define automorphic representations on 𝐺 (A) whose finite parts will be realized in the space
of global sections of E sub

𝑈,𝜌 on 𝑋min
𝑈,𝜌. We first recall a few definitions. Let 𝑈 (𝑛) ⊂ GL𝑛 (C) denote the

subgroup of matrices g satisfying 𝑡𝑔𝑐𝑔 = 1𝑛. Define

K𝑛,∞ = (𝑈 (𝑛) ×𝑈 (𝑛))Hom(𝐹+ ,R) � 𝑆2,

where 𝑆2 acts by permuting 𝑈 (𝑛) ×𝑈 (𝑛). We can embed K𝑛,∞ in

𝐺 (R) ⊂ R× ×
∏

𝜏∈Hom(𝐹+ ,R)
𝐺𝐿2𝑛 (𝐹 ⊗𝐹+ ,𝜏 R)

via the map sending

(𝑔𝜏 , ℎ𝜏)𝜏∈Hom(𝐹+ ,R) ↦→

(
1,

(
(𝑔𝜏 + ℎ𝜏)/2 (𝑔𝜏 − ℎ𝜏)Ψ𝑛/2𝑖

Ψ𝑛 (𝑔𝜏 − ℎ𝜏)/2𝑖 Ψ𝑛 (𝑔𝜏 + ℎ𝜏)Ψ𝑛/2

)
𝜏∈Hom(𝐹+ ,R)

)
,

and sending the nontrivial element of 𝑆2 to
(
−1,

(
−1𝑛 0

0 1𝑛

)
𝜏∈Hom(𝐹+ ,R)

)
. This forces K𝑛,∞ to be a

maximal compact subgroup of 𝐺 (R) such that K𝑛,∞ ∩ 𝑃(𝑛) (R) is a maximal compact of 𝐿 (𝑛) (R). Let
𝔤 = (Lie𝐺 (R))C, and denote by 𝐴𝑛 the image of G𝑚 in G via the embedding 𝑡 ↦→ 𝑡 · 12𝑛. We define
a cuspidal automorphic representation of 𝐺 (A) to be an irreducible admissible 𝐺 (A∞) × (𝔤,K𝑛,∞)-
submodule of the space of cuspidal automorphic forms on the double coset space 𝐺 (Q)\𝐺 (A)/𝐴𝑛 (R)

0.
Furthermore, a square-integrable automorphic representation of 𝐺 (A) is the twist by a character on
Q×\A×/R×>0 of an irreducible admissible 𝐺 (A∞) × (𝔤,K𝑛,∞)-module that occurs discretely in the space
of square integrable automorphic forms on 𝐺 (A)\𝐺 (A)/𝐴𝑛 (R)

0.
Now let 𝔩 = (Lie 𝐿 (𝑛) (R))C, and let 𝐴(𝑛) denote the maximal split torus in the center of 𝐿 (𝑛) . A

cuspidal automorphic representation of 𝐿 (𝑛) (A) is an irreducible admissible 𝐿 (𝑛) (A
∞) × (𝔩,K𝑛,∞ ∩

𝐿 (𝑛) (R))-submodule of the space of cuspidal automorphic forms of 𝐿 (𝑛) (A) on the double coset space
𝐿 (𝑛) (Q)\𝐿 (𝑛) (A)/𝐴(𝑛) (R)

0.
For a number field K and any positive integer m, let K𝐾,∞ denote a maximal compact subgroup of

GL𝑚(𝐾∞), and let 𝔤𝔩 = (Lie GL𝑚 (𝐾∞))C. Define a cuspidal automorphic representation of GL𝑚(A𝐾 )

as an irreducible admissible GL𝑚 (A
∞
𝐾 ) × (𝔤𝔩,K𝐾,∞)-submodule of the space of cuspidal automorphic

forms on the double coset space GL𝑚(𝐾)\GL𝑚(A𝐾 )/R
×
>0. Finally, by a square-integrable automorphic

representation of GL𝑚(A𝐾 ), we shall mean the twist by a continuous character on 𝐾×/A×𝐾 /R
×
>0 of an
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irreducible admissible GL𝑚 (A
∞
𝐾 ) × (𝔤𝔩,K𝐾,∞)-module that occurs discretely in the space of square

integrable automorphic forms on GL𝑚 (A𝐾 ).
We will now relate the finite parts of these automorphic representations to the global sections of the

automorphic bundles defined previously.

4.4. Global sections of automorphic bundles over the Shimura variety

Let 𝜌 be a representation of 𝐿 (𝑛) on a finite Q-vector space. Define the admissible 𝐺 (A∞)-module

𝐻0(𝑋min, E sub
𝜌 ) = lim

→
𝑈

𝐻0 (𝑋min
𝑈 , E sub

𝑈,𝜌).

Note that for any neat open compact U, 𝐻0(𝑋min, E sub
𝜌 )

𝑈 = 𝐻0(𝑋min
𝑈 , E sub

𝑈,𝜌) (see Lemma 5.5 of [10] or
Proposition 8.3.6.9 of [14].

Proposition 4.2 (Corollary 5.12 in [10]). Suppose that 𝑏 ∈ 𝑋∗(𝑇𝑛/Q𝑝
)+cl, and 𝜌𝑏 is the irreducible

representation of 𝐿 (𝑛) with highest weight 𝑏. Then 𝐻0(𝑋min, E sub
𝜌𝑏 ) is a semisimple 𝐺 (A∞) module, and

if Π is an irreducible subquotient of 𝐻0(𝑋min, E sub
𝜌𝑏 ), then there is a continuous representation

𝑅𝑝 (Π) : 𝐺𝐹 → GL2𝑛 (Q𝑝),

which is de Rham above p and has the following property: Suppose that 𝑣 � 𝑝 is a prime of F above a
rational prime ℓ such that

◦ either ℓ splits in 𝐹0,
◦ or F and Π are unramified above ℓ;

then

WD(𝑅𝑝 (Π)
��
𝐺𝐹𝑣
)Frob−𝑠𝑠 � rec𝐹𝑣 (BC(Πℓ)𝑣 | det | (1−2𝑛)/2

𝑣 ),

where ℓ is the rational prime below v.

Proof. Each irreducible subquotient Π of 𝐻0(𝑋min, E sub
𝜌𝑏 ) is the finite part of a cohomological cuspi-

dal 𝐺 (A)-automorphic representation 𝜋 by Lemma 5.11 in [10], and furthermore, 𝐻0(𝑋min, E sub
𝜌𝑏 ) is a

semisimple 𝐺 (A∞)-module. For such 𝜋, by Shin [20] and Moeglin-Waldspurger [15], there is a decom-
position into positive integers

2𝑛 = 𝑚1𝑛1 + . . . + 𝑚𝑟𝑛𝑟 ,

and cuspidal conjugate self-dual automorphic representations �̃�𝑖 of GL𝑚𝑖 (A𝐹 ) such that for each
𝑖 ∈ [1, 𝑟], �̃�𝑖 | | det | | (𝑚𝑖+𝑛𝑖−1)/2 is cohomological and satisfies the following at all primes v of F which
are split over 𝐹+:

𝜋𝑣 = �𝑟𝑖=1 �
𝑛𝑖−1
𝑗=0 �̃�𝑖,𝑣 | det | (𝑛𝑖−1)/2− 𝑗

𝑣 .

These �̃�𝑖 are automorphic representations which have Galois representations associated to them satisfy-
ing full local-global compatibility – results due to many people including [9, 19, 6, 2] (for a summary,
see [1]). �

We will refer to irreducible subquotients of 𝐻0(𝑋min, E sub
𝜌𝑏
) as classical cuspidal G-automorphic

forms of weight 𝜌𝑏 .
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4.5. p-adic (cuspidal) G-automorphic forms

Now let 𝜌 be a representation of 𝐿 (𝑛) on a finite locally free Z(𝑝) -module. Let 𝐻0(𝔛ord,min, Eord,sub
𝜌 )

denote the smooth 𝐺 (A∞)ord-module defined as

𝐻0(𝔛ord,min, Eord,sub
𝜌 ) := lim

→
𝑈 𝑝 ,𝑁1

𝐻0(𝔛ord,min
𝑈 𝑝 (𝑁1)

, Eord,sub
𝑈 𝑝 (𝑁1) ,𝜌

).

For each positive integer r, define

𝐻0 (X ord,min, Eord,sub
𝜌 ⊗ Z/𝑝𝑟Z) := lim

→

𝑈 𝑝 (𝑁1 ,𝑁2)

𝐻0(X ord,min
𝑈 𝑝 (𝑁1 ,𝑁2)

, Eord,sub
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌

⊗ Z/𝑝𝑟Z).

It is a smooth 𝐺 (A∞)ord-module of p-adic cuspidal G-automorphic forms of weight 𝜌, with the property
that

𝐻0(X ord,min, Eord,sub
𝜌 ⊗ Z/𝑝𝑟Z)𝑈

𝑝 (𝑁1 ,𝑁2) = 𝐻0(X ord,min
𝑈 𝑝 (𝑁1 ,𝑁2)

, Eord,sub
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌

⊗ Z/𝑝𝑟Z).

Note that mod 𝑝𝑀 , and there is a 𝐺 (A∞)ord-equivariant embedding

𝐻0(𝔛ord,min, Eord,sub
𝜌 ) ⊗Z𝑝 Z/𝑝

𝑀Z ↩→ 𝐻0(X ord,min, Eord,sub
𝜌 ⊗ Z/𝑝𝑀Z).

Fix a neat open compact subgroup 𝑈 𝑝 ⊂ 𝐺 (A𝑝,∞) and integers 𝑁2 ≥ 𝑁1 ≥ 0, and recall that there
is a canonical section Hasse𝑈 ∈ 𝐻0(𝑋

min
𝑈 , 𝜔⊗(𝑝−1)

𝑈 ) which is 𝐺 (A𝑝,∞ × Z𝑝)-invariant. Let �Hasse𝑈
denote the noncanonical lift of Hasse𝑈 over an open subset of Xmin

𝑈 . For each positive integer M, the

powers �Hasse
𝑝𝑀−1

𝑈 mod𝑝𝑀 are canonical despite the noncanonical choice of �Hasse𝑈 , and hence, they
glue with each other and give a canonical 𝐺 (A∞, 𝑝 × Z𝑝)-invariant section Hasse𝑈,𝑀 of 𝜔⊗(𝑝−1) 𝑝𝑀−1

over Xmin
𝑈 × SpecZ/𝑝𝑀Z.

Fix 𝜌 a representation of 𝐿 (𝑛) on a finite free Z(𝑝) -module. Then for each integer i, define the
𝐺 (A∞)ord,×-equivariant map,

𝐻0(Xmin
𝑈 𝑝 (𝑁1 ,𝑁2)

, E sub
𝜌 ⊗ 𝜔𝑖 𝑝𝑀−1 (𝑝−1)

𝑈 ) → 𝐻0(X ord,min
𝑈 𝑝 (𝑁1 ,𝑁2)

, Eord,sub
𝜌 ⊗ Z/𝑝𝑀Z),

𝑓 ↦→ ( 𝑓 |X ord,min
𝑈𝑝 (𝑁1 ,𝑁2 )

)/Hasse𝑖𝑈 𝑝 (𝑁1 ,𝑁2) ,𝑀
.

Using the map defined above, Harris-Lan-Taylor-Thorne [10] prove the following density theorem
relating p-adic and classical cuspidal automorphic forms.

Lemma 4.3 (Lemma 6.1 in [10]). Let 𝜌 be an irreducible representation of 𝐿 (𝑛) on a finite free
Z𝑝-module. The induced map

∞⊕
𝑗=𝑟

𝐻0 (Xmin
𝑈 𝑝 (𝑁1 ,𝑁2)

, E sub
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌⊗(∧𝑛 [𝐹 :Q] Std∨) 𝑗 𝑝𝑀−1 (𝑝−1) ) → 𝐻0 (X ord,min

𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌
, E sub,ord

𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌
⊗ Z/𝑝𝑀Z)

is surjective for any integer r.

5. The 𝑈𝑝-operator and the main theorem of [10]

The map tr𝐹 : 𝜍𝑝∗E sub
𝑈 𝑝 (𝑁1) ,𝜌

→ E sub
𝑈 𝑝 (𝑁1) ,𝜌

over 𝔛ord,min
𝑈 𝑝 (𝑁1)

induces an endomorphism 𝑈𝑝 = tr𝐹 in the
endomorphism algebra of 𝐻0 (𝔛ord,min

𝑈 𝑝 (𝑁1)
, Eord,sub

𝑈 𝑝 (𝑁1) ,𝜌
)
Q𝑝

:= 𝐻0(𝔛ord,min
𝑈 𝑝 (𝑁1)

, Eord,sub
𝑈 𝑝 (𝑁1) ,𝜌

) ⊗Q𝑝 satisfying 𝑈𝑝 ◦

𝜍𝑝 = 𝑝𝑛2 [𝐹+:Q] . The subspace of overconvergent automorphic forms 𝐻† in 𝐻0 (𝔛ord,min
𝑈 𝑝 (𝑁1)

, Eord,sub
𝑈 𝑝 (𝑁1) ,𝜌

)
Q𝑝
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defined in §6.4 of [10] admits a slope decomposition for 𝑈𝑝 in the sense of §6.2 of [10]. This means
that for each 𝑎 ∈ Q, there is a 𝑈𝑝-preserving decomposition

𝐻†≤𝑎 ⊕ 𝐻†>𝑎 = 𝐻† ⊆ 𝐻0 (𝔛ord,min
𝑈 𝑝 (𝑁1)

, Eord,sub
𝑈 𝑝 (𝑁1) ,𝜌

)
Q𝑝

such that 𝐻†≤𝑎 is finite-dimensional and satisfies the following:

1. There is a nonzero polynomial 𝑓 (𝑋) ∈ Q𝑝 [𝑋] with slopes ≤ 𝑎 (i.e., 𝑓 (𝑥) ≠ 0 and every root of 𝑓 (𝑥)

has p-adic valuation at most equal to a) such that the endomorphism 𝑓 (𝑈𝑝) restricts to 0 on 𝐻†≤𝑎;
2. If the roots of 𝑓 (𝑋) ∈ Q𝑝 [𝑋] have slopes ≤ 𝑎, then the endomorphism 𝑓 (𝑈𝑝) restricts to an

automorphism of 𝐻†>𝑎.

Additionally, 𝐻†≤𝑎 is an admissible 𝐺 (A∞)ord,×-module. Fix an isomorphism Q𝑝 � C.

Theorem 5.1. Assume that 𝑛 > 1 and that 𝜌 is an irreducible algebraic representation of 𝐿 (𝑛) ,lin
on a finite-dimensional Q𝑝-vector space. Suppose that 𝜋 is a cuspidal automorphic representation of
𝐿 (𝑛) ,lin (A) such that 𝜋∞ has the same infinitesimal character as 𝜌∨, and suppose also that 𝜓 is a
continuous Q𝑝-character of Q×\A×/R×>0 such that 𝜓 |Z×𝑝 = 1. Then for all 𝑀 ∈ Z>0 sufficiently large
and for each irreducible subquotient 𝜋 𝑗 of Ind𝐺 (A𝑝,∞)

𝑃+
(𝑛)
(A𝑝,∞)

(𝜋∞|| det | |𝑀 ×𝜓∞), there exist a representation
𝜌(𝑀) of 𝐿 (𝑛) over Z(𝑝) , a corresponding scalar 𝑎(𝑀) ∈ Q and an admissible representation Π′ of
𝐻†≤𝑎 ⊆ 𝐻0 (𝔛ord,min, E sub

𝜌(𝑀 )
)
Q𝑝

such that 𝜋 𝑗 is a subquotient of Π′.

Proof. Combine Corollary 1.9, Lemma 6.12, Corollary 6.17, Lemma 6.20 and Corollary 6.25
in [10]. �

Our next step is to consider properties of the Galois representations associated to the irreducible
𝐺 (A∞)ord,×-subquotients of 𝐻†≤𝑎, as constructed in Corollary 6.13 in [10]. In order to prove local-
global compatibility at all primes above ℓ such that ℓ ≠ 𝑝, we strengthen the construction of Galois
representations associated to irreducible admissible 𝐺 (A∞)ord,×-subquotients of 𝐻0 (𝔛ord,min, E sub

𝜌 )Q𝑝

(i.e., Galois representations associated to p-adic cuspidal G-automorphic forms of weight 𝜌) (see
Proposition 6.5 of [10]). These Galois representations are constructed using the following two facts we
have already recalled:

1. Proposition 4.2: Classical cuspidal G-automorphic forms of classical weight 𝜌 have Galois repre-
sentations associated to them; furthermore, they satisfy full local-global compatibility at all primes
ℓ such that ℓ ≠ 𝑝.

2. Lemma 4.3: For any integer M, every p-adic cuspidal G-automorphic form of any weight 𝜌 ‘is
congruent mod 𝑝𝑀 to’ some classical cuspidal G automorphic form of classical weight 𝜌′ which is
of the form 𝜌′ = 𝜌 ⊗ (∧𝑛 [𝐹 :Q] Std∨) (𝑝−1) 𝑝𝑀−1 𝑗 for some integer j.

To prove local-global compatibility when ℓ ≠ 𝑝, we will use these two results to reconstruct the
Galois representations associated to p-adic cuspidal automorphic forms on G of weight 𝜌, but we
will consider the action of a larger Hecke algebra than in [10] on the p-adic automorphic spaces
𝐻0 (X ord,min

𝑈 𝑝 (𝑁1 ,𝑁2)
, Eord,sub

𝜌 ⊗ Z/𝑝𝑀Z) and 𝐻0 (𝔛ord,min
𝑈 𝑝 (𝑁1)

, Eord,sub
𝜌 ) as well as the classical automorphic

spaces 𝐻0 (Xmin
𝑈 𝑝 (𝑁1 ,𝑁2)

, E sub
𝜌 ).

6. Hecke algebras away from p

Let S denote the set of ‘bad’ rational primes consisting of p and the primes ℓ which ramify in F but
do not split in 𝐹0. Let 𝑆ram denote the set of rational primes ℓ (≠ 𝑝) that ramify in F and split in 𝐹0.
Let 𝑆ur denote the set of rational primes ℓ (≠ 𝑝) that are unramified in F and split in 𝐹0; note that
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𝑆spl := 𝑆ur � 𝑆ram contains all rational primes away from p that split in 𝐹0. Let 𝑄 = 𝑆ur � 𝑆ram � 𝑆, and
let 𝑄𝑝 = 𝑄\{𝑝}. Finally, let 𝑆𝑝 = 𝑆\{𝑝}.

For each conjugate pair of primes {𝑣, 𝑐𝑣} of F above a rational prime ℓ ∈ 𝑆spl, choose exactly one of
{𝑣, 𝑐𝑣} to put into a set Sspl and the other in S𝑐

spl. For ℓ ∈ 𝑆spl, identify

𝐺 (Qℓ) �
∏

𝑣 ∈Sspl
𝑣 |ℓ

GL2𝑛 (𝐹𝑣 ).

6.1. At unramified primes

We recall the definition of the unramified Hecke algebra. Fix a neat open compact subgroup 𝑈 𝑝 =
𝐺 (Ẑ𝑄) ×𝑈𝑄𝑝 ⊂ 𝐺 (A𝑝,∞). Suppose that v is a place of F above a rational prime ℓ ∉ 𝑆, and let 𝑖 ∈ Z.

By work of Bernstein-Deligne [4] building on Satake, there is an element 𝑇 (𝑖)𝑣 ∈

Q[𝐺 (Zℓ )\𝐺 (Qℓ)/𝐺 (Zℓ)] such that if Πℓ is an unramified representation of 𝐺 (Qℓ), then its eigenvalue
on Π𝐺 (Zℓ )

ℓ is equal to

tr rec𝐹𝑣 (BC(Πℓ)𝑣 ) | det | (1−2𝑛)/2
𝑣 (Frob𝑖

𝑣 ).

(For more details on this construction, see pages 196–197 in [10].) If v is an unramified prime of F
which splits over 𝐹+, then we can write the Hecke operator 𝑇 (1)𝑣 as the double coset

𝐺 (Zℓ)

������
1

. . .

1
𝜛𝑣

������
𝐺 (Zℓ ),

where 𝜛𝑣 denotes a uniformizer of 𝐹𝑣 .
For each unramified prime v of F and each integer 𝑖 ∈ Z, there exists an integer 𝑑 (𝑖)𝑣 ∈ Z such that

𝑑 (𝑖)𝑣 𝑇 (𝑖)𝑣 ∈ Z[𝐺 (Zℓ )\𝐺 (Qℓ))/𝐺 (Zℓ)] .

Let Hur
Z𝑝

:= Z𝑝 [𝐺 (Ẑ
𝑄)\𝐺 (A𝑄)/𝐺 (Ẑ𝑄)] denote the abstract unramified Hecke algebra. Let 𝑁1 and

𝑁2 be two integers 𝑁2 ≥ 𝑁1 ≥ 0, and let 𝜌 be a representation of 𝐿 (𝑛) over Z(𝑝) . The Hecke algebra Hur
Z𝑝

has an action on the classical and p-adic spaces 𝐻0(Xmin
𝑈 𝑝 (𝑁1 ,𝑁2)

, E sub
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌

), 𝐻0 (𝔛ord,min
𝑈 𝑝 (𝑁1)

, Eord,sub
𝑈 𝑝 (𝑁1) ,𝜌

)

and 𝐻0 (X ord,min
𝑈 𝑝 (𝑁1 ,𝑁2)

, Eord,sub
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌

⊗Z/𝑝𝑀Z) induced from the action of𝐺 (A𝑆). Denote byTur
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌

the image of Hur
Z𝑝

in the endomorphism algebra

EndZ𝑝 (𝐻
0 (Xmin

𝑈 𝑝 (𝑁1 ,𝑁2)
, E sub

𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌
)).

Furthermore, if 𝑊 ⊂ 𝐻0(𝔛ord,min
𝑈 𝑝 (𝑁1)

, Eord,sub
𝑈 𝑝 (𝑁1) ,𝜌

) (respectively, if 𝑊 ⊂ 𝐻0 (X ord,min
𝑈 𝑝 (𝑁1 ,𝑁2)

, Eord,sub
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌

⊗

Z/𝑝𝑀Z)) is a finitely-generated Z𝑝-submodule invariant under the action of the algebra Hur
Z𝑝

, then let
T

ord,ur
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌

(𝑊) (respectively, let Tord,ur
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌,𝑀

(𝑊)) denote the image of Hur
Z𝑝

in EndZ𝑝 (𝑊).

For each v, let𝑇 (𝑖)𝑣 denote the image of 𝑑 (𝑖)𝑣 𝑇 (𝑖)𝑣 in anyHur
Z𝑝

-algebraT via the canonical mapHur
Z𝑝
→ T.

6.2. At primes which are split in 𝐹0

Suppose that 𝑣 ∈ Sspl � S𝑐
spl is a place of F above a rational prime ℓ, and let 𝜎𝑣 denote an element of

𝑊𝐹𝑣 , the Weil group of 𝐹𝑣 . Let B denote a fixed Bernstein component; it is a subcategory of the smooth
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representations of GL2𝑛 (𝐹𝑣 ). Every component B is uniquely associated to an inertial equivalence class
(𝑀,𝜔), where M denotes a Levi subgroup of GL2𝑛 (𝐹𝑣 ) and 𝜔 is a supercuspidal representation of
M. (Recall that two inertial classes (𝑀,𝜔) and (𝑀 ′, 𝜔′) are equivalent if there exists 𝑔 ∈ 𝐺 and an
unramified character 𝜒 of 𝑀 ′ such that 𝑀 = 𝑔−1𝑀𝑔 and 𝜔′ = 𝜒 ⊗ 𝜔(𝑔 · 𝑔−1).) Then, B is defined to
be the full subcategory of smooth representations of GL2𝑛 (𝐹𝑣 ) consisting of those representations all
of whose irreducible subquotients have inertial support equivalent to (𝑀,𝜔). This implies that there
exists some (𝑀 ′, 𝜔′) ∼ (𝑀,𝜔) such that 𝜋 occurs as a composition factor of the parabolic induction
IndGL2𝑛 (𝐹𝑣 )

𝑃𝑀
(𝜔′) where 𝜔′ is an irreducible supercuspidal representation and 𝑃𝑀 is a parabolic subgroup

of GL2𝑛 (𝐹𝑣 ) with Levi M.
Let 𝔷B = 𝔷[𝑀,𝜔 ] denote the Bernstein center of B, which is the image under the idempotent 𝑒B

associated to B of

lim
←−
𝐾

Z (C[𝐾\GL2𝑛 (𝐹𝑣 )/𝐾]),

the inverse limit over open compact subgroup K of the centers of the complex Hecke algebra for
GL2𝑛 (𝐹𝑣 ).

Proposition 6.1 (Proposition 3.11 in Chenevier [8]). For an inertial equivalence class [𝑀,𝜔], there is
a representative (𝑀,𝜔) which can be defined overQ. Let 𝐸 ⊂ Q denote a sufficiently large finite-degree
normal field over which 𝜔, rec(𝜔), B[𝑀,𝜔 ] , 𝔷[𝑀,𝜔 ] are all defined over E. Let 𝐸 [B[𝑀,𝜔 ] ] denote the
affine coordinate ring of the variety associated to B[𝑀,𝜔 ] . Then there exists a unique pseudocharacter
of dimension 2𝑛

𝑇B = 𝑇 [𝑀,𝜔 ] : 𝑊𝐹𝑣 → 𝐸 [B] = 𝔷B

such that for all irreducible smooth representations 𝜋 of B and 𝜎𝑣 ∈ 𝑊𝐹𝑣 ,

𝑇B (𝜎𝑣 ) (𝜋) = tr rec𝐹𝑣 (𝜋) (𝜎𝑣 ).

For a Bernstein component B and 𝜎 ∈ 𝑊𝐹𝑣 , let 𝑇𝑣,B,𝜎 denote the twist of 𝑇B (𝜎) such that
𝑇𝑣,B,𝜎 (𝜋) = tr rec𝐹𝑣 (𝜋 | det | (1−2𝑛)/2

𝑣 ) (𝜎) if 𝜋 is a smooth irreducible representation in B. Multiplying
𝑇𝑣,B,𝜎 by 𝑒B if necessary, we may suppose that 𝑇𝑣,B,𝜎 acts as 0 on all irreducible 𝜋 ∉ B.

Theorem 6.2 (Bernstein [4]). For each prime 𝑣 ∈ Sspl. Let B𝑣 = B be a Bernstein component, and let
𝑒B denote the projector element such that for any smooth irreducible representation 𝜋 of GL2𝑛 (𝐹𝑣 ),
𝑒B (𝜋) = 𝜋 if and only if 𝜋 ∈ B.

There is a compact open subgroup K of GL2𝑛 (𝐹𝑣 ) for which we may find a finite union of Bernstein
components 𝔅 = 𝔅𝑣 containing B𝑣 with the following property: If 𝜋𝑣 is an irreducible smooth repre-
sentation of GL2𝑛 (𝐹𝑣 ), then 𝜋𝐾

𝑣 is nonzero if and only if 𝜋𝑣 belongs to one of the Bernstein components
in 𝔅.

Proof. For the first statement, see Proposition 2.10 in [4]. For the second statement, see Proposition 3.8
and Corollary 3.9(i) of [4]. Also, see §2.3 and 2.5 of [5]. �

We will denote this compact open subgroup by 𝐾𝔅 = 𝐾𝔅𝑣
; note that all irreducible smooth repre-

sentations inside B have a fixed vector under 𝐾𝔅. More generally, for every B′ ⊂ 𝔅, 𝔷B′ embeds in the
center of H(GL2𝑛, 𝐾𝔅)C = C[𝐾𝔅\GL2𝑛 (𝐹𝑣 )/𝐾𝔅] via multiplication by the characteristic function of
𝐾𝔅. Let 𝔷𝔅𝑣

= 𝔷𝔅 := im(
∏

B′ ⊂𝔅 𝔷B′ ↩→ H(GL2𝑛, 𝐾𝔅)C). Note that 𝔷𝔅 is the center of H(GL2𝑛, 𝐾𝔅)C.
For ℓ ∈ 𝑆spl, assume 𝐾ℓ is an open compact subgroup of 𝐺 (Qℓ) such that under the identification

𝐺 (Qℓ ) �
∏

Sspl�𝑣 |ℓ
GL2𝑛 (𝐹𝑣 ), we can decompose

𝐾ℓ =
∏

Sspl�𝑣 |ℓ

𝐾𝔅𝑣
.
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If 𝑣 ∈ Sspl divides the rational prime ℓ and 𝔅 is a Bernstein component, then for any 𝜎 ∈ 𝑊𝐹𝑣 , we
can find an element of 𝔷𝔅, which we will denote by 𝑇𝑣,𝔅,𝜎 , such that its eigenvalue on the 𝐾ℓ-fixed
vectors of an irreducible representation 𝜋 of 𝐺 (Qℓ) in B is

tr rec𝐹𝑣 (𝜋𝑣 | det | (1−2𝑛)/2
𝑣 ) (𝜎).

(However, if 𝜋𝑣 ∉ 𝔅, then 𝜋𝐾ℓ is trivial and 𝑇𝑣,𝔅,𝜎 acts as 0.) This element 𝑇𝑣,𝔅,𝜎 is the image in 𝔷𝔅
of

∏
B′ ⊂𝔅 𝑇𝑣,B′,𝜎 ∈

∏
B′ ⊂𝔅 𝔷B′ . It is independent of 𝜋. Furthermore, for each 𝜑 ∈ Aut(C), we have that

𝜑𝔅 = 𝔅 and additionally,

𝜑 rec𝐹𝑣 (𝜋𝑣 | det | (1−2𝑛)/2
𝑣 ) � rec𝐹𝑣 (

𝜑 (𝜋𝑣 | det | (1−2𝑛)/2
𝑣 )).

Thus, we have that 𝜑𝑇𝑣,𝔅,𝜎 = 𝑇𝑣,𝔅,𝜎 , and so 𝑇𝑣,𝔅,𝜎 ∈ Q[𝐾ℓ\𝐺 (Qℓ)/𝐾ℓ] .
Define

𝔷0
ℓ :=

∏
Sspl�𝑣 |ℓ

(𝔷𝔅𝑣
∩ Z[𝐾𝔅\GL2𝑛 (𝐹𝑣 )/𝐾𝔅]).

Then 𝔷0
ℓ lies in the center of Z[𝐾ℓ\𝐺 (Qℓ)/𝐾ℓ]. Note that for any element 𝑇 ∈ 𝔷𝔅 ∩ Q[𝐾ℓ𝐺 (Qℓ)/𝐾ℓ],

there exists a nonzero integer 𝑑 (𝑇) ∈ Z such that 𝑑 (𝑇)𝑇 ∈ 𝔷0
ℓ , where 𝑣 | ℓ. Thus, we can choose

𝑑 (𝑇𝑣,𝔅,𝜎) ∈ Z \ {0} such that

𝑑 (𝑇𝑣,𝔅,𝜎)𝑇𝑣,𝔅,𝜎 ∈ Z[𝐾ℓ\𝐺 (Qℓ)/𝐾ℓ],

so 𝑑 (𝑇𝑣,𝔅,𝜎)𝑇𝑣,𝔅,𝜎 ∈ 𝔷0
ℓ .

For each 𝑣 ∈ Sspl, fix a Bernstein component B𝑣 , and let 𝔅𝑣 be the disjoint union as defined in
Theorem 6.2. We will make the further assumption that𝑈 𝑝 =

∏
ℓ≠𝑝 𝑈ℓ is a neat open compact subgroup

of 𝐺 (A𝑝,∞) such that

𝑈ℓ =
∏

𝑣 ∈Sspl
𝑣 |ℓ

𝐾𝔅𝑣
. (6.1)

Let Hspl,Z𝑝 :=
(⊗

ℓ∈𝑆spl
𝔷0
ℓ

)
be the abstract ramified Hecke algebra. For any two integers 𝑁2 ≥

𝑁1 ≥ 0 and any algebraic representation 𝜌 of 𝐿 (𝑛) over Z(𝑝) , recall that the classical space
𝐻0 (Xmin

𝑈 𝑝 (𝑁1 ,𝑁2)
, E sub

𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌
) has an action of 𝐺 (A𝑝,∞) which induces an action of Hspl,Z𝑝 , and

similarly, the p-adic spaces 𝐻0(𝔛ord,min
𝜌 , Eord,sub

𝜌 ) and 𝐻0(X ord,min
𝜌 , Eord,sub

𝜌 ⊗ Z/𝑝𝑀Z) have an action
of 𝐺 (A𝑝,∞), which similarly induces an action of Hspl,Z𝑝 . Let T𝑝

𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌
denote the image of

H𝑝
Z𝑝

:= Hur
Z𝑝
⊗Hspl,Z𝑝 in

EndZ𝑝 (𝐻
0 (Xmin

𝑈 𝑝 (𝑁1 ,𝑁2)
, E sub

𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌
)).

Furthermore, if𝑊 ⊂ 𝐻0(𝔛ord,min
𝑈 𝑝 (𝑁1)

, Eord,sub
𝑈 𝑝 (𝑁1) ,𝜌

) (resp.,𝑊 ⊂ 𝐻0(X ord,min
𝑈 𝑝 (𝑁1 ,𝑁2)

, Eord,sub
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌

⊗Z/𝑝𝑀Z))
is a finitely generated Z𝑝-submodule invariant under the action of the algebra H𝑝

Z𝑝
, then let

T
ord, 𝑝
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌

(𝑊) (resp. Tord, 𝑝
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌,𝑀

(𝑊)) denote the image of H𝑝
Z𝑝

in EndZ𝑝 (𝑊).
For each 𝑣 ∈ Sspl � S𝑐

spl, let 𝑇𝑣,𝔅,𝜎 denote the image of 𝑑 (𝑇𝑣,𝔅,𝜎)𝑇𝑣,𝔅,𝜎 in any H𝑝
Z𝑝

-algebra T.
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7. Interpolating the Hecke action

The main goal of this section is to prove the following proposition.

Proposition 7.1. Let 𝜌 be an algebraic representation of 𝐿 (𝑛) overZ(𝑝) . Suppose thatΠ is an irreducible
quotient of an admissible 𝐺 (A∞)ord,×-submodule Π′ of 𝐻0 (𝔛ord,min, Eord,sub

𝜌 ) ⊗ Q𝑝 . Then there is a
continuous semisimple representation

𝑅𝑝 (Π) : 𝐺𝐹 → GL2𝑛 (Q𝑝)

with the following property: If ℓ ≠ 𝑝 is a rational prime such that either ℓ splits in 𝐹0, or both F and Π
are unramified above ℓ, and 𝑣 | ℓ is a prime of F, then

WD(𝑅𝑝 (Π)𝐺𝐹𝑣
)𝑠𝑠 � rec𝐹𝑣 ((Πℓ)𝑣 | det | (1−2𝑛)/2

𝑣 )𝑠𝑠 .

Proposition 6.5 in [10] proves the existence of 𝑅𝑝 (Π) and its local-global compatibility at primes
above ℓ ∉ 𝑆ram � 𝑆 such that Π is unramified at ℓ. We extend the local-global compatibility results to
primes above ℓ ∈ 𝑆ram � 𝑆ur.

Fix 𝜌, Π and Π′ as in the proposition. For each 𝑣 ∈ Sspl, let B𝑣 denote the Bernstein component
containing BC(Πℓ)𝑣 . Let 𝔅𝑣 be a disjoint union of Bernstein components containing B𝑣 such that there
is an open compact subgroup 𝐾𝔅𝑣

of GL2𝑛 (𝐹𝑣 ) and an irreducible representation of GL2𝑛 (𝐹𝑣 ) with a
nontrivial 𝐾𝔅𝑣

-fixed vector is contained in 𝔅𝑣 . Choose a neat open compact subgroup 𝑈 𝑝 =
∏

ℓ≠𝑝 𝑈ℓ

of 𝐺 (A𝑝,∞) such that 𝑈ℓ = 𝐾ℓ for each ℓ ∈ 𝑆spl as well as an integer N such that Π𝑈 𝑝 (𝑁 ) ≠ (0).
Recall that Hspl,Z𝑝 := (

⊗
ℓ∈𝑆spl

𝔷0
ℓ ), where 𝔷0

ℓ is associated to the Bernstein components B𝑣 and
disjoint unions 𝔅𝑣 and open compact subgroups 𝐾𝔅𝑣

fixed above, for each 𝑣 ∈ Sspl, and let H𝑝
Z𝑝

=

Z𝑝 [𝐺 (Ẑ
𝑄)\𝐺 (A𝑄)/𝐺 (Ẑ𝑄)] ⊗Z𝑝 Hspl,Z𝑝 as before.

We first show the existence and local-global compatibility of a Galois representations associated to
irreducible subquotients of the classical space 𝐻0(Xmin

𝑈 𝑝 (𝑁1 ,𝑁2)
, E sub

𝜌⊗(∧𝑛 [𝐹 :Q] Std∨)⊗(𝑝−1)𝑡 ) for t sufficiently
large. It will be most relevant to write this result in terms of pseudorepresentations.

Lemma 7.2. For t sufficiently large, there is a continuous pseudorepresentation

𝑇𝑡 : 𝐺𝑆
𝐹 → T

𝑝

𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌⊗(∧𝑛 [𝐹 :Q] Std∨)⊗(𝑝−1)𝑡 ,

where if 𝑣 | ℓ ∉ 𝑆, {
𝑑 (𝑇𝑣,𝔅𝑣 ,𝜎)𝑇𝑡 (𝜎) = 𝑇𝑣,𝔅𝑣 ,𝜎 for all 𝜎 ∈ 𝑊𝐹𝑣 if 𝑣 | ℓ ∈ 𝑆spl

𝑑 (𝑖)𝑣 𝑇𝑡 (Frob𝑖
𝑣 ) = 𝑇 (𝑖)𝑣 for all 𝑖 ≥ 0 if 𝑣 | ℓ ∉ 𝑄

for all positive integers i and for all 𝜎 ∈ 𝑊𝐹𝑣 .

Proof. First, assume that 𝜌 ⊗ Q𝑝 is irreducible. Let (𝑏0, (𝑏𝜏,𝑖)) ∈ 𝑋∗(𝑇𝑛/Q𝑝
)+
(𝑛)

denote the highest

weight of 𝜌 ⊗ Q𝑝 . If 𝑡 ∈ Z satisfies the inequality

−2𝑛 ≥ (𝑏𝜏,1 − 𝑡 (𝑝 − 1)) + (𝑏𝜏𝑐,1 − 𝑡 (𝑝 − 1)),

and 𝜌𝑡 := 𝜌 ⊗ (∧𝑛 [𝐹 :Q] Std)⊗(𝑝−1)𝑡 , then by Lemma 5.11 of [10],

T
𝑝
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌𝑡

⊗ Q𝑝 �
⊕
Π

Q𝑝 ,
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where the sum runs over irreducible admissible representations of 𝐺 (A∞) with Π𝑈 𝑝 (𝑁1 ,𝑁2) ≠ (0) that
occur in 𝐻0 (𝑋min × SpecQ𝑝 , E sub

𝜌𝑡 ). Further, from Proposition 4.2, we deduce that there is a continuous
representation

𝑟𝜌𝑡 : 𝐺𝑆
𝐹 → GL2𝑛 (T

𝑝
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌𝑡

⊗ Q𝑝) (7.1)

satisfying for 𝑣 | ℓ ∉ 𝑆, {
tr 𝑟𝜌𝑡 (Frob𝑖

𝑣 ) = 𝑇 (𝑖)𝑣 for all 𝑖 ≥ 0 if 𝑣 | ℓ ∈ 𝑆spl

tr 𝑟𝜌𝑡 (𝜎) = 𝑇𝑣,𝔅,𝜎 for all 𝜎 ∈ 𝑊𝐹𝑣 if 𝑣 | ℓ ∉ 𝑄.
(7.2)

Let 𝑇𝑡 := tr 𝑟𝜌𝑡 . Note that if 𝑣 | ℓ ∉ 𝑆, then 𝑇𝑡 (Frob𝑣 ) = 𝑇 (1)𝑣 ∈ T
𝑝
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌𝑡

. Thus, by Cebotarev
density theorem, 𝑇𝑡 : 𝐺𝑆

𝐹 → T
𝑝
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌𝑡

.
For general 𝜌, recall that algebraic representations of 𝐿 (𝑛) (Z𝑝) over Q𝑝 are semisimple, and so we

can construct from the Galois representations associated to the irreducible constituents of 𝜌 ⊗ Q𝑝 a
continuous representation 𝑟 : 𝐺𝑆

𝐹 → GL2𝑛 (T
𝑝

𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌⊗(∧𝑛 [𝐹 :Q] Std)⊗(𝑝−1)𝑡 ⊗ Q𝑝) for sufficiently large
t whose trace satisfies the desired properties. �

Combining the above lemma with the congruences properties established in Lemma 4.3, we have the
following corollaries.

Corollary 7.3. If W is a finitely generated H𝑝
Z𝑝

-invariant submodule of either

𝐻0(X ord,min
𝑈 𝑝 (𝑁1 ,𝑁2)

, Eord,sub
𝜌 ⊗ Z/𝑝𝑀Z) or 𝐻0(𝔛ord,min

𝑈 𝑝 (𝑁 )
, Eord,sub

𝜌 ),

then there is a continuous pseudorepresentation

𝑇 : 𝐺𝑆
𝐹 → T

ord, 𝑝
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌,𝑀

(𝑊)

such that {
𝑑 (𝑇𝑣,𝔅𝑣 ,𝜎)𝑇 (𝜎) = 𝑇𝑣,𝔅𝑣 ,𝜎 for all 𝜎 ∈ 𝑊𝐹𝑣 if 𝑣 | ℓ ∈ 𝑆spl, and
𝑑 (𝑖)𝑣 𝑇 (Frob𝑖

𝑣 ) = 𝑇 (𝑖)𝑣 for all 𝑖 ≥ 0 if 𝑣 | ℓ ∉ 𝑄.

Proof. It suffices to show that for finitely generated

𝑊 ⊂ 𝐻0 (X ord,min
𝑈 𝑝 (𝑁1 ,𝑁2)

, Eord,sub
𝜌 ⊗ Z/𝑝𝑀Z),

such a pseudorepresentation exists since there is an 𝐺 (A∞)ord-equivariant embedding

𝐻0(𝔛ord,min
𝑈 𝑝 (𝑁1)

, Eord,sub
𝜌 ) ⊗ Z/𝑝𝑀Z ↩→ 𝐻0(X ord,min

𝑈 𝑝 (𝑁1 ,𝑁2)
, Eord,sub

𝜌 ⊗ Z/𝑝𝑀Z).

Since W is finitely generated, there exists 𝑘 ∈ Z such that

𝑊 ⊂ Im
( 𝑘⊕
𝑗=𝑟

𝐻0(Xmin
𝑈 𝑝 (𝑁1 ,𝑁2)

, E sub
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌 𝑗 𝑝𝑀−1 (𝑝−1)

) → 𝐻0(X ord,min
𝑈 𝑝 (𝑁1 ,𝑁2)

, E sub,ord
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌

⊗ Z/𝑝𝑀Z)
)
.
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Since the above map is 𝐺 (A∞)ord,×-equivariant, we see that for r sufficiently large, by Lemma 4.3, there
is a continuous pseudorepresentation 𝑇𝑟 : 𝐺𝑆

𝐹 → T
𝑝
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌𝑟 𝑝𝑀−1 (𝑝−1)

. If we take r to be sufficiently
large, then we can compose to get

𝑇 : 𝐺𝑆
𝐹 → T

ord, 𝑝
𝑈 𝑝 (𝑁 ) ,𝜌

(𝑊)

such that {
𝑑 (𝑇𝑣,𝔅𝑣 ,𝜎)𝑇 (𝜎) = 𝑇𝑣,𝔅𝑣 ,𝜎 for all 𝜎 ∈ 𝑊𝐹𝑣 if 𝑣 ∈ Sspl, and
𝑑 (𝑖)𝑣 𝑇 (Frob𝑖

𝑣 ) = 𝑇 (𝑖)𝑣 for all 𝑖 ≥ 0 if 𝑣 | ℓ ∉ 𝑄. �

We use the pseudorepresentations constructed in Lemma 7.3 to finish the proof of Proposition 7.1.

Proof of Proposition 7.1. Since (Π′)𝑈 𝑝 (𝑁 ) is finite dimensional, it is a closed subspace of

𝐻0(𝔛ord,min, Eord,sub
𝜌 ) ⊗ Q𝑝

that is preserved by the action of H𝑝
Z𝑝

; thus, we have by Corollary 7.3 that there is a continuous
pseudorepresentation

𝑇 : 𝐺𝑆
𝐹 → T

ord, 𝑝
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌

((Π′)𝑈
𝑝 (𝑁1 ,𝑁2) )

such that {
𝑑 (𝑇𝑣,𝔅𝑣 ,𝜎)𝑇 (𝜎) = 𝑇𝑣,𝔅𝑣 ,𝜎 for all 𝜎 ∈ 𝑊𝐹𝑣 if 𝑣 ∈ Sspl, and
𝑑 (𝑖)𝑣 𝑇 (Frob𝑖

𝑣 ) = 𝑇 (𝑖)𝑣 for all 𝑖 ≥ 0 if 𝑣 | ℓ ∉ 𝑄.

Since there is a H𝑝
Z𝑝

-equivariant map (Π′)𝑈 𝑝 (𝑁 ) −� Π𝑈 𝑝 (𝑁 ) , there is a map

𝜑Π : Tord, 𝑝
𝑈 𝑝 (𝑁1 ,𝑁2) ,𝜌

((Π′)𝑈
𝑝 (𝑁1 ,𝑁2) ) → Q𝑝

sending a Hecke operator to its eigenvalue on (Π)𝑈 𝑝 (𝑁1 ,𝑁2) . Composing 𝜑Π ◦ 𝑇 =: 𝑇Π gives a pseu-
dorepresentation

𝑇Π : 𝐺𝑆
𝐹 → Q𝑝 , (7.3)

which by work of Taylor [23] is the trace of a continuous semisimple Galois representation satisfying the
semisimplified local-global compatibility at the primes away fromSnspl (and away from the primes above
p). The proposition then follows from the main theorem on pseudorepresentations (see again [23]). �

8. Bounding the monodromy

Let ℓ ≠ 𝑝 be distinct prime that splits in 𝐹0 and v a prime of F above ℓ (i.e., ℓ ∈ 𝑆spl and 𝑣 ∈ Sspl�S𝑐
spl).

The main result of this section is as follows.

Proposition 8.1. Suppose 𝜌 is an algebraic representation of 𝐿 (𝑛) over Z(𝑝) and that Π is an irre-
ducible quotient of an admissible 𝐺 (A∞)ord,×-submodule Π′ of 𝐻0(𝔛ord,min, Eord,sub

𝜌 ) ⊗Q𝑝 Q𝑝 . Then the
continuous semisimple representation 𝑅𝑝,𝚤 (Π) satisfies for 𝑣 | ℓ ∈ 𝑆spl (i.e., for all primes of F above ℓ
(away from p) which splits in 𝐹0),

WD( 𝑅𝑝,𝚤 (Π)
��
𝑊𝐹𝑣
)Frob−𝑠𝑠 ≺ rec𝐹𝑣 (BC(Πℓ)𝑣 | det | (1−2𝑛)/2

𝑣 ),

where ≺ is defined below.
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Let (𝜎, 𝑁) be a Weil-Deligne representation of 𝑊𝐹𝑣 over Q𝑝 , where 𝜎 : 𝑊𝐹𝑣 → GL(𝑉) and
𝑁 ∈ End(𝑉). Let W denote the set of equivalence classes of irreducible representations of 𝑊𝐹𝑣 over
Q𝑝 with open kernel, where two representations 𝑠, 𝑠′ of 𝑊𝐹𝑣 are in the same equivalence if 𝑠 � 𝑠′ ⊗ 𝜒
for some unramified character 𝜒. We can decompose any Weil-Deligne representation into isotypic
components indexed by these equivalence classes of W – that is,

𝜎 �
⊕
𝜔∈W

𝜎[𝜔], and 𝑉 �
⊕
𝜔∈W

𝑉 [𝜔],

where 𝜎[𝜔] : 𝑊𝐹𝑣 → GL(𝑉 [𝜔]) is a Weil representation with all irreducible subquotients lying in
𝜔 ∈ W . The operator N preserves isotypic components of 𝜎; thus, it preserves 𝑉 [𝜔]. If 𝑁 [𝜔] denotes
N restricted to 𝑉 [𝜔], then (𝜎[𝜔], 𝑁 [𝜔]) is a Weil-Deligne representation. Recall from Tate [22] that
there is an indecomposable Weil-Deligne representation Sp(𝑚) of dimension m with nilpotent matrix
of degree exactly m. Explicitly, we have for all 𝜏 ∈ 𝑊𝐹𝑣 ,

Sp(𝑚) (𝜏) =

���������

|𝜏 |
𝑚−1

2

|𝜏 |
𝑚−3

2

. . .

|𝜏 |
3−𝑚

2

|𝜏 |
1−𝑚

2

���������
,

where

𝑁 (Sp(𝑚)) =

��������

0 1
0 1

. . .
. . .

0 1
0

��������
.

It is well known that every indecomposable Frobenius-semisimple Weil-Deligne representation is
isomorphic to one of the form 𝑠 ⊗ Sp(𝑚), where s is an irreducible representation of 𝑊𝐹𝑣 and 𝑁 (𝑠) = 0
(see [22, 4.1.5]). If (𝜎, 𝑁) and (𝜎′, 𝑁 ′) are two Weil-Deligne representations of the same dimension,
then for each 𝜔 ∈ W , we can compare the dimensions of Sp(·) in the decomposition of 𝜎[𝜔]Frob−𝑠𝑠

and 𝜎′[𝜔]Frob−𝑠𝑠 into indecomposable representations using the following ordering:
Definition 8.2. For each 𝜔 ∈ W , and for each Weil-Deligne representation (𝜎, 𝑁), there exists a unique
decreasing sequence of nonnegative integers 𝑚1,𝜔 (𝜎, 𝑁) ≥ 𝑚2,𝜔 (𝜎, 𝑁) ≥ . . . with an associated
sequence of 𝑠1, 𝑠2, . . . ∈ 𝜔 such that

𝜎[𝜔]Frob−𝑠𝑠 �
⊕
𝑠𝑖 ∈𝜔

𝑠𝑖 ⊗ Sp(𝑚𝑖,𝜔 (𝜎, 𝑁)).

The sequence (𝑚𝑖,𝜔 (𝜎, 𝑁))𝑖 is a partition of the integer dim(𝜎[𝜔])/dim(𝑠𝑖) for any 𝑠𝑖 ∈ 𝜔. If (𝜎′, 𝑁 ′)
is another Weil-Deligne representation, then we say

(𝜎, 𝑁) ≺ (𝜎′, 𝑁 ′)

if and only if ∀𝜔 ∈ W and 𝑖 ≥ 1,

𝑚1,𝜔 (𝜎, 𝑁) + · · · + 𝑚𝑖,𝜔 (𝜎, 𝑁) ≤ 𝑚1,𝜔 (𝜎
′, 𝑁 ′) + · · · + 𝑚𝑖,𝜔 (𝜎

′, 𝑁 ′).

In particular, (𝜎, 𝑁) ≺ (𝜎′, 𝑁 ′) if and only if 𝑁 [𝜔] is ‘more nilpotent’ than 𝑁 ′ [𝜔] for each 𝜔 ∈ W .
Denote by 𝐼𝑣 the inertia subgroup of the Weil group 𝑊𝐹𝑣 at v, and let I denote the set of isomorphism
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classes of irreducible representations of 𝐼𝑣 with open kernel. For every 𝜃 ∈ I, define 𝜎[𝜃] to be the
isotypic component of 𝜎 |𝐼𝑣 , whose irreducible subquotients are isomorphic to 𝜃. Since N commutes
with the image of 𝐼𝑣 , these isotypic components are preserved by the monodromy operator; thus, we
can define 𝑁 [𝜃] as the restriction of N to 𝑉 [𝜃].

Definition 8.3. Let (𝜎, 𝑁) be a Weil-Deligne representations of 𝑊𝐹𝑣 over Q𝑝 . For each 𝜃 ∈ I, we
can define a unique decreasing sequence of nonnegative integers 𝑛1, 𝜃 (𝜎, 𝑁) ≥ 𝑛2, 𝜃 (𝜎, 𝑁) ≥ . . .
which determines the conjugacy class of the monodromy operator 𝑁 [𝜃]. It is a partition of the integer
dim(𝑟 [𝜃])/dim(𝜃). If (𝜎′, 𝑁 ′) is another Weil-Deligne representation, then we say

(𝜎, 𝑁) ≺𝐼 (𝜎
′, 𝑁 ′)

if and only if 𝜎 |𝐼𝑣 � 𝜎′ |𝐼𝑣 and ∀𝜃 ∈ I and 𝑖 ≥ 1,

𝑛1, 𝜃 (𝜎, 𝑁) + . . . + 𝑛𝑖, 𝜃 (𝜎, 𝑁) ≤ 𝑛1, 𝜃 (𝜎
′, 𝑁 ′) + . . . + 𝑛𝑖, 𝜃 (𝜎

′, 𝑁 ′).

We have the following lemma relating the two dominance relations ≺ and ≺𝐼 defined above.
For any sequence of integers (𝑚𝑖)𝑖∈Z>0 and 𝑑 ∈ Z>0, let 𝑑 · (𝑚𝑖)𝑖 be the sequence of integers
(𝑚1, 𝑚1, . . . , 𝑚1, 𝑚2, 𝑚2, . . . , 𝑚2, . . .) where each 𝑚𝑖 occurs d times.

Lemma 8.4 (Lemma 6.5.3 in [3]). Let (𝜎, 𝑁) be a Weil-Deligne representation of 𝑊𝐹𝑣 .

1. Let 𝜔 ∈ W and 𝜃 an irreducible constituent of 𝑠 |𝐼𝑣 for any 𝑠 ∈ 𝜔. Then 𝜎[𝑠′] ∩𝜎[𝜃] = 0 if 𝑠′ is not
an unramified twist of s. Furthermore, if 𝑑 = dim(𝑠)/dim(𝜃), then

(𝑛1, 𝜃 (𝜎, 𝑁), 𝑛2, 𝜃 (𝜎, 𝑁), . . .) = 𝑑 · (𝑚1,𝜔 (𝜎, 𝑁), 𝑚2,𝜔 (𝜎, 𝑁), . . .).

2. If (𝜎′, 𝑁 ′) is another Weil-Deligne representation of 𝐹𝑣 such that 𝜎𝑠𝑠 � 𝜎′𝑠𝑠, then (𝜎, 𝑁) ≺
(𝜎′, 𝑁 ′) ⇔ (𝜎, 𝑁) ≺𝐼 (𝜎

′, 𝑁 ′).

From Lemma 8.4 and Proposition 7.1, it suffices to prove that

WD( 𝑟𝑝,𝚤 (Π)
��
𝑊𝐹𝑣
)Frob−𝑠𝑠 ≺𝐼 rec𝐹𝑣 (BC(Πℓ)𝑣 | det | (1−2𝑛)/2

𝑣 )

in order to conclude the proposition. We start by characterizing irreducible representations of 𝐼𝑣 with
open kernel.

Definition 8.5. If (𝜃,𝑉) is a representation of 𝐼𝑣 and 𝜏 is an irreducible representation of a subgroup H of
𝐼𝑣 , set (𝜃 [𝜏], 𝑉 [𝜏]) to be the 𝜏-isotypical component of the H-representation ( 𝜃 |𝐻 , 𝑉 |𝐻 ). Furthermore,
if N is a commuting nilpotent endomorphism of V, then set 𝑁 [𝜏] = 𝑁 ∩𝑉 [𝜏].

Let P denote a Sylow pro-p-subgroup of 𝐼𝑣 . Recall that there is a map 𝑡𝑝 : 𝐼𝑣 → Z𝑝 since 𝑣 � 𝑝
and let 𝐼 𝑝𝑣 := ker 𝑡𝑝 . Recall that there is also an identification of P with 𝐼𝑣/𝐼

𝑝
𝑣 . Let I 𝑝 denote the set

of isomorphism classes of representations of 𝐼 𝑝𝑣 with open kernel; there is a canonical action on I 𝑝 by
𝐼𝑣/𝐼

𝑝
𝑣 acting by conjugation. For 𝑖 ∈ 𝐼𝑣 , let 𝑐𝑖 denote the conjugation map 𝐼𝑣 → 𝐼𝑣 where 𝑥 ↦→ 𝑖𝑥𝑖−1,

and abusing notation, we let 𝑐𝑖 also denote restrictions of 𝑐𝑖 to certain subgroups of 𝐼𝑣 .
Let I 𝑝

0 denote the subset of elements of I 𝑝 with open stabilizer in 𝐼𝑣/𝐼
𝑝
𝑣 . For 𝜂 ∈ I 𝑝

0 , set
𝐼 𝜂 = Stab𝐼𝑣 (𝜂) = {𝑖 ∈ 𝐼𝑣 : 𝜂 ◦ 𝑐𝑖 � 𝜂}, which is open in 𝐼𝑣 . Additionally, fix a choice of topo-
logical generator 𝑔𝜂 of 𝑃 ∩ 𝐼 𝜂 such that 𝐼 𝜂 = 〈𝐼 𝑝𝑣 , 𝑔𝜂〉. Note that 𝑔𝜂 has pro-p-order and can be chosen
so that 𝑔𝜂◦𝑐𝑔 = 𝑔𝜂 for all 𝑔 ∈ 𝑃.

Lemma 8.6. If 𝜂 ∈ I 𝑝
0 , there exists an irreducible representation 𝜂 of 𝐼 𝜂 with open kernel such that

𝜂 |𝐼 𝑝
𝑣
� 𝜂.

Proof. Since 𝜂 ∈ I 𝑝
0 , we have that 𝐼 𝑝𝑣 /ker(𝜂) is finite order, and conjugation by 𝑔𝜂 induces an automor-

phism of the quotient. This automorphism must have finite order as well, and since 𝑔𝜂 has pro-p-order in
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𝐼𝑣 , conjugating by g must have p-power order as an automorphism of 𝐼 𝑝𝑣 /ker(𝜂). This implies that there
is some nonnegative integer n such that 𝑔𝑝𝑛

𝜂 centralizes 𝐼 𝑝𝑣 /ker(𝜂). Let 𝐴𝑔𝜂 be an invertible matrix such
that 𝜂◦𝑐𝑔𝜂 = 𝐴𝑔𝜂 ◦𝜂◦ 𝐴

−1
𝑔𝜂

. Then 𝐴𝑝𝑛

𝑔𝜂
centralizes 𝜂 and therefore must be a scalar since 𝜂 is irreducible;

thus, we may suppose that 𝐴𝑝𝑛

𝑔𝜂
= 1. We can then define the representation 𝜂 : 𝐼 𝜂 → GLdim 𝜂 (Q𝑝)

sending

𝑖0𝑔
𝑘
𝜂 ↦→ 𝜂(𝑖0)𝐴

𝑘
𝑔𝜂

, where 𝑖0 ∈ 𝐼 𝑝𝑣 .

Furthermore, since 𝜂 is irreducible, 𝜂 is also irreducible. �

For each 𝜂 ∈ I 𝑝
0 , choose once and for all a lift 𝜂 to 𝐼 𝜂 such that �𝜂 ◦ 𝑐𝑔 = 𝜂 ◦ 𝑐𝑔 for all 𝑔 ∈ 𝑃. If

𝜂 ∈ I 𝑝
0 and 𝜒 is a character of 𝐼 𝜂 with open kernel containing 𝐼 𝑝𝑣 , set 𝜃𝜂,𝜒 := Ind𝐼𝑣

𝐼 𝜂 (𝜂 ⊗ 𝜒).

Lemma 8.7. If 𝜂 ∈ I 𝑝
0 and 𝜒 is a character of 𝐼 𝜂 with open kernel containing 𝐼 𝑝𝑣 , then

1. 𝜃𝜂,𝜒 is irreducible and 𝜃𝜂,𝜒

��
𝐼 𝜂 �

⊕
[𝑖 ] ∈𝐼𝑣/𝐼 𝜂

𝜂 ◦ 𝑐𝑖 ⊗ 𝜒.

2. 𝜃𝜂,𝜒 � 𝜃𝜂′,𝜒′ if and only if 𝜒 = 𝜒′ and 𝜂′ � 𝜂 ◦ 𝑐𝑖 for some 𝑖 ∈ 𝐼𝑣 .
3. Every irreducible representation of 𝐼𝑣 with open kernel arises in this way.

Proof. 1. For any character 𝜒 : 𝐼 𝜂 → Q
×

𝑝 with open kernel containing 𝐼 𝑝𝑣 , 𝜂⊗ 𝜒 is irreducible since 𝜂 is.
Thus, we can prove that 𝜃𝜂,𝜒 is irreducible using Mackey’s Criterion. Consider some element 𝑖 ∈ 𝐼𝑣 \ 𝐼

𝜂 .
We want to show that 𝜃𝜂,𝜒 and 𝜃𝜂,𝜒 ◦ 𝑐𝑖 are disjoint representations of 𝐼 𝜂 (i.e., have no irreducible
component in common). It is enough to see that they are disjoint on 𝐼 𝑝𝑣 . Since 𝜃𝜂,𝜒 ◦ id

��
𝐼
𝑝
𝑣

= 𝜂 and
𝜃𝜂,𝜒 ◦ 𝑐𝑖

��
𝐼
𝑝
𝑣
= 𝜂 ◦ 𝑐𝑖 for 𝑖 ∉ 𝐼 𝜂 , these are not isomorphic irreducible representations; thus, they must be

disjoint. The second part follows from Frobenius reciprocity and the definition of 𝜃𝜂,𝜒 as an induced
representation from the stabilizer of 𝜂 in 𝐼𝑣 to 𝐼𝑣 .

2. Next, we prove that 𝜃𝜂,𝜒 and 𝜃𝜂′,𝜒′ are isomorphic if and only if for some 𝑖 ∈ 𝐼𝑣 , 𝜂 � 𝜂′ ◦ 𝑐𝑖 and
𝜒 = 𝜒′. One direction follows from the first part of the lemma. To prove the converse, assume 𝜃𝜂,𝜒 and
𝜃𝜂′,𝜒′ are isomorphic. Restricting to 𝐼 𝑝𝑣 , we have⊕

[𝑖 ] ∈𝐼𝑣/𝐼 𝜂

𝜂 ◦ 𝑐𝑖 � 𝜃𝜂,𝜒

��
𝐼
𝑝
𝑣
� 𝜃𝜂′,𝜒′

��
𝐼
𝑝
𝑣
�

⊕
[𝑖 ] ∈𝐼𝑣/𝐼 𝜂

′

𝜂′ ◦ 𝑐𝑖 .

Thus, 𝜂 � 𝜂′ ◦ 𝑐𝑖 for some [𝑖] ∈ 𝐼𝑣/𝐼
𝑝
𝑣 . This further implies 𝐼 𝜂 � 𝐼 𝜂

′ , where the isomorphism is given
by conjugation by i since for any element 𝑔 ∈ 𝐼 𝜂 ,

𝜂′ ◦ 𝑐𝑖𝑔𝑖−1 � 𝜂 ◦ 𝑐𝑖𝑔 � 𝜂 ◦ 𝑐𝑖 � 𝜂′.

In fact, since 𝐼𝑣/𝐼
𝑝
𝑣 is abelian, we have proven that 𝐼 𝜂 = 𝐼 𝜂

′ .
It remains to show that 𝜒 � 𝜒′. By Frobenius reciprocity,

Hom𝐼𝑣 (𝜃𝜂,𝜒′ , 𝜃𝜂,𝜒) = Hom𝐼 𝜂 (𝜂 ⊗ 𝜒′,
⊕

[𝑖 ] ∈𝐼𝑣/𝐼 𝜂

𝜂 ◦ 𝑐𝑖 ⊗ 𝜒).

Since 𝜂 ◦ 𝑐𝑖 ⊗ 𝜒 is irreducible, it remains to check that 𝜂 ⊗ 𝜒 � 𝜂 as representations of 𝐼 𝜂 for nontrivial
𝜒. Let 𝜒(𝑔𝜂) = 𝜆𝑔𝜂 , and note that if 𝜂(𝑔𝜂) = (𝜂⊗ 𝜒) (𝑔𝜂) = 𝜆𝑔𝜂𝜂(𝑔𝜂), then either 𝜆𝑔𝜂 = 1 or tr(𝜂(𝑔𝜂))

is zero; however, since 𝜂 is irreducible, for any ℎ ∈ 𝐼 𝑝𝑣 , we have 𝜂(𝑔𝜂ℎ) = 𝜆𝑔𝜂𝜂(𝑔𝜂ℎ), and for some
h, tr(𝜂(𝑔𝜂ℎ)) ≠ 0. Thus, tr(𝜂(𝑔𝜂)) ≠ 0, and so we must have that 𝜆𝑔𝜂 = 1. Thus, we conclude that
𝜃𝜂,𝜒 ≠ 𝜃𝜂′,𝜒′ when 𝜒 ≠ 𝜒′ or 𝜂 and 𝜂′ are not in the same orbit of I 𝑝

0 under the action of 𝐼𝑣/𝐼
𝑝
𝑣 (or

equivalently, 𝐼𝑣/𝐼 𝜂).
3. Finally, we show that any irreducible (finite-dimensional) representation of 𝐼𝑣 arises as 𝜃𝜂,𝜒 for

some 𝜂 and 𝜒. Let 𝜃 : 𝐼 → GL(𝑉) be an irreducible representation, and restrict to 𝐼 𝑝𝑣 . Let ⊕𝜂∈I𝑝
0
𝑉 [𝜂]
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denote the decomposition of 𝜃 |𝐼 𝑝
𝑣

into its isotypic components. For each 𝜂, 𝐼 𝜂 = Stab𝐼 (𝜂) acts on
𝑉 [𝜂], and furthermore, each 𝑖 ∈ 𝐼 induces an identification of 𝑉 [𝜂] and 𝑉 [𝜂 ◦ 𝑐𝑖]. This implies that
Ind𝐼

𝐼 𝜂 𝑉 [𝜂] � 𝑉 , and thus as a representation of 𝐼 𝜂 , 𝑉 [𝜂] is irreducible. There is an isomorphism as
Q𝑝-vector spaces,

Hom𝐼
𝑝
𝑣
( 𝜂 |𝐼 𝑝

𝑣
, 𝑉 [𝜂] |𝐼 𝑝

𝑣
) ⊗ 𝜂

∼
−→ 𝑉 [𝜂] . (8.1)

The space Hom𝐼
𝑝
𝑣
( 𝜂 |𝐼 𝑝

𝑣
, 𝑉 [𝜂] |𝐼 𝑝

𝑣
) has an action of 𝑖 ∈ 𝐼 𝜂 by conjugation, and 𝐼 𝑝𝑣 acts triv-

ially. With this action, (8.1) is indeed an isomorphism of 𝐼 𝜂-representations. However, since 𝑉 [𝜂]
is irreducible, Hom𝐼

𝑝
𝑣
( 𝜂 |𝐼 𝑝

𝑣
, 𝑉 [𝜂] |𝐼 𝑝

𝑣
) must be irreducible over 𝐼 𝜂/𝐼 𝑝𝑣 , which is abelian. Letting

𝜒 = Hom𝐼
𝑝
𝑣
( 𝜂 |𝐼 𝑝

𝑣
, 𝑉 [𝜂] |𝐼 𝑝

𝑣
), we conclude that 𝜃 = 𝜃𝜂,𝜒. �

We now consider a more useful version of Definition 8.3 to all representations of 𝐼𝑣 with open kernel
and commuting nilpotent endomorphism.

Proposition 8.8. If (𝜎,𝑉, 𝑁) and (𝜎′, 𝑉 ′, 𝑁 ′) are two Weil-Deligne representations, then (𝜎,𝑉, 𝑁) ≺𝐼
(𝜎′, 𝑉 ′, 𝑁) if and only if 𝜎 |𝐼𝑣 � 𝜎′ |𝐼𝑣 and

dim(ker(𝑁 𝑗 ) ∩𝑉 [𝜃𝜂,𝜒]) ≥ dim(ker(𝑁 ′ 𝑗 ) ∩𝑉 ′ [𝜃𝜂,𝜒])

for all 𝑗 ∈ Z>0, 𝜂 ∈ I 𝑝
0 , and 𝜒 a character of 𝐼 𝜂/𝐼 𝑝𝑣 with open kernel.

Proof. Note that for any 𝜃 ∈ I, the conjugacy class of 𝑁 [𝜃] (resp. 𝑁 ′ [𝜃]) is determined by the partition
of dim(𝜎[𝜃])/dim(𝜃) (resp. dim(𝜎′ [𝜃])/dim(𝜃)) given by (𝑛𝑖, 𝜃 (𝜎, 𝑁))𝑖≥1 (resp. (𝑛𝑖, 𝜃 (𝜎′, 𝑁 ′))𝑖≥1).
The condition

𝑛1, 𝜃 (𝜎, 𝑁) + . . . + 𝑛𝑖, 𝜃 (𝜎, 𝑁) ≤ 𝑛1, 𝜃 (𝜎
′, 𝑁 ′) + . . . + 𝑛𝑖, 𝜃 (𝜎

′, 𝑁 ′) ∀𝑖 ≥ 1

is equivalent to the condition

rk 𝑁 [𝜃] 𝑗 ≤ rk(𝑁 ′ [𝜃]) 𝑗 ∀ 𝑗 ≥ 0.

Since we require 𝜎 |𝐼𝑣 � 𝜎′|𝐼𝑣 in both definitions, we have that their dimensions are equal; thus,
rk 𝑁 [𝜃] 𝑗 ≤ rk(𝑁 ′ [𝜃]) 𝑗 is equivalent to

dim ker 𝑁 [𝜃] 𝑗 ≥ dim ker 𝑁 ′ [𝜃] 𝑗 .

By Lemma 8.7, we know that all 𝜃 ∈ I are of the form 𝜃𝜂,𝜒 where 𝜂 ∈ I 𝑝
0 and 𝜒 is a character of 𝐼 𝜂

with open kernel containing 𝐼 𝑝𝑣 , and so we are done. �

Furthermore, given 𝑗 ∈ Z>0, 𝜂 ∈ I 𝑝
0 , and 𝜒 a character of 𝐼 𝜂/𝐼 𝑝𝑣 with open kernel, then using the

fact that dim ker 𝑁 = [𝐼 : 𝐼 𝜂] dim ker𝑁 | 𝜃𝜂,𝜒 [ �̃�⊗𝜒] (coming from the Lemma 8.7(1)), we can conclude

dim(ker 𝑁 𝑗 ∩𝑉 [𝜃𝜂,𝜒]) ≥ dim(ker 𝑁 ′ 𝑗 ∩𝑉 ′ [𝜃𝜂,𝜒])

⇔ dim(ker 𝑁 𝑗 ∩𝑉 [𝜂 ⊗ 𝜒]) ≥ dim(ker 𝑁 ′ 𝑗 ∩𝑉 ′[𝜂 ⊗ 𝜒]).

If 𝜂 denotes a representation of 𝐼 𝑝𝑣 with open kernel and 𝑓 : 𝐼 𝑝𝑣 → Q𝑝 is a locally constant function,
then let 𝜂( 𝑓 ) :=

∫
𝐼
𝑝
𝑣

𝑓 (𝑖)𝜂(𝑖)𝑑𝑖, where 𝑑𝑖 denotes the Haar measure on 𝐼 𝑝𝑣 (normalized so that vol(𝐼 𝑝𝑣 )
= 1). Since 𝐼 𝑝𝑣 is compact, this integral is in fact a finite sum. Recall that for each 𝜂, we fixed a choice
of topological generator 𝑔𝜂 of 𝑃 ∩ 𝐼 𝜂 such that 𝐼 𝜂 = 〈𝐼 𝑝𝑣 , 𝑔𝜂〉. The following lemma describes the
existence of projection operators for representations of 𝐼 𝑝𝑣 and the relationship between the image of 𝜂
and 𝜂 (both irreducible).
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Lemma 8.9. If (𝜂,𝑉) and (𝜂′, 𝑉 ′) ∈ I 𝑝
0 , then

1. There exists a locally constant function 𝜖𝜂 : 𝐼 𝑝𝑣 → Q𝑝 sending 𝑖 ↦→ tr(𝜂∨ (𝑖))
dim 𝜂 (where 𝜂∨ denotes the

dual representation) such that 𝜂(𝜖𝜂) = 1, but 𝜂′(𝜖𝜂) = 0 for all 𝜂′ � 𝜂.
2. There exists a locally constant function 𝑎𝜂 : 𝐼 𝑝𝑣 → Q𝑝 such that 𝜂(𝑔𝜂) = 𝜂(𝑎𝜂), but 𝜂′(𝑎𝜂) = 0 if

𝜂 � 𝜂′.

Proof. The first part is clear. As for the second part, since 𝜂 has open kernel, there is a finite quotient
𝐼𝑣𝑝/ker(𝜂) through which it factors. Furthermore, 𝜂 is irreducible, and thus the matrix 𝜂(𝑔𝜂) ∈ Hom(𝑉)
can be written as a sum

∑
𝑔∈𝐼 𝑣𝑝 /ker(𝜂) 𝑎𝜂,𝑔𝜂(𝑔). Define 𝑎𝜂 by sending 𝑔 ↦→ 𝑎𝜂,𝑔. By orthogonality, we

have that 𝜂′(𝑎𝜂) = 0 for 𝜂′ � 𝜂. Recall that the Peter-Weyl theorem gives an isomorphism

Hom(𝐼𝑣𝑝/ker(𝜂),Q𝑝)
∼
−→

⊕
(𝑟 ,𝑉 ) ∈Irr(𝐼 𝑣𝑝 /ker(𝜂))

End
Q𝑝
(𝑉),

and thus 𝑎𝜂 pulls back to a locally constant function of 𝐼 𝑝𝑣 . �

For each 𝜂 ∈ I 𝑝
0 , fix a choice of 𝜖𝜂 and 𝑎𝜂 as described in Lemma 8.9. If (𝜎,𝑉, 𝑁) (resp. (𝜎′, 𝑉 ′, 𝑁 ′))

uniquely determine (local) Galois representations 𝜌𝑣 (resp. 𝜌′𝑣 ) of 𝐺𝐹𝑣 acting on the same underlying
vector space V (resp. 𝑉 ′), then recall that the defining relation between 𝜌𝑣 and (𝜎,𝑉, 𝑁) is

𝜌𝑣 (𝑖) = 𝜎(𝑖) exp(𝑡𝑝 (𝑖)𝑁) for 𝑖 ∈ 𝐼𝑣 .

If 𝑖 ∈ 𝐼𝑣 is an element such that 𝑡𝑝 (𝑔) is nonzero, then we can write log(𝜎(𝑖)−1𝜌𝑣 (𝑖)) = 𝑡𝑝 (𝑖)𝑁 .
Additionally, for all positive j, rk(𝑡𝑝 (𝑖)𝑁) 𝑗 = rk 𝑁 𝑗 , and for any unipotent matrix U, rk(log𝑈) 𝑗 =
rk(𝑈 − 1) 𝑗 . Thus,

rk
(
𝜎(𝑔)−1𝜌𝑣 (𝑔) − id

) 𝑗
= rk 𝑁 𝑗 .

This implies that

rk(𝑁 |𝑉 [ �̃�⊗𝜒] ) 𝑗 = rk( (𝜌𝑣 (𝑔𝜂) − 𝜎(𝑔𝜂))
𝑗
��
𝑉 [ �̃�⊗𝜒] ),

and we have that (𝜎, 𝑁) ≺𝐼 (𝜎
′, 𝑁 ′) if and only if 𝜎 |𝐼𝑣 � 𝜎′|𝐼𝑣 and for all 𝑗 ∈ Z>0, 𝜂 ∈ I 𝑝

0 , and 𝜒 a
character of 𝐼 𝜂/𝐼 𝑝𝑣 with open kernel,

dim(ker (𝜌(𝑔𝜂) − 𝜎(𝑔𝜂))
𝑗
��
𝑉 [ �̃�⊗𝜒] ) ≥ dim(ker (𝜌′(𝑔𝜂) − 𝜎′(𝑔𝜂))

𝑗
��
𝑉 ′ [ �̃�⊗𝜒] ). (8.2)

Additionally, since ker (𝜌(𝑔𝜂) − 𝜎(𝑔𝜂))
𝑗
��
𝑉 [ �̃�⊗𝜒] = ker(𝜌(𝑔𝜂) − 𝜌(𝑎𝜂)𝜒(𝑔𝜂))

𝑗 , we can then conclude
the following:

Lemma 8.10. If (𝜌,𝑉), (𝜌,𝑉 ′) are two continuous m-dimensional representations of 𝐼𝑣 (arising from
continuous 𝐺𝐹𝑣 -representations), then (𝜎𝜌, 𝑁) ≺𝐼 (𝜎𝜌′ , 𝑁

′) if and only if 𝜌 |𝐼 𝑝
𝑣
� 𝜌′|𝐼 𝑝

𝑣
and

∧𝑘 (𝜌′(𝑔𝜂) − 𝜌′(𝑎𝜂)𝜁)
𝑗 = 0⇒ ∧𝑘 (𝜌(𝑔𝜂) − 𝜌(𝑎𝜂)𝜁)

𝑗 = 0 (8.3)

for all 𝑗 , 𝑘 ∈ Z>0, 𝜂 ∈ I 𝑝
0 , and p-power root of unity 𝜁 .

Proof. This follows from (8.2) and the fact that for any 𝐴 ∈ End(𝑉), dim ker 𝐴 = dim𝑉 + 1 −min{𝑘 ∈
Z>0 : ∧𝑘𝐴 = 0}. �

Suppose 𝜌′𝑣 is a local p-adic 𝐺𝐹𝑣 -Galois representation of dimension m, and 𝜌 is a semisimple
continuous m-dimensional global Galois representations of 𝐺𝐹 ⊃ 𝐼𝑣 . Then ∧𝑘 𝜌 is also semisimple,
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and WD( 𝜌 |𝐺𝐹𝑣
)Frob−𝑠𝑠 ≺𝐼 WD(𝜌′𝑣 )Frob−𝑠𝑠 if and only if for all 𝑗 , 𝑘 ∈ Z>0, 𝜂 ∈ I 𝑝

0 , 𝜁 a p-power root
of unity,

∧𝑘 (𝜌′(𝑔𝜂) − 𝜌′(𝑎𝜂)𝜁)
𝑗 = 0 ⇒ tr(∧𝑘 (𝜌(𝑔𝜂) − 𝜌(𝑎𝜂)𝜁)

𝑗 𝜌(𝜏)) = 0 ∀𝜏 ∈ 𝐺𝐹

because trace is a non-degenerate bilinear form on the image of semisimple representation. For any 𝜌,
we can extend it by linearity to 𝜌 : Q𝑝 [𝐺𝐹 ] → GL(𝑉), and let 𝑏𝜂,𝜁 := 𝑔𝜂 − 𝜁 · 𝑎𝜂 ∈ Q𝑝 [𝐺𝐹 ]. Then
WD(𝜌)Frob−𝑠𝑠 ≺𝐼 WD(𝜌′)Frob−𝑠𝑠 if and only if for all 𝑘, 𝑗 ∈ Z>0, 𝜂 ∈ I 𝑝

0 , and p-power roots of unity 𝜁 ,

∧𝑘 (𝜌′(𝑔𝜂) − 𝜌′(𝑎𝜂)𝜁)
𝑗 = 0 ⇒ tr∧𝑘 𝜌(𝑏

𝑗
𝜂,𝜁 𝜏) = 0 ∀𝜏 ∈ 𝐺𝐹 . (8.4)

Now, if T denotes a 2𝑛-dimensional continuous pseudocharacter of 𝐺𝐹 , then by extending linearly
and using the recursive formula for a matrix A, tr∧𝑘𝐴 = 1

𝑘

∑𝑘
𝑚=1(−1)𝑚−1 tr(𝐴𝑚) tr∧𝑘−𝑚(𝐴), we can

define

∧𝑘𝑇 : Q𝑝 [𝐺𝐹 ] → Q𝑝 by 𝑔 ↦→
1
𝑘

𝑘∑
𝑚=1
(−1)𝑚−1𝑇 (𝑔𝑚) ∧𝑘−𝑚 𝑇 (𝑔)

for 𝑘 ≤ 2𝑛. In the sequel, we will be interested in whether the following function

𝐵
𝑘, 𝑗
𝜂,𝜁 (𝑇) : 𝐺𝐹 → Q𝑝 𝜏 ↦→ ∧𝑘𝑇 (𝑏

𝑗
𝜂,𝜁 𝜏)

is identically zero.

8.1. Proof of ≺

In this section, we prove Proposition 8.1.

Proof. Fix ℓ ∈ 𝑆spl and let 𝑣 | ℓ be a prime of F in Sspl�S𝑐
spl. We have already seen that for Π satisfying

the hypothesis of the proposition,

WD( 𝑅𝑝,𝚤 (Π)
��
𝑊𝐹𝑣
)𝑠𝑠 � rec𝐹𝑣 (BC(Πℓ)𝑣 | det | (1−2𝑛)/2

𝑣 )𝑠𝑠 .

By Lemma 8.4, it therefore remains to show that

WD( 𝑅𝑝,𝚤 (Π)
��
𝑊𝐹𝑣
)Frob−𝑠𝑠 ≺𝐼 rec𝐹𝑣 (BC(Πℓ)𝑣 | det | (1−2𝑛)/2

𝑣 ).

For ease of notation, let the p-adic local Galois representation associated to the Frobenius semisimple
Weil-Deligne representation rec𝐹𝑣 (BC(Πℓ)𝑣 | det | (1−2𝑛)/2

𝑣 ) be denoted 𝜌rec
Π,𝑣 . We want to show that for

all 𝜂 ∈ I 𝑝
0 , p-power roots of unity 𝜁 , and 𝑗 , 𝑘 ∈ Z>0,

∧𝑘 𝜌rec
Π,𝑣 (𝑏

𝑗
𝜂,𝜁 ) = 0 ⇒ ∧𝑘𝑅𝑝,𝚤 (Π) (𝑏

𝑗
𝜂,𝜁 ) = 0.

Recall from (7.3) that for 𝑇Π := 𝜑Π ◦ 𝑇 constructed in the proof of Proposition 7.1, there is a function
𝐵
𝑘, 𝑗
𝜂,𝜁 for each 𝑗 , 𝑘 ∈ Z>0, 𝜂 ∈ I 𝑝

0 , and p-power root of unity 𝜁 such that

𝐵
𝑘, 𝑗
𝜂,𝜁 (𝑇Π) (𝜏) = tr∧𝑘 (𝑟𝑝,𝚤 (Π) (𝜖𝜂𝑔𝜂) − 𝑅𝑝,𝚤 (Π) (𝑎𝜂)𝜁)

𝑗𝑅𝑝,𝚤 (Π) (𝜏).

By (8.4), we want to show that

∧𝑘
(
𝜌rec
Π,𝑣 (𝑔𝜂) − 𝜁 · 𝜌rec

Π,𝑣 (𝑎𝜂)
) 𝑗

= 0 ⇒ 𝐵
𝑘, 𝑗
𝜂,𝜁 (𝑇Π) = 0.
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Let B𝑣 denote the Bernstein component containing BC(Πℓ)𝑣 . By Proposition 6.2 in [17], associated
to Π, there exists an idempotent 𝑒Π,B𝑣 inside the Bernstein center 𝔷B𝑣 associated to B𝑣 such that

◦ 𝑒Π,B𝑣 (BC(Πℓ)𝑣 ) ≠ 0
◦ 𝑒Π,B𝑣 (Π0) ≠ 0⇒ rec(Π0) ≺𝐼 rec(BC(Πℓ)𝑣 ) for all irreducible Π0 of GL2𝑛 (𝐹𝑣 ).

If 𝑒Π denotes the image of 𝑒Π,B𝑣 ∈ 𝔷𝔅𝑣
, where 𝔅𝑣 is the disjoint union of Bernstein components

containing B𝑣 defined in Theorem 6.2, let 𝑒Π := 𝑑 (𝑒Π)𝑒Π ∈ 𝔷0
ℓ , and abusing notation, let 𝑒Π also denote

its own image in Hspl
Z𝑝

and End(𝐻0 (Xmin
𝑈 , E sub

𝑈,𝜌𝑏
)) for any 𝑏 ∈ 𝑋∗(𝑇𝑛/Q𝑝

)+cl and any neat open compact
𝑈 =

∏
𝑈ℓ such that 𝑈𝑣 = 𝐾𝔅𝑣

.

Lemma 8.11. Let 𝑏 ∈ 𝑋∗(𝑇𝑛/Q𝑝
)+cl, and let T𝑝

𝑈,𝑏 denote the image in H𝑝
Z𝑝

in

EndZ𝑝 (𝐻
0 (Xmin

𝑈 , E sub
𝑈,𝑏)),

where 𝑈 =
∏

𝑈ℓ and 𝑈ℓ satisfies (6.1) for every ℓ ∈ 𝑆spl. There is a continuous representation
𝑟𝑏 : 𝐺𝑆

𝐹 → GL2𝑛 (T𝑏 ⊗ Q𝑝) described in (7.1) for every 𝑏, and let 𝑇𝑏 = tr 𝑟𝑏 . Assume that 𝜂 ∈ I 𝑝
0 , 𝜁 a

p-power root of unity, and 𝑘, 𝑗 ∈ Z>0 are such that

∧𝑘
(
𝜌rec
Π,𝑣 (𝑔𝜂) − 𝜁 · 𝜌rec

Π,𝑣 (𝑎𝜂)
) 𝑗

= 0.

For each 𝑏, the map 𝑒Π𝐵
𝑘, 𝑗
𝜂,𝜁 (𝑇𝑏) : 𝐺𝑆

𝐹 → T𝑏 is identically zero.

Proof. Recall that T𝑏 � ⊕Π0Q𝑝 , where the sum runs over irreducible admissible representations of
𝐺 (A𝑝,∞ × Z𝑝) with Π𝑈

0 ≠ (0) which occur in 𝐻0(Xmin, E sub
𝑏 ). We will prove that for each Π0, the

composition

𝜑Π0 ◦ 𝑒Π𝐵
𝑘, 𝑗
𝜂,𝜁 (𝑇𝑏) : 𝐺𝑆

𝐹 → T𝑏
𝜑Π0
→ Q𝑝

is zero. Assume 𝑒Π (BC(Π0,ℓ)𝑣 ) ≠ 0 for some Π0 ∈ 𝐻0(Xmin, E sub
𝑏 ). Then rec(BC(Π0,ℓ)𝑣 ) ≺𝐼

rec(BC(Πℓ)𝑣 ), and so by Lemma 8.10, for 𝜂 ∈ I 𝑝
0 ,

∧𝑘
(
𝜌rec
Π,𝑣 (𝜖𝜂𝑔𝜂) − 𝜁 · 𝜌rec

Π,𝑣 (𝑎𝜂)
) 𝑗

= 0⇒ ∧𝑘
(
𝜌rec
Π0 ,𝑣
(𝑔𝜂) − 𝜁 · 𝜌rec

Π0 ,𝑣
(𝑎𝜂)

) 𝑗
= 0.

By Corollary 7.1 and Lemma 8.10, we know this implies that

∧𝑘 (𝑅𝑝,𝚤 (Π0) (𝑔𝜂) − 𝜁 · 𝑅𝑝,𝚤 (Π0) (𝑎𝜂)
) 𝑗 = 0.

Thus, 𝜑Π0 ◦ 𝑒Π𝐵
𝑘, 𝑗
𝜂,𝜁 (𝑇𝑏) = 0. �

Continuing the proof of the proposition, since 𝑇Π is constructed in terms of 𝑇𝑏 , if
𝑒Π (BC(Πℓ)𝑣 )𝐵

𝑘, 𝑗
𝜂,𝜁 (𝑇𝑏) is identically zero for all 𝑏 ∈ 𝑋∗(𝑇𝑛/Q𝑝

)+cl, then 𝑒Π𝐵
𝑘, 𝑗
𝜂,𝜁 (𝑇Π) is also identi-

cally zero. Since 𝑒Π (BC(Πℓ)𝑣 ) ≠ 0, we can conclude that 𝐵𝑘, 𝑗
𝜂,𝜁 (𝑇Π) = 0 if 𝜂 ∈ I 𝑝

0 , 𝜁 a p-power root of
unity, and 𝑘, 𝑗 ∈ Z>0 are such that

∧𝑘
(
𝜌rec
Π,𝑣 (𝑔𝜂) − 𝜁 · 𝜌rec

Π,𝑣 (𝑎𝜂)
) 𝑗

= 0.

This implies that WD( 𝑅𝑝,𝚤 (Π)
��
𝑊𝐹𝑣
)Frob−𝑠𝑠 ≺𝐼 rec𝐹𝑣 (BC(Πℓ)𝑣 | det | (1−2𝑛)/2

𝑣 ). Thus, we conclude

WD( 𝑟𝑝,𝚤 (Π)
��
𝑊𝐹𝑣
)Frob−𝑠𝑠 ≺ rec𝐹𝑣 (BC(Πℓ)𝑣 | det | (1−2𝑛)/2

𝑣 ). �
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Proposition 8.1 in conjunction with Theorem 5.1 then allows us to conclude the following:

Corollary 8.12. Assume that 𝑛 > 1 and that 𝜌 is an irreducible algebraic representation of 𝐿 (𝑛) ,lin
on a finite-dimensional Q𝑝-vector space. Suppose that 𝜋 is a cuspidal automorphic representation of
𝐿 (𝑛) ,lin (A) such that 𝜋∞ has the same infinitesimal character as 𝜌∨. Then, for all sufficiently large
integers M, there is a continuous semisimple representation

𝑅𝑝,𝚤 (𝜋, 𝑀) : 𝐺𝐹 → GL2𝑛 (Q𝑝)

with the following property: if ℓ ≠ 𝑝 is a rational prime in 𝑆spl, then for all primes 𝑣 | ℓ,

WD(𝑅𝑝,𝚤 (𝜋, 𝑀)
��
𝑊𝐹𝑣
)Frob−𝑠𝑠 ≺ rec𝐹𝑣 (𝜋𝑣 | det | (1−𝑛)/2𝑣 ) ⊕ rec𝐹𝑐 𝑣

(𝜋𝑐𝑣 | det | (1−𝑛)/2𝑐𝑣 )∨,𝑐 ⊗ 𝜖1−2𝑛−2𝑀
𝑝 .

Proof. Let Π be an irreducible subquotient of the induced representation Ind𝐺 (A𝑝,∞)

𝑃+
(𝑛)
(A𝑝,∞)

(𝜋∞|| det | |𝑀 ×1)
with the property that at any 𝑣 | ℓ ∈ 𝑆spl,

Π𝑣 = 𝜋𝑣 | det |𝑀 � 𝜋𝑐,∨
𝑣𝑐 | det |−𝑀 .

Then set

𝑅𝑝 (𝜋, 𝑀) = 𝑅𝑝

(
𝚤−1Π

)
⊗ 𝜖−𝑀𝑝 . �

9. Group theory

Let Γ be a topological group, and let𝔉 be a dense set of elements of Γ. Let k be an algebraically closed,
topological field of characteristic 0, and let 𝑑 ∈ Z>0. Let 𝜇 : Γ → 𝑘× be a continuous homomorphism
such that 𝜇( 𝑓 ) has infinite order for all 𝑓 ∈ 𝔉. For 𝑓 ∈ 𝔉, let E1

𝑓 and E2
𝑓 be two d-elements multiset of

elements of 𝑘×. Let M be an infinite subset of Z. For 𝑚 ∈M, suppose that

𝜌𝑚 : Γ→ GL2𝑑 (𝑘)

is a continuous semisimple representation such that for every 𝑓 ∈ 𝔉, the multiset of roots of the
characteristic polynomial of 𝜌𝑚( 𝑓 ) equals

E1
𝑓

⊔
E2
𝑓 𝜇( 𝑓 )

𝑚.

Proposition 9.1 (Proposition 7.12 in [10]). There are continuous semisimple representations

𝜌𝑖 : Γ→ GL𝑑 (𝑘)

for 𝑖 = 1, 2 such that for all 𝑓 ∈ 𝔉, the multiset of roots of the characteristic polynomial of 𝜌𝑖 ( 𝑓 ) equals
E 𝑖
𝑓 .

Theorem 9.2. Suppose that 𝜋 is a cuspidal automorphic representation of GL𝑛 (A𝐹 ) such that 𝜋∞ has
the same infinitesimal character as an algebraic representation of RS𝐹

Q
GL𝑛. Then there is a continuous

semisimple representation

𝑟𝑝,𝚤 (𝜋) : 𝐺𝐹 → GL𝑛 (Q𝑝)

such that if 𝑣 � 𝑝 is a prime of F above a rational prime ℓ satisfying either

1. ℓ is split over 𝐹0, or
2. 𝜋 and F are unramified at all primes above ℓ,
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then

WD(𝑟𝑝,𝚤 (𝜋)
��
𝑊𝐹𝑣
)Frob−𝑠𝑠 ≺ rec𝐹𝑣 (𝜋𝑣 | det | (1−𝑛)/2𝑣 ).

In particular, if 𝜋 and F are unramified at v, then 𝑟𝑝,𝚤 (𝜋) is unramified.

Proof. Assume that 𝑛 > 1. Recall that S contains p and the rational primes that are not split in 𝐹0 but
ramified in F; and let 𝐺𝑆

𝐹 denote the Galois group over F of the maximal extension of F unramified
outside S. Let Γ = 𝐺𝐹,𝑆 , 𝑘 = Q𝑝 , and 𝜇 = 𝜖−2

𝑝 , and let M consist of all sufficiently large integers
m. Choose an irreducible subquotient Π of the induced representation Ind𝐺 (A𝑝,∞)

𝑃+
(𝑛)
(A𝑝,∞)

(𝜋∞|| det | |𝑚 × 1)
satisfying for 𝑣 | ℓ ∈ 𝑆spl,

Π𝑣 = 𝜋𝑣 | det |𝑚 � 𝜋𝑐,∨
𝑣𝑐 | det |−𝑚.

Then we set

𝜌𝑚 = 𝑅𝑝 (𝜋, 𝑚) = 𝑅𝑝

(
𝚤−1Π

)
⊗ 𝜖−𝑚𝑝 𝑚 ∈M

for each v and let 𝑘 (𝑣) denote the residue field of 𝐹𝑣 . Let𝔉 contain all elements 𝜎𝑣 ∈ 𝑊𝐹𝑣 which projects
to a power of Frobenius under the map𝑊𝐹𝑣 → Gal(𝑘 (𝑣)/𝑘 (𝑣)), where 𝑣 ∉ 𝑆′. Denote by 𝜎𝑐𝑣 the image
of 𝜎𝑣 under the isomorphism 𝑊𝐹𝑣 � 𝑊𝐹𝑐 𝑣

induced by conjugation c. Define E1
𝜎𝑣

to be the multiset of
roots of the characteristic polynomial 𝚤−1 rec𝐹𝑣 (𝜋𝑣 | det | (1−𝑛)/2𝑣 ) (𝜎𝑣 ) and E2

𝜎𝑣
equal to the multiset of

roots of the characteristic polynomial of 𝚤−1 rec𝐹𝑐 𝑣
(𝜋𝑐𝑣 | det | (−1+3𝑛)/2

𝑐𝑣 ) (𝜎−1
𝑐𝑣 ). We can then conclude

( 𝑟𝑝,𝚤 (𝜋)
��
𝑊𝐹𝑣
)𝑠𝑠 � 𝚤−1 rec𝐹𝑣 (𝜋𝑣 | det | (1−𝑛)/2𝑣 )𝑠𝑠 . (9.1)

By Proposition 9.1, we have that for a sufficiently large integer M in the sense of Theorem 5.1,

𝑅𝑝 (𝜋, 𝑀) � 𝑟𝑝,𝚤 (𝜋) ⊕ 𝑟𝑝,𝚤 (
𝑐𝜋)𝑐,∨ ⊗ 𝜖1−2𝑛−2𝑀

𝑝 . (9.2)

Now choose a finite order Hecke character 𝜓 on A×𝐹 such that

◦ 𝜓 is unramified at v,
◦ 𝜓 highly ramified at 𝑣𝑐 , and
◦ rec𝐹𝑣 ((𝜋 ⊗ 𝜓)𝑣 | det | (1−𝑛)/2𝑣 ) and rec𝐹𝑣 ((𝜋 ⊗ 𝜓)𝑐𝑣 | det | (1−𝑛)/2𝑐𝑣 )𝑐,∨ have no common irreducible con-

stituents, even after restricting to 𝐼𝑣 .

From (9.2) applied to 𝜋 ⊗ 𝜓 in conjunction with Corollary 8.12, after untwisting, we obtain

WD( 𝑟𝑝, 𝜄 (𝜋 ⊗ 𝜓)
��
𝑊𝐹𝑣
)Frob−𝑠𝑠 ⊕WD( 𝑟𝑝, 𝜄 (𝑐𝜋 ⊗ 𝑐𝜓)𝑐,∨

��
𝑊𝐹𝑣
)Frob−𝑠𝑠

≺ rec𝐹𝑣 ((𝜋 ⊗ 𝜓)𝑣 | det | (1−𝑛)/2𝑣 ) ⊕ rec𝐹𝑐 𝑣
((𝜋 ⊗ 𝜓)𝑐𝑣 | det | (1−𝑛)/2𝑐𝑣 )𝑐,∨.

Additionally, by (9.1),

𝑟𝑝, 𝜄 (𝜋 ⊗ 𝜓)
��
𝑊𝐹𝑣
)𝑠𝑠 � rec𝐹𝑣 ((𝜋 ⊗ 𝜓)𝑣 | det | (1−𝑛)/2𝑣 )𝑠𝑠 .

Since ≺ is defined component-by-component, we can conclude

WD(𝑟𝑝, 𝜄 (𝜋 ⊗ 𝜓)
��
𝑊𝐹𝑣
)Frob−𝑠𝑠 ≺ rec𝐹𝑣 ((𝜋 ⊗ 𝜓)𝑣 ).

Since the relation ≺ is compatible with twisting, we conclude the theorem. �
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Corollary 9.3. Suppose that E is a totally real or CM field and that 𝜋 is a cuspidal automorphic
representation such that 𝜋∞ has the same infinitesimal character as an algebraic representation of
RS𝐸
Q

GL𝑛. Then there is a continuous semisimple representation

𝑟𝑝,𝚤 : 𝐺𝐸 → GL𝑛 (Q𝑝)

such that, if ℓ ≠ 𝑝 is a prime and if 𝑣 | ℓ is a prime of E, then

WD( 𝑟𝑝,𝚤 (𝜋)
��
𝑊𝐸𝑣
)Frob−𝑠𝑠 ≺ rec𝐸𝑣 (𝜋𝑣 | det | (1−𝑛)/2𝑣 ).

Proof. This can be deduced from Theorem 9.2 in conjunction with Lemma 1 of [21] using the same
argument as in Theorem VII.1.9 of [11]. �

Acknowledgments. The author would like to thank Richard Taylor for suggesting this problem and for his invaluable assistance
throughout this project; she would also like to thank Ana Caraiani, Gaetan Chenevier, David Geraghty and Jay Pottharst for
answering questions. The author would like to thank the anonymous referees for their careful suggestions and patience, especially
with the proof of Theorem 9.2.

References

[1] T. Barnet-Lamb, T. Gee, D. Geraghty and R. Taylor, ‘Local-global compatibility for ℓ = p, II’, Ann. Sci. Éc. Norm. Super.
47(1) (2014), 165–179.

[2] T. Barnet-Lamb, D. Geraghty, M. Harris and R. Taylor, ‘A family of Calabi-Yau varieties and potential automorphy II’,
P.R.I.M.S. 47 (2011), 29–98.

[3] J. Bellaiche and G. Chenevier, ‘Families of Galois representations and Selmer groups’, Asterisque 324 (2009).
[4] J. Bernstein and P. Deligne, Le “centre” de Bernstein, Representations of reductive groups over a local field , Travaux en

Cours (1984), 1–32.
[5] J. Bernstein, P. Deligne and D. Kazhdan ‘Trace Paley-Weiner Theorem for reductive 𝑝-adic groups’, J. Analyse Math. 47

(1986) 180–192.
[6] A. Caraiani, ‘Local-global compatibility and the action of monodromy on nearby cycles’, Duke Math. J. 161(12) (2012),

2311–2413.
[7] C. L. Chai and G. Faltings, Degeneration of Abelian Varieties (Springer, 1990).
[8] G. Chenevier, Une application des variétés de Hecke des groupes unitaires, Shimura Varieties (London Math. Soc.

Lecture Note Series) vol. 457 (London Mathematical Society, 2020), 266–296. Preprint available at http://gaetan.
chenevier.perso.math.cnrs.fr/articles/famgal.pdf.

[9] G. Chenevier and M. Harris ‘Construction of automorphic Galois representations, II’, Camb. J. Math. 1 (2013), 53–73.
[10] M. Harris, K. Lan, R. Taylor and J. Thorne, ‘On the rigid cohomology of certain Shimura varieties’, Res. Math. Sci. 3(37)

(2016).
[11] M. Harris and R. Taylor, ‘The geometry and cohomology of some simple Shimura varieties’, Ann. of Math. (2) 151 (2001).
[12] G. Henniart, ‘Une preuve simple des conjectures de Langlands pour GL(𝑛) sur un corps 𝑝-adique’, Invent. Math. 139(2)

(2000).
[13] K.-W. Lan, ‘Arithmetic compactifications of PEL-type Shimura varieties’, L. M. S. Monographs 36 (2013).
[14] K.-W. Lan, Compactifications of PEL-type Shimura Varieties and Kuga Families with Ordinary Loci (World Scientific

Publishing Co. Pte. Ltd., Hackensack, NJ, 2018). Preprint available at www.math.umn.edu/~kwlan/academic.html.
[15] C. Moeglin and J.-L. Waldspurger, ‘Le spectre résiduel de GL(n)’, Ann. Sci. Éc. Norm. Super. 22 (1989), 605–674.
[16] R. Pink, Arithmetical Compactifications of Mixed Shimura Varieties vol. 209 (Bonner Mathematische Schriften, Bonn, 1990).
[17] P. Schneider and E. W. Zink, ‘𝐾 -types for the tempered components of a 𝑝-adic general linear group’, J. Reine Angew.

Math. 517 (1999), 161–208.
[18] P. Scholze, ‘On torsion in the cohomology of locally symmetric varieties’, Ann. of Math. 182(3) (2015), 945–1066.
[19] S. W. Shin, ‘Galois representations arising from some compact Shimura varieties’, Ann. of Math. 173 (2011), 1645–1741.
[20] S. W. Shin, ‘On the cohomological base change for unitary similitude groups’, Appendix to W. Goldring, ‘Galois represen-

tations associated to holomorphic limits of discrete series I: Unitary Groups’, Compos. Math. 150(2) (2014), 191–228.
[21] C. Sorensen, ‘A patching lemma’, to appear in On the Stabilization of the Trace Formula vol. 2. Preprint available at

http://www.math.ucsd.edu/~csorense/patch.pdf
[22] J. Tate, ‘Number-theoretic background’, in Automorphic Forms, Representations, and 𝐿-functions (Proc. Sympos. Pure

Math.) vol. 33 (American Mathematical Society, 1979), 3–26.
[23] R. Taylor, ‘Galois representations associated to Siegel modular forms of low weight’, Duke Math. J. 63 (1991), 281–322.
[24] R. Taylor and T. Yoshida, ‘Compatibility of local and global Langlands correspondences’, J. Amer. Math. Soc. 20(2) (2007),

467–493.

https://doi.org/10.1017/fms.2024.7 Published online by Cambridge University Press

http://gaetan.chenevier.perso.math.cnrs.fr/articles/famgal.pdf
http://www.math.umn.edu/~kwlan/academic.html
http://www.math.ucsd.edu/~csorense/patch.pdf
https://doi.org/10.1017/fms.2024.7

	1 Introduction
	2 Recollections
	2.1 Unitary group
	2.2 Level structure
	2.3 Shimura variety
	2.4 Ordinary locus
	2.5 Toroidal compactifications

	3 Automorphic bundles
	3.1 Automorphic bundles on compactifications of the Shimura variety
	3.2 Automorphic bundles on the ordinary locus

	4 Classical and p-adic automorphic forms
	4.1 Weights
	4.2 Local base change
	4.3 Cuspidal automorphic representations
	4.4 Global sections of automorphic bundles over the Shimura variety
	4.5 p-adic (cuspidal) G-automorphic forms

	5 The Up-operator and the main theorem of [10]
	6 Hecke algebras away from p
	6.1 At unramified primes
	6.2 At primes which are split in F0

	7 Interpolating the Hecke action
	8 Bounding the monodromy
	8.1 Proof of 

	9 Group theory
	References

