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To get an insight into the dynamics of the oceanic surface boundary layer we develop
an asymptotic model of the nonlinear dynamics of linearly decaying three-dimensional
long-wave perturbations in weakly stratified boundary-layer flows. Although in nature the
free-surface boundary layers in the ocean are often weakly stratified due to solar radiation
and air entrainment caused by wave breaking, weak stratification has been invariably
ignored. Here, we consider an idealized hydrodynamic model, where finite-amplitude
three-dimensional perturbations propagate in a horizontally uniform unidirectional weakly
stratified shear flow confined to a boundary layer adjacent to the water surface.
Perturbations satisfy the no-stress boundary condition at the surface. They are assumed
to be long compared with the boundary-layer thickness. Such perturbations have not been
studied even in a linear setting. By exploiting the assumed smallness of nonlinearity,
wavenumber, viscosity and the Richardson number, on applying triple-deck asymptotic
scheme and multiple-scale expansion, we derive in the distinguished limit a novel
essentially two-dimensional nonlinear evolution equation, which is the main result of the
work. The equation represents a generalization of the two-dimensional Benjamin–Ono
equation modified by the explicit account of viscous effects and new dispersion due
to weak stratification. It describes perturbation dependence on horizontal coordinates
and time, while its vertical structure, to leading order, is given by an explicit analytical
solution of the linear boundary value problem. It shows the principal importance of weak
stratification for three-dimensional perturbations.
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1. Introduction

The ubiquitous free-surface boundary layers in nature are of great importance, primarily in
the contexts of mixing, heat/gas transfer, biological activity in the uppermost layer of the
ocean and for pollutant dispersion and transport (e.g. Soloviev & Lukas 2013). Dynamics
of such boundary layers is usually modelled employing the constant stress boundary
condition at the fluid surface, that yields the no-stress condition for perturbations.
Free-surface boundary layers were studied experimentally in wind-wave laboratory
facilities (e.g. Dupont & Caulliez 1993) and small-scale natural reservoirs. Although
oceanic free-surface boundary layers are, as a rule, turbulent, the turbulence is most often
modelled by using scalar eddy viscosity, either depth dependent or constant. Very often
these boundary layers are density stratified because of direct solar heating or/and air bubble
entrainment caused by breaking wind waves (e.g. Terrill, Melville & Stramski 2001;
Grimshaw et al. 2010; Soloviev & Lukas 2013). Here, we examine the nonlinear dynamics
of no-stress boundary layers in very common, but completely overlooked situations of
weak density stratification. Even the linear dynamics of such motions has not been studied
yet.

As a possible route to mixing in linearly stable free-surface boundary layers we are
primarily interested in the nonlinear dynamics of essentially three-dimensional (3-D)
long-wave perturbations which are decaying in the linear setting. There were no studies
of the nonlinear dynamics in weakly stratified boundary layers. Here, we address this gap
and show the principal importance of accounting for even very weak stratification for
3-D perturbations. For strongly stratified boundary layers in an ideal fluid, the models
describing the weakly nonlinear one-dimensional dynamics of long-wave perturbations
have been known for more than four decades: Maslowe & Redekopp (1980) derived the
one-dimensional Benjamin–Ono equation for perturbations of a thin strongly stratified
layer modified by the account of weak stratification in the bulk of the fluid. Most of the
studies of stratified shear flows are concerned with either internal gravity waves of larger
scales penetrating the entire water column and usually described by the Korteweg–de Vries
(KdV)-type equations (e.g. Apel et al. 2007) or linear stability analysis of parallel flows,
primarily in the inviscid setting, see e.g. reviews in Turner (1979), LeBlond & Mysak
(1981) and Carpenter et al. (2011). There is also a separate group of studies of ring
waves with and without shear and their generalizations (see e.g. Tseluiko et al. (2023) and
references therein). However, as we show below, by ignoring weakly stratified boundary
layers a number of interesting and important phenomena have been overlooked.

There is also a corpus of works concerned with non-stratified zero-stress boundary
layers which is nevertheless highly relevant for the present study. Consideration of
essentially 3-D nonlinear long-wave perturbations in the no-stress boundary layers was
originated in Shrira (1989) in the context of upper ocean. To describe weakly nonlinear
evolution of such perturbations in the horizontally uniform boundary layer adjacent to the
ocean surface an essentially two-dimensional (2-D) generalization of the Benjamin–Ono
(2-D-BO) equation was derived. This equation describes evolution of horizontal spatial
structure of perturbations. The dependence of the perturbations on the vertical coordinate
splits off and is determined, to leading order, by the corresponding linear boundary
value problem. The key assumptions in the asymptotic derivation are the smallness
of nonlinearity characterized by a nonlinearity parameter ε (ε � 1) and the balancing
weakness of dispersion due to O(ε) smallness of the characteristic wavenumber compared
with the inverse of the boundary-layer thickness. A perturbation of comparable streamwise
and spanwise scales represents a broadband packet of ‘vorticity waves’. In the absence of
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instability and nonlinearity such a packet is dispersing and decaying. However, the account
of nonlinearity radically changes the picture: D’yachenko & Kuznetsov (1995) showed that
within the framework of the 2-D-BO equation initially localized 2-D perturbations can
become infinite in finite time evolving into a point singularity.

A more refined derivation of the 2-D-BO equation and its generalization for the finite
depth fluid with arbitrary density stratification outside the homogeneous boundary layer
was carried out in Voronovich, Shrira & Stepanyants (1998). In the original derivation of
the 2-D-BO equation in Shrira (1989) for the ideal fluid there is a non-uniformity in the
asymptotic expansion: the higher-order terms diverge in the critical layer. At a hand waving
level it was argued that the account of viscosity would eliminate the singularities. This was
indeed elaborated in Voronovich et al. (1998) for the case of no-stress boundary: the range
of Reynolds numbers was chosen in such a way that viscous effects, on the one hand, are
strong enough to eliminate the singularities, while, on the other hand, weak enough not
to contribute into the evolution equation and keep the 2-D-BO equation intact. In Shrira,
Caulliez & Ivonin (2005), a generalization of the 2-D-BO equation was derived to model
laminar–turbulent transition in the accelerating Falkner–Skan boundary layer; on its basis
numerical simulations of the perturbation evolution were carried out and experimental
observations of the laminar–turbulent transition in the wind-driven steady boundary layer
in water were presented and discussed.

In this work we focus on examining main implications of taking into account two new
factors: (i) weak stratification in the boundary layer and (ii) consideration of a wider
range of the Reynolds numbers. The main questions we want to address are whether
the account of weak stratification can change qualitatively the nonlinear dynamics of
3-D long-wave perturbations and, if yes, what these qualitative changes are. We also
aim to clarify the outstanding issue regarding the role of weak dissipative effects both
for the weakly stratified and homogeneous boundary layers: a priori it is not known
whether and when the account of weak dissipation is qualitatively important. It is highly
desirable to have a relatively simple mathematical model systematically and transparently
derived from the Navier–Stokes equations which, on the one hand, would allow substantial
analytical advance, while, on the other hand, could serve as a starting point for direct
numerical simulations further clarifying the fundamental outstanding questions like
laminar–turbulent transition. The novel evolution equation we derive aims to address this
need.

The derivation and study of nonlinear evolution equations describing various physical
phenomena has grown into a field of its own right (e.g. Ablowitz 2011; Saut 2013). Most
of the known nonlinear evolution equations for long waves are derived by balancing weak
nonlinearity and weak dispersion for a particular mode, which for long waves usually leads
to the KdV/Benjamim–Ono-type equations and their generalizations (e.g. Whitham 2011;
Ostrovsky et al. 2015). Here, focusing on a particular example of the shear flow dynamics,
we put forward an approach which combines conventional long-wave-type expansion with
taking into account a weak non-resonant effect of other modes of motion apart from the
one we consider. The key underpinning technical trick is to consider concurrently with
the standard long-wave expansion an asymptotic expansion in powers of a small parameter
characterizing a different physical factor not related to the wavelength scale, and then
focus on the distinguished limit. Here, this physical factor is weak density stratification.
This changes dispersion qualitatively and thus enables us to extend significantly the class
of resulting nonlinear evolution equations, which is of independent interest. In this work
we just indicate and then leave aside numerous possible extensions based upon this idea,
while concentrating on the particular case of a weakly stratified shear flow dynamics.
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The overall picture of dispersion curves of the linear boundary value problem for
stratified boundary layers in the case of large Reynolds numbers and small wavenumbers
is relatively well understood. Apart from the infinite number of internal gravity modes
slightly modified by shear and viscosity, there is also a much less known single ‘vorticity
mode’ perturbed by stratification and viscosity; there are also viscous modes strongly
localized near the boundary. Here, we focus on the nonlinear evolution of the vorticity
mode. In the linear setting the vorticity modes are usually decaying. Although linear
instabilities of such modes are also possible, here, we confine our attention to the nonlinear
dynamics of linearly decaying perturbations.

The scaling we adopt to derive the evolution equation ensures a ‘distinguished limit’:
we balance the effects of weak nonlinearity, weak dispersion independent of stratification,
weak dispersion due to stratification and viscous dissipation. That is, on characterizing
the smallness of nonlinearity by ε (ε � 1), we assume the characteristic streamwise
and spanwise wavevector components both to be O(ε), which ensures weakness of the
stratification independent Benjamin–Ono-type dispersion. We also adopt a particular
scaling of ε in terms of the Reynolds number Re (or an effective Reynolds number
in case of eddy viscosity parameterization of a turbulent boundary layer): ε ∼ Re−1/2.
The presumed weakness of stratification is characterized by the O(ε) smallness of the
Richardson number Ri, where the Richardson number is defined as the squared ratio of the
maximal buoyancy frequency (N) to the maximal shear (|U′|). Although the shear flows
with the Richardson number below 1/4 are often considered to be a priori unstable, the
inequality Ri < 1/4 is just a necessary condition for the linear instability in the inviscid
setting and not a sufficient one (see e.g. Howard 1961; Miles 1961; Turner 1979; LeBlond &
Mysak 1981); in nonlinear inviscid theory the instability criterion Ri < 1 was put forward
by Abarbanel et al. (1984), but the picture is not entirely clear. In our consideration here the
linear instabilities play no role. In our context the weakness of stratification characterized
by the smallness of the Richardson number controls a weakness of a different, and very
peculiar, type of dispersion with frequency not dependent on wavenumber. This new
dispersion affects only 3-D perturbations and, to the best of our knowledge, has not been
reported in the literature.

Starting with the Navier–Stokes equations for an incompressible stratified fluid with
constant viscosity, we, by means of the triple-deck asymptotic scheme, derive a novel
(2 + 1)-dimensional evolution equation governing dependence of the vorticity mode
amplitude on the horizontal coordinates and time. The equation is an essentially 2-D
pseudo-differential nonlinear equation with explicit account of stratification and shear in
the boundary layer

Aτ + AAx − Ĝ1[Ax] − β̃2Ĝ2[Ax] + γ̃A = 0, (1.1)

where A(x, y, τ ) is the amplitude of the streamwise velocity component dependent on the
streamwise and spanwise variables, x, y and time, the non-local operators Ĝ1 and Ĝ2 are

Ĝ1[ϕ(r)] = 1
4π2

∫ +∞

−∞

∫ +∞

−∞
|k|ϕ(r1) exp(−ik(r − r1)) dk dr1, (1.2)

Ĝ2[ψ(r)] = 1
4π2

∫ +∞

−∞

∫ +∞

−∞
ky

2

k2
x
ψ(r1) exp(−ik(r − r1)) dk dr1. (1.3)

Here, r = (x, y), k = (kx, ky) is the wave vector, φ and ψ are arbitrary scalar functions,
operator Ĝ1[ϕ(r)] describes the dispersion in the 2-D-BO equation. Sometimes
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more convenient might be its alternative representation in terms of hypersingular
Cauchy–Hadamard integral

Ĝ1[ϕ(r)] = 1
2π

∫ +∞

−∞

∫ +∞

−∞
ϕ(r1) dr1

|r − r1|3 . (1.4)

Throughout the paper all improper integrals we encounter are understood as the
Hadamard finite-part integrals. Operator Ĝ2[ψ(r)] describes the ‘new’ dispersion due to
weak stratification. The term γ̃A captures the effect of finite Reynolds number describing it
as a Rayleigh-type friction, γ̃ ∼ U′′′(0)/Re∗(U′(0))2 is thus proportional to the curvature
of vorticity U′ at the surface. Hence, for the shear profiles where γ̃ < 0, this term describes
linear instability. However, here, we confine our attention only to the linearly stable
situations, while the linearly unstable ones will be considered elsewhere. Coefficient β̃2 is
determined by the strength of the stratification at the surface and vanishes in the limit of
zero stratification. The corresponding linear dispersion relation in the frame of reference
moving with the water surface reads

ω(k) = −|k| − β̃2
k2

y

k2
x

− iγ̃ . (1.5)

Although the evolution equation depends only on the horizontal coordinates and time,
the model provides the full 3-D picture. The dependence of the perturbations on the
vertical coordinate splits off and is determined, to leading order in ε, by the corresponding
linear boundary value problem. The fact that the evolution equation explicitly takes into
account the viscous linear decay enables us to elucidate its potentially important role in
the evolution.

The paper is organized as follows. In § 2 we formulate the basic equations, introduce the
assumptions and small parameters. In § 3 employing a version of the triple-deck approach
we derive the (2 + 1)-dimensional evolution equation (1.1). The peculiarity of the chosen
scaling is that the dynamics in the critical layer (the lower deck) examined in Appendix A
does not affect the upper decks to leading order. In concluding § 4 we summarize the
main results and discuss open questions. The evolution equation (1.1) is examined in the
companion follow-up work.

2. The model, assumptions, scaling and asymptotic scheme

2.1. Model formulation
We consider the evolution of 3-D localized finite-amplitude perturbations of a steady
parallel unidirectional boundary-layer shear flow U
(z
) adjacent to an infinite horizontal
boundary. Throughout the paper we denote dimensional quantities by superscript stars.
The boundary layer has a weak density stratification N
2(z
) = g
 dρ
0(z


)/dz
/ρ
0(z

),

where N
2 is the buoyancy frequency, g
 is gravitational acceleration, ρ
0 is the reference
density that depends only on the vertical coordinate z
. The full density ρ
 is sum of the
reference density ρ
0(z) and density perturbation ρ̄


ρ
 = ρ
0(z

)+ ρ̄
(x
, y
, z
, t
); |ρ̄
| � ρ
0, (2.1)

the perturbation density ρ̄
 depends on horizontal coordinates x
, y
, vertical coordinate
z
 and time t
. Both the shear and stratification are confined to the boundary layer as
sketched in figure 1. There are no other assumptions regarding the profiles of the shear
and stratification.
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x

y

z

z = 0

z = d

N0 U(0)

N(z)
U(z)

Figure 1. Sketch of geometry of a generic free-surface boundary-layer profile with the shear and stratification
localized in a layer of thickness d. The vertical scales of shear and stratification are assumed be of the same
order as the boundary-layer thickness d. No other assumptions regarding the profiles of shear and stratification
are required. A typical free-surface boundary layer has the maximum of velocity at the surface Umax = U(0).

In the Cartesian frame with the fluid occupying the half-space z
 > 0 and with x

and y
 directed streamwise and spanwise, respectively, the Navier–Stokes equations
complemented by the mass conservation and incompressibility equations take the form

ρ
0[Dt
u
 + w
U
′] + p
x
 = −ρ̄
[Dt
u
 + w
U
′] − ρ
0(u

 · ∇)u
 − ρ̄
(u
 · ∇)u


+μ
∇2u
, (2.2a)

ρ
0Dt
v

 + p
y
 = −ρ̄
Dt
v


 − ρ
0(u

 · ∇)v
 − ρ̄
(u
 · ∇)v
 + μ
∇2v
, (2.2b)

ρ
0Dt
w
 + p
z
 + ρ̄
g
 = −ρ̄
Dt
w
 − ρ
0(u

 · ∇)w
 − ρ̄
(u
 · ∇)w
 + μ
∇2w
,

(2.2c)

Dt
 ρ̄

 + w
ρ
0

′ = K
∇2ρ̄
 − (u
∇)ρ̄
, (2.2d)

∇ · u
 = 0, (2.2e)

where U
 = (U
(z
), 0, 0) is the basic flow localized in the boundary layer, u
 =
(q
,w
) = (u
, v
,w
) and p
 are, respectively, the velocity and pressure perturbations,
Dt
 = ∂t
 + U
∂x
 is the material derivative, μ
 is the dynamic viscosity, while K
 is the
mass diffusivity coefficient, ∇2 stands for the 3-D Laplacian. Here, the prime denotes
the derivatives with respect to z
. When the model is applied to turbulent boundary
layers, viscosity and diffusivity are understood as eddy viscosity and diffusivity and, for
simplicity, assumed to be constant. We impose no restrictions on U
(z
), apart from the
assumption that the flow is plane parallel (non-parallel effects and 3-D boundary layers
will be considered elsewhere). In contrast to the original derivations in Shrira (1989) and
Voronovich et al. (1998), we do not require U
(z
) not to have inflection points.
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The boundary conditions for the perturbations u
 at the undisturbed fluid surface z
 = 0
are: the ‘no-flux’ condition

w
(z
 = 0) = 0, (2.3)

complemented by the no-stress condition

∂u


∂z


∣∣∣∣
z
=0

= ∂v


∂z


∣∣∣∣
z
=0

= 0. (2.4)

The boundary condition at infinity is that of vanishing perturbation velocity

u� → 0, as z
 → ∞. (2.5)

We complete the formulation of our initial problem by specifying the perturbation velocity
field at the initial moment, u
(x
, 0). We are primarily interested in localized initial
perturbations

u�(x�, 0) → 0, as x
, y
 → ∞. (2.6)

The Navier–Stokes equations (2.2) with the initial and boundary conditions (2.5), (2.3)
and (2.4), constitute the mathematical formulation of the problem.

2.2. Scaling
We begin by specifying the scaling. The basic boundary-layer shear flow U
(z
) has a
maximal velocity, usually at the surface, which we denote as V
0 . As a characteristic value
of the buoyancy frequency N
(z
) we take its value N
0 at the surface. If N
(z
 = 0)
vanishes, any other reference point can be chosen. The characteristic streamwise and
spanwise scales of perturbations we denote as L
, while for the vertical scale we choose
the boundary-layer thickness d
. We are considering long perturbations with L
 	 d
. We
non-dimensionalize the variables as follows:

ũ = u


V
0
, ṽ = v


V
0
, w̃ = w


V
0
, x̃ = x


L

,

ỹ = y


L

, z̃ = z


d

, Ũ = U


V
0
, t̃ = V
0

L

t
,

Ñ = N


N
0
, p̃ = p


ρ
0V
0
2 , ρ̃ = ρ


ρ
0
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.7)

where tildes denote non-dimensional quantities. To proceed, we first estimate the
magnitudes of the perturbations from the governing equations (2.2). With tildes omitted
the magnitude of the vertical velocity perturbation [ w ] expressed in terms of the
magnitudes of the horizontal components [ q ],

[ w ] = d


L

[ q ]. (2.8)

The momentum equation (2.2a) yields the characteristic time scale,

[ t ] = L


V
0
. (2.9)

On multiplying mass conservation equation (2.2d) by g
 and dividing it by the reference
density ρ
0, we substitute buoyancy frequency N
2 for (g
/ρ
0)(∂ρ



0/∂z
) using the
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Boussinesq approximation, which yields

g
Dt


(
ρ̄


ρ
0

)
+ w
N
2(z
) = g


ν


Scρ
0
∇2ρ̄
 − g


ρ
0
(u
∇)ρ̄
, (2.10)

where Sc = ν
/K
 is the Schmidt number, the ratio of the kinematic viscosity ν
 = μ
/ρ
0
and mass diffusivity K
.

To proceed we express (2.10) in non-dimensional form and substitute equations (2.8)
and (2.9), to get an estimate characteristic magnitude of density perturbations (tildes and
star dropped) [

ρ̄

ρ0

]
= N2

0d
g

[ q ]
V0
. (2.11)

In the derivation, we employ the Boussinesq approximation, whereby, if not multiplied by
g, we neglect the terms in the equations due to the equilibrium density ρ0 variations. The
Boussinesq approximation holds under the assumption

N2
0

g/d
� [ q ]

V0
, (2.12)

which is valid in most oceanic and atmospheric contexts where the equilibrium density
variations are small. This inequality allows us to drop small nonlinear buoyancy terms. In
nature the parameters of the surface layer of the ocean vary very widely. Still, we provide
a few characteristic values: V
0 ∼ 10−1 m s−1, d
 ∼ 50 m, N0 ∼ 10−4 s−1.

The regimes we study are characterized by four independent non-dimensional
small/large parameters specifying, respectively,

(i) the smallness of nonlinearity: [ q
 ]/V
0 = ε � 1;
(ii) the smallness of characteristic wavenumbers, which we also refer to as the dispersion

parameter: d
/L
 = εD � 1;
(iii) the weakness of the boundary-layer stratification characterized by the Richardson

number: Ri = (N
0d
/V
0)
2 � 1;

(iv) the weakness of dissipative effects: Re−1 = ν
/V
0d
 � 1.

From now on we will be using only the non-dimensional tilde variables (2.7)
omitting the tildes. Under the Boussinesq approximation upon non-dimensionalization the
Navier–Stokes equations (2.2) take the form

Dtu + wU′ + px = −ε(u · ∇)u + 1
Re

[
1
εD
∂zz + εD∇2

⊥

]
u, (2.13a)

Dtv + py = −ε(u · ∇)v + 1
Re

[
1
εD
∂zz + εD∇2

⊥

]
v, (2.13b)

Dtw + 1
εD

pz + εεDRiρ̄ = −ε(u · ∇)w + 1
Re

[
1
εD
∂zz + εD∇2

⊥

]
w, (2.13c)

Dtρ̄ + 1
εD

N2(z)w = εD

Re Sc

[
1
εD
∂zz + εD∇2

⊥

]
ρ̄ − ε(u∇)ρ̄, (2.13d)

∇ · u = 0, (2.13e)

where ∇2
⊥ = ∂2

xx + ∂2
yy.
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After some algebra, upon eliminating pressure from (2.13), we get a single equation for
the vertical component of velocity w

D2
t ∂

2
zzw − U′′Dt∂xw = N − Ri N2∇2

⊥w + (εDRe)−1 Dt∂
4
zzzzw + M, (2.14)

where

N = εDt∂z∇⊥[(u∇)q] − ε2
DD2

t ∇2
⊥w − ε2

DεDt∇2
⊥(u∇)w,

M = Riε∇2
⊥(u∇)ρ̄ + 1

Sc Re
Riε∇2

⊥ρ̄
′′.

⎫⎬
⎭ (2.15)

Note that the equation is closed only in the linear approximation and just the leading-order
viscous and diffusion terms are retained. The contribution of diffusion of mass is
characterized by the inverse Schmidt number. Under assumption Sc ∼ O(1) diffusion of
mass proves to be negligible in our further analysis.

Aiming to describe the dynamics of 3-D perturbations in the boundary layer taking
into account nonlinearity, long-wave dispersion, stratification and viscous effects in the
distinguished limit we set

ε = [ q ]
V0

� 1, εD = d
L

= O(ε), Ri =
(

N0d
V0

)2

= O(ε), Re = O(ε−2).

(2.16a–d)
The adopted scaling can be also expressed in terms of the Reynolds number

ε ∼ Re−1/2, εD ∼ Re−1/2, Ri ∼ Re−1/2. (2.17a–c)

2.3. Asymptotic expansion
To rationalize our choice of asymptotic expansion in powers of ε, it is helpful to consider
first the inviscid non-stratified reduction of the Navier–Stokes equations (2.13) linearized
around the steady profile U(z) with pressure p, the streamwise and transverse perturbation
velocities, u and v, expressed in terms of vertical velocity w (see e.g. Miropol’sky (2001),
(2.58)). For long-wave perturbations such a reduction reads

∂zDtu = −[∂z(wU′)− ∂x(Dtw)], (2.18a)

∂zDtv = ∂y(Dtw), (2.18b)

∂zp = Dtw. (2.18c)

Noting that, under adopted assumptions specifying the wavelength scale of the
perturbations in terms of the nonlinearity parameter, εD = O(ε), we have

∂x ∼ ∂y ∼ O(ε), ∂z ∼ O(1). (2.19a,b)

Since in our scaling U,U′ ∼ O(1), it is easy to see that to leading order the material
derivative Dt = (U − c)∂x ∼ O(ε), where c is an unspecified yet phase velocity of long
perturbations. By virtue of our definition of ε(ε = [u]/V0), u is O(ε). Therefore, upon
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omitting the higher-order terms, the relations (2.18) reduce to

(U − c)∂xu = − wU′︸︷︷︸
O(ε2)

, =⇒ w ∼ O(ε2), (2.20a)

∂z[(U − c)v] = ∂y(U − c)w︸ ︷︷ ︸
O(ε3)

, =⇒ v ∼ O(ε3), (2.20b)

∂zp = (U − c)∂xw︸ ︷︷ ︸
O(ε3)

, =⇒ p ∼ O(ε3). (2.20c)

In addition to the above perturbation velocities scaling, we derive below the scaling of
density from the linearized inviscid reduction of the Navier–Stokes equation. First, it is
straightforward to express perturbation density ρ̄ in terms of vertical velocity w from the
linearized equation (2.10) according to

gDt

(
ρ̄

ρ0

)
= N2w, =⇒ g(U − c)∂xρ̄ = ρ0︸︷︷︸

O(1)

N2w︸︷︷︸
O(ε3)

, ρ̄ ∼ O(ε2). (2.21a,b)

Thus, assuming the streamwise perturbation velocity u to be O(ε) and setting εD = d/L =
O(ε) uniquely dictates the scaling (2.20), (2.10) of all other dependent variables inside
the boundary layer. Taking into account the nonlinear and viscous terms neglected in
this analysis does not affect the found scaling. We note that the above scaling has no
self-consistent alternatives. Therefore, for the full Navier–Stokes equations (2.13) in the
boundary layer we adopt the following asymptotic expansion:

u = U(z)+ εu1 + ε2u2 + ε3u3 + · · · , (2.22a)

w = ε2w2 + ε3w3 + ε4w4 + · · · , (2.22b)

v = ε3v3 + ε4v4 + · · · , (2.22c)

p = ε3p3 + ε4p4 + · · · , (2.22d)

ρ̄ = ε2ρ̄2 + ε3ρ̄3 + · · · , (2.22e)

where ui, vi,wi, pi and ρ̄i are O(1) functions of x, y, z, t. The scaling (2.22) will be
employed only inside the boundary layer, while outside the boundary layer and in the
immediate vicinity of the boundary, in the viscous sub-layer, the scaling is different and
will be specified in the next section.

3. Derivation of the nonlinear evolution equation

3.1. Preliminary consideration. Layout of the triple-deck scheme
In this section we derive the nonlinear evolution equation (1.1) for long-wave 3-D
perturbations employing a version of the ‘triple deck’ asymptotic approach (e.g. Neiland
1969; Stewartson 1969; Messiter 1970; Van Dyke 1975). As is common for this approach,
we distinguish three domains or ‘decks’ in z, with different balance between the terms
in (2.14). The domains are sketched in figure 2. Following the convention the bulk
of the boundary layer is referred to as the ‘main deck’ or ‘middle deck’. There we
balance nonlinearity, dispersion and viscous effects and employ the asymptotic expansion
(2.22). Immediately adjacent to the boundary lies much thinner viscous sub-layer or the
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A novel (2+1)-dimensional nonlinear evolution equation

z = 0

x ~ L

δ � 1

d ~ O(1)

1

2

3

z

x

Viscous sub-layer

Main deck/

main boundary layer

Inviscid outer flow

Figure 2. Sketch of triple-deck structure illustrating three different regions. The first region adjacent to the
boundary is the viscous sub-layer where viscosity dominates, the middle region is the main deck, where
nonlinearity, dispersion, stratification and viscosity are all balanced. The third semi-infinite region is the outer
flow region where the motion is irrotational.

‘first deck’, where viscous terms are dominant, while the nonlinearity is small, but not
negligible. The semi-infinite domain outside the boundary layer, where both viscous and
nonlinear terms are negligible and the flow is potential, is referred to as the ‘outer flow’ or
the ‘third deck’. We adopt this terminology introduced by Stewartson (1969). In contrast
to the widely followed convention we do not a priori scale our variables in terms of powers
of inverse Reynolds number, in our context we prefer to use the scaling in powers of ε. The
derivation largely follows that in Voronovich et al. (1998), with three key differences:

(i) In contrast to Voronovich et al. (1998), the presence of weak stratification in the
boundary layer (‘main deck’) is taken into account; we consider stratification to be
weak and localized inside the boundary layer.

(ii) The Reynolds number here is allowed to be smaller: Re ∼ ε−2, not ∼ ε−3.
(iii) No assumption regarding the absence of inflection points is required.

The rationale for the assumption (iii) was to exclude a priori the possibility of
linear inflectional instability, which, in principle, might interfere with the nonlinear
dynamics we are studying. However, a closer look at the now available results
on linear instabilities in boundary layers (e.g. Healey 2017) enabled us to lift the
restriction. Although the profiles with inflection points can be indeed unstable, these

973 A40-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

77
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.773


J.O. Oloo and V.I. Shrira

inflectional instabilities are long-wave instabilities with the maximal growth rates
O(ε3) and, thus, do not affect the processes with the O(ε−2) characteristic periods
which we focus upon.

3.2. Inside the boundary layer. The main deck
We begin with analysis of the motion in the main deck. The scaling (2.22) based
upon the distinguished limit which balances nonlinearity, weak dispersion, stratification
and viscosity, provides the basis of our asymptotic analysis inside the main deck. On
substituting the already adopted relations between the small parameters: εD ∼ Ri ∼ ε, and
introducing re-scaled Richardson and Reynolds numbers denoted as Ri∗ and Re∗, such that
Ri = εRi∗ and Re∗ = ε2Re, into equation (2.14), we make the scaling of each term more
explicit

D2
t ∂

2
zzw − U′′Dt∂xw = εDt∂zNL − εRi∗N2∇2

⊥w + ε

Re∗
Dtwiv − ε2D2

t ∇2
⊥w + M1, (3.1)

where

M1 = ε2Ri∗∇2
⊥(u∇)ρ̄ − ε3Dt∇2

⊥(u∇)w + ε4 1
Sc Re∗

Ri∗∇2
⊥ρ̄

′′, (3.2)

and

NL = [∂x(u∂xu + v∂yu + w∂zu)+ ∂y(u∂xv + v∂yv + w∂zv)],

= [ε∂x(ε
3u∂xu + ε5v∂yu + ε3w∂zu)+ ε∂y(ε

5u∂xv + ε7v∂yv + ε5w∂zv)]

= ε4[∂x(u∂xu + w∂zu)] + ε6[∂x(v∂yu)+ ∂y(u∂xv + w∂zv + ε2v∂yv)]. (3.3)

Although the streamwise and spanwise scales are assumed to be comparable, according
to (2.22) the spanwise velocity is two orders of magnitude smaller, which enables us
to split the nonlinear term NL into three parts and neglect the O(ε6), O(ε7) and O(ε8)
contributions. The terms ε2Ri∗∇2

⊥(u∇)ρ̄, ε4(1/Sc Re∗)Ri∗∇2
⊥ρ̄

′′ and ε3Dt∇2
⊥((u∇)w), on

the right-hand side of (3.1) are O(ε7) and above, these terms will also be neglected in our
further analysis. Upon these simplifications, recalling that w = O(ε2), we re-write (3.1)
explicitly pulling out ε

D2
t ∂

2
zzw − U′′Dt∂xw︸ ︷︷ ︸

O(ε4terms)

= ε5Dt∂z∂x[u∂xu + w∂zu] − ε5Ri∗N2∇2
⊥w + · · ·

+ ε5

Re∗
Dtwiv − ε6D2

t ∇2
⊥w. (3.4)

Since v = O(ε3) and u = O(ε1), it is easy to see that, by virtue of the continuity equation,
∂xu = −∂zw + O(ε4). To solve (3.4) we adopt a moving coordinate frame x → x − ct
and use standard multiple-scale method by introducing fast and slow non-dimensional
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A novel (2+1)-dimensional nonlinear evolution equation

independent variables

Z1 = εz, τ = εt, (3.5a,b)

where we recall that c is the speed of perturbations in the long-wave limit which will be
specified later. Then the squared material derivative D2

t and ∂2
zz take the form

D2
t = V2

0
L2 [(U − c)∂x + ε∂τ ]2 = V2

0
L2 D2

t ∼ ε2D2
t , ∂2

zz = 1
d2 (∂z + ε∂Z1)

2 ≈ 1
d2 ∂

2
zz ∼ ∂2

zz.

(3.6a,b)
Equation (3.4) for the vertical component of velocity, w, reduces to

D2
t ∂

2
zzw − U′′Dt∂xw = εDt∂z∂x[u∂xu + w∂zu] − εRi∗N2∇2

⊥w + ε

Re∗
Dtw′′′′ − ε2D2

t ∇2
⊥w,

(3.7)
where

Dt = (U − c)∂x + ε∂τ , ∂z = ∂z + ε∂Z1 . (3.8a,b)

We recall that the mean flow U(z) and stratification N(z) are assumed to be localized in
the boundary layer and, correspondingly, to depend only on the fast scale z.

First, we impose the no-flux condition at z = 0. We will deal with the complete boundary
conditions at the boundary in § 3.4. We also require vanishing of the velocity as Z1 → ∞.
In addition, we introduce ‘inner boundary conditions’, the condition of matching at the
outer boundary of the boundary layer. Thus,

w(z = 0) = 0; w(z → ∞) = const = w(Z1 → 0), w(Z1 → ∞) → 0. (3.9a–c)

We will seek an asymptotic solution to the boundary value problem (3.7), (3.8a,b) and
(3.8a,b) employing power series in ε (2.22). On finding the solution to (3.7) for w at a
certain order in ε, we find u, v and p with the corresponding accuracy from the basic
equations

Dtu + wU′ + px = −ε(u · ∇)u + ε

Re∗
u′′, (3.10a)

Dtv + py = −ε(u · ∇)v + ε

Re∗
v′′, (3.10b)

∂xu + ∂yv + ∂zw = 0. (3.10c)

The solutions for u, v and p, accurate to a corresponding order in ε, are further used for the
derivation of the next order terms for w, the cycle is repeated as many times as necessary.

At the first step, on substituting (2.22) into (3.7) and setting ε = 0, we see that in
the leading-order nonlinearity, stratification and viscous dissipation drop out. Taking into
account (3.8a,b) we obtain for w2 the long-wave limit of the Rayleigh equation

(U − c)∂xx[(U − c)w′′
2 − U′′w2] = 0, (3.11)

where derivatives with respect to the fast variable z are denoted by primes. It can be
easily seen from (3.11) that the x, y and z dependencies can be separated. Assuming the
disturbance to be localized or periodic in the streamwise direction, the general solution to
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equation (3.11) is convenient to present in the form

w2 = [ f (x, y, Z1) ∗ ∂xA(x, y, τ )] · (U(z)− c), (3.12)

where ∗ designates the convolution of two functions

ϕ ∗ ψ =
∫ +∞

−∞

∫ +∞

−∞
ϕ(x′, y′)ψ(x − x′, y − y′) dx′ dy′. (3.13)

Here, as will be made explicit a few lines below, A(x, y, τ ) is the amplitude of the
x-component of velocity perturbation, while the arbitrary function f (x, y, Z1) in (3.12)
is the general representation of a function of (x, y, Z1, τ ) localized or periodic in (x, y).
The fundamental properties of the presentation (3.12) become more transparent on
performing the Fourier transform of ansatz (3.12). The standard way of representing a
function of (x, y, Z1, τ ) is to decompose it into a set of spatial orthogonal functions
with time-dependent amplitudes. We chose Fourier in (x, y) and a particular function f
specifying each Fourier mode that depends on the slow vertical spatial variable Z1. The
specific dependence on the slow spatial scale f (Z1) will be found a few lines below. The
boundary condition w2(z = 0) = 0 specifies the eigenvalue c

c = U|z=0 ≡ U0. (3.14)

The mode we are considering is to leading order a vorticity wave, modified in the next
orders by stratification and viscosity. To leading order its speed is the mean flow velocity
at z = 0, which usually is its maximal value for the typical ‘no-stress’ flows. In any case, it
plays no role in our further analysis since its only significance is in specifying the reference
frame, the surface velocity U0 will be removed by the Galilean transformation at the next
step.

To proceed further, we first find the other components of perturbation wave field from
(3.10) using the asymptotic expansion (2.22). On substituting the leading-order solution
for w2 into (3.10) we find the other components of the perturbation field

u1 = −U′( f ∗ A), (3.15a)

v2 = 0, (3.15b)

p2 = 0. (3.15c)

Note that (3.15a) clarifies the physical sense of amplitude A, it is indeed, up to a factor −U′,
the amplitude of the x-component of perturbation velocity. The above relations show that to
leading order the motion is extremely simple: the particles of the vorticity wave motion just
oscillate in the streamwise direction, while the vertical and, especially, spanwise velocities
and pressure perturbations are much smaller in the adopted long-wave approximation. This
peculiar feature is specific for long vorticity waves (see Voronovich et al. 1998). Such a
simplicity of the motion of interest in the leading order is the key element enabling for a
remarkably simple description of the 2-D nonlinear dynamics of vorticity waves which we
will discuss below.

Substituting expressions (3.12) for w2 and (3.15a) for u1 into (3.7) we get an equation
for w3

w′′
3 − U′′

U − c
w3 = −M

U′′

U − c
+ P

Re∗
U′′′′

U − c
− Ĝ4[Q]

N2(z)
U − c

− T
[(U − c)2]′

U − c
+ R

[(U′)2 − (U − c)U′′]′

U − c
, (3.16)
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A novel (2+1)-dimensional nonlinear evolution equation

where

M = ( f ∗ Aτ ), P = ( f ∗ A), Q = ( f ∗ Ax), T = ( fZ1 ∗ Ax),

R = ( f ∗ A)( f ∗ Ax),
(3.17a–e)

and Ĝ4 is an integral operator which in the Fourier space is equivalent to multiplication
by (k2

x + k2
y)/k

2
x . The subscripts x,τ and Z1 stand for the corresponding partial derivatives.

Recall that the buoyancy frequency N(z) is confined to the boundary layer, i.e.

N(z) → 0, as z → ∞. (3.18)

At the boundary N(z = 0) = N0. Usually, N0 is the maximum of N(z), but this point is
immaterial for our consideration. The general solution to the inhomogeneous Rayleigh
equation (3.16) can be written as

w3 = M − T(U − c)
∫ ∞

z
dξ + B(U − c)

∫ ∞

z

dξ
(U − c)2

+ P
Re∗

(U − c)
∫ ∞

z

[
U′′′

(U − c)2

]
dξ − Ĝ4[Q](U − c)

∫ ∞

z

[
S(ξ)

(U − c)2

]
dξ − RU′.

(3.19)

The contribution of stratification is given by the term with Ĝ4[Q], where function S(z) in
the integrand is proportional to the difference of the local reference density and that of the
homogeneous fluid; it is given by the integral

S(z) =
∫ ∞

z
N2(ξ) dξ. (3.20)

In (3.19) B is an arbitrary constant specifying the ‘amplitude’ of the diverging fundamental
solution to the homogeneous Rayleigh equation in the long-wave limit. To eliminate
singularity in the integrals in (3.19) we chose B in such a way that the equation for w3
takes the form

w3 = M − T(U − c)
∫ ∞

z
[1 − Y(U − c)−2] dξ + P

Re∗
(U − c)

∫ ∞

z

[
U′′′

(U − c)2

]
dξ

− Ĝ4[Q](U − c)
∫ ∞

z

[
S(z)

(U − c)2

]
dξ − RU′, (3.21)

where the integration constant Y has been chosen to be

Y = lim
z→∞(U − c)2 = c2 = U2

0 . (3.22)

To evaluate the singular integrals above in (3.21) we assume that U′′′(0) /= 0 and
U′(0) /= 0 and expand U − c near the boundary as U′(0)z = U′

0z.
The derived main-deck solution (3.21) ought to be matched with the lower-deck solution,

the matching is carried out in Appendix A. Here, we just note that, upon formally applying
to solution (3.21), the no-flux condition at the boundary, i.e. requiring w|z=0,Z1=0 = 0 we
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get, after some algebra, a closed equation for the amplitude A containing so far unspecified
function f (Z1) of the slow vertical variable Z1

( f (0) ∗ Aτ )− U′(0) (( f (0) ∗ A) ( f (0) ∗ Ax))+
(

U2
0

U′(0)

) (
fZ1(0) ∗ Ax

)

− 1
2

U0RiĜ2[ f (0) ∗ Ax] + 1
Re∗

(
U′′′(0)
U′(0)

)
( f (0) ∗ A) = 0, (3.23)

where f (0) ≡ f (x, y, Z1 = 0). The a posteriori justification of our use of the no-flux
boundary condition is provided in Appendix A. Of course, the small z expansion becomes
invalid in the immediate vicinity of the boundary, a composite uniformly valid expansion
is derived in Appendix A. Operator Ĝ2, which appears in (3.23), is related to Ĝ4 as follows:
in the Fourier space Ĝ2 and Ĝ4 correspond, respectively, to k2

y/k
2
x and (k2

y + k2
x)/k

2
x . Going

from (3.21) to (3.23) we have subtracted 1 from the kernel in Ĝ4 to get Ĝ2, which means
that the small correction to the long-wave velocity caused by stratification c1 = −1

2 U0Ri
was taken into account by adjusting the speed of the moving coordinate frame, the
adjustment eliminates the term c1Ax appearing in the old frame due to correction to the
long-wave velocity.

3.3. Matching the outer flow
In this subsection in order to obtain our final evolution equation for the 3-D perturbation
amplitude A we proceed to find the unknown function f (Z1) for the outer flow slow vertical
motion and then substitute it into (3.23). To find the as yet unspecified dependence of the
found solution (3.12) and (3.21) on the slow vertical variable Z1, we first proceed to the
next order in ε in equation (3.7) for w2. Following the same asymptotic procedure and
using (3.12) and (3.21) we express u, v, p in terms of amplitude A

u2 = −Y( fZ1 ∗ ∇−2
⊥ Axx)(U − c)−1 + ( fZ1 ∗ A)U′

∫ ∞

z

[
1 − Y(U − c)−2

]
dξ

+ 1
2
( f ∗ A)2U′′ + Ĝ4[P]

S(z)
U − c

+ Ĝ4[P]U′
∫ ∞

z

(
S(z)

(U − c)2

)
dξ

− P̂U′

Re∗

∫ ∞

z

(
U′′′

(U − c)2

)
dξ − P̂

Re∗
U′′′

(U − c)
, (3.24)

v3 = −Y( fZ1 ∗ ∇−2
⊥ Axy)(U − c)−1 + Ĝ3[( f ∗ A)]S(z)(U − c)−1, (3.25)

p3 = Y( fZ1 ∗ ∇−2
⊥ Axx)− Ĝ4[( f ∗ A)]S(z), (3.26)

where Ĝ3 is a pseudo-differential operator specified below, while P̂ = ( f ∗ ∂−1
x A). In the

Fourier space the r-space operators Ĝ3 correspond to (k2
y/k

2
x)(k

2/k2
x). Further on we will

use symbol ⇔ to denote such correspondence. Expressions for P, Y and S(z) are given by
(3.17a–e), (3.22) and (3.20).

Now consider the next-order term for the vertical velocity, w4. After some algebra it can
be brought to the form

∂x[(U − c)w′′
4 − U′′w4] = −( fZ1Z1 ∗ Axx)(U − c)2

− ( f ∗ ∇2
⊥Axx)(U − c)2 + F(x, y, τ, z, Z1), (3.27)
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where F(x, y, τ, z, Z1), being specified by a very bulky expression, is not given here.
Crucially, it tends to zero as z → ∞ faster than |z|−1. In contrast, for an arbitrary function
of f (x, y, Z1) the first two terms on the right-hand side of equation (3.27) do not tend to
zero as z → ∞. As a result, the integration of (3.27) yields secular growth of the correction
w4 as z → ∞, which does not allow the matching condition w(z → ∞, Z1) → const to be
satisfied. We put these secular terms to zero, which gives us an equation determining the
dependence of function f on the slow variable Z1

( fZ1Z1 ∗ Axx)+ ( f ∗ ∇2
⊥Axx) = 0. (3.28)

The equation is complemented by the boundary condition at infinity

w(Z1 → ∞) = 0. (3.29)

To find f (Z1) we, exploiting the homogeneity of the problem with respect to horizontal
coordinates, perform the Fourier transform with respect to x, y in the boundary problem
(3.28) and (3.29). Making the Fourier transform of the convolution and pulling out the
terms with amplitude A, we get the boundary value problem

∂2
Z1Z1

f̂ (k)− k2 f̂ (k) = 0, (3.30)

with the boundary conditions

f̂ (k)|Z1→∞ = 0, f̂ (k)|Z1=0 = 1. (3.31a,b)

Here, f̂ (k, Z1) is the Fourier transform of f (x, y, Z1)

f (x, y, Z1) = 1
4π2

∫ +∞

−∞

∫ +∞

−∞
f̂ (kx, ky, Z1) exp(i(kxx + kyy)) dkx dky, (3.32)

and k = |k|, k2 = k2
x + k2

y . The simplest normalization, f̂ (k)|Z1=0 = 1, has been
introduced for convenience to normalize the motion in the outer deck f̂ (kx, ky, Z1) near
the boundary. As one could easily anticipate, the motion in the outer layer is potential and
satisfies the Laplace equation (3.30). Hence, it is easy to find the solution of the boundary
value problem (3.30), (3.31a,b) satisfying the boundary condition (3.31a,b)

f̂ (k, Z1) = exp(−kZ1) Z1 → ∞. (3.33)

Next, we designate ∂Z1 f̂ (k, 0) ≡ F̌(kx, ky) and take into account that, at the boundary,
f (0) = δ(x)δ( y). The solution to (3.30) readily yields the kernel of the integral operator
F̌(k) = −k. Substituting these findings into (3.23), we obtain the nonlinear evolution
equation for the amplitude of 3-D long-wave perturbations in the distinguished limit

Aτ − αnAAx − β1Ĝ1[Ax] − β2Ĝ2[Ax] + γA = 0, (3.34)

where the non-local operators Ĝ1 and Ĝ2 are

Ĝ1[ϕ(r)] = 1
4π2

∫ +∞

−∞

∫ +∞

−∞
|k|ϕ(r1) exp(ik(r − r1)) dk dr1, (3.35)

Ĝ2[ψ(r)] = 1
4π2

∫ +∞

−∞

∫ +∞

−∞

k2
y

k2
x
ψ(r1) exp(ik(r − r1)) dk dr1. (3.36)

Recall that k = |k| =
√

k2
x + k2

y . The coefficients are specified by the parameters

of the flow at the surface: αn = U′(0), β1 = U2
0/U

′(0), γ = (1/Re∗)U′′′(0)/U′(0),
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β2 = U0Ri/2. The explicit account of viscous dissipation and weak stratification yield,
respectively, the Rayleigh friction-type term γA and a very specific dispersion term
β2Ĝ2[Ax] due to buoyancy. Coefficients αn and β1 of (3.34) can be removed by re-scaling
to obtain the ‘universal’ form of the evolution equation. The equation is universal in the
sense that the specific profiles of the boundary layer and stratification are immaterial. The
residual specificity of the boundary layer retained in the coefficients αn, β1, γ, β2 in (3.34)
can be further reduced by re-scaling the variables

τ1 = τU′(0), d = U0

U′(0)
, x1 = x/d, A1 = −1

d
A, (3.37a–d)

which upon setting d = 1 and dropping the subscripts yields the ultimate form of the
equation

Aτ + AAx − Ĝ1[Ax] − β̃2Ĝ2[Ax] + γ̃A = 0. (3.38)

The non-local operators Ĝ1 and Ĝ2 remain the same and are given by (3.35) and (3.36).
The only remaining two coefficients

β̃2 = N2
0

2ε2(U′(0))2
, γ̃ = 1

Re∗
U′′′(0)
(U′(0))2

, Re∗ = ε2Re, (3.39a–c)

characterize the relative importance of the novel dispersion due to weak stratification and
the Rayleigh friction-type term compared with the nonlinear one in the evolution equation.
In this context the very weak Ri = O(ε) stratification proves to be essential. Although the
flows with Ri < 1/4 might be linearly unstable, in our context linear instabilities play
no role since we focus on linearly stable situations; linear instabilities will be considered
elsewhere.

3.4. Viscous sub-layer

3.4.1. Divergence of the asymptotic expansion and Tollmien’s rescaling
Consider more closely behaviour of the main-deck solutions u2 and v3 given by (3.24) and
(3.25) as z → 0. Near the boundary as z → 0, we apply Taylor series to expand (U − c) ≈
U′(0)z to obtain in physical space both streamwise and spanwise velocities

u2 = − U2
max

U′(0)
( fZ1 ∗ ∇−2

⊥ Axx)
1
z

+ U2
max

U′(0)
( fZ1 ∗ A)

1
z

+ 1
2
( f ∗ A)2U′′(0), (3.40)

v3 = − U2
max

U′(0)
( fZ1 ∗ ∇−2

⊥ Axy)
1
z

+ 1
2

U0RiĜ3( f ∗ A)
1
z
. (3.41)

First, it is important to note that the last four terms due to stratification and viscosity of
(3.24) all cancel each other. In contrast to the streamwise perturbation velocity u2, the
spanwise component yields a new extra singular term due to non-zero stratification.

Let us take a closer look at the divergence of the streamwise velocity component u2
given by (3.40), by carrying out some algebra we simplify the first two terms on the
right-hand side with singularities at z = 0. To this end we transform them into the Fourier
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space

− U2
max

U′(0)
k2

x

k2
x + k2

y
( f̂Z1 · Â)

1
z

+ U2
max

U′(0)
( f̂Z1 · Â)

1
z

= U2
max

U′(0)

[
k2

x + k2
y − k2

x

k2
x + k2

y

]
( f̂Z1 · Â)

1
z
,

= U2
max

U′(0)

[
k2

y

k2
x + k2

y

]
( f̂Z1 · Â)

1
z
. (3.42)

Substituting this simplified form of the singular terms and taking into account their inverse
Fourier transform, we obtain a more compact form of the expression for u2

u2 = U2
max

U′(0)
( fZ1(0) ∗ ∇−2

⊥ Ayy)
1
z

+ 1
2
( f ∗ A)2U′′(0). (3.43)

It is easy to see that uniformity of the main-deck asymptotic expansion breaks down as
z → 0. Indeed, according to (3.43) and (3.41) unless the spanwise component dependence
vanishes, velocity components u2 and v3 diverge

u2 ∼ 1/z, v3 ∼ 1/z. (3.44a,b)

To get rid of the singularities, in Appendix A we re-scale the variables appropriately
and solve the Navier–Stokes equations in the region immediately adjacent to the boundary
(the lower deck) and then match these solutions with the solutions already obtained for
the main deck. The main results of the detailed analysis carried out in Appendix A can be
summarized as follows: (i) under the chosen scaling a uniformly valid explicit asymptotic
solution has been found for the no-stress boundary layers, although in a quite complicated
form; (ii) in the context of derivation of evolution equation the specific form of the solution
in the viscous sub-layer is immaterial, since under adopted scaling the inner solution
anyway does not affect the motion in the main deck and, hence, does not contribute to
the evolution equation.

3.5. Conclusions
The main result of this section and of the paper is the novel nonlinear evolution equation
(3.34) for long 3-D perturbations in semi-infinite boundary layers with explicit accounting
of both weak stratification and viscous effects.

The evolution equation (3.38) provides the framework for studying dynamics of 3-D
perturbations and, in particular, to clarify hitherto unexamined role of stratification
(β̃2 /= 0) and Rayleigh friction, which is carried out in the follow-up companion paper.

4. Concluding remarks

Here, we briefly summarize the results of the work and discuss the new questions it
generates. The work presents a new asymptotic model describing the nonlinear dynamics
of linearly decaying 3-D long-wave perturbations in a generic semi-infinite weakly
stratified free-surface boundary layer. The model, the first of its kind, is a generalization
of the essentially 2-D Benjamin–Ono equation taking explicit account of new dispersion
due to weak stratification in the boundary layer and dissipation. The account of dissipation
in the boundary layer results in the Rayleigh friction-type term which is proportional to
the ratio of the curvature of the basic flow vorticity at the boundary and the Reynolds
number. The model is derived in the distinguished limit with nonlinearity, the two types
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of dispersion and dissipation all being in balance. This provides a possibility of reducing
the evolution equation (3.38) to a family of simplified equations, each balanced in its own
range of parameters. For example, for a wide range of the Reynolds numbers, the Rayleigh
friction term could be dropped, which makes the dynamics described by the reduced
equation Hamiltonian. For relatively short perturbations we recover 2-D-BO equation,
while, for sufficiently long perturbations, we can neglect the Benjamin–Ono dispersion,
which will result in a yet another novel equation with peculiar properties

Aτ + AAx − β̃2Ĝ2[Ax] = 0. (4.1)

Here, the dispersion which is proportional to k2
y/k

2
x does not depend on the wavenumber,

it vanishes for the plane perturbations propagating strictly streamwise. Steady waves are
impossible, since even for non-planar perturbations with non-vanishing dispersion, the
dispersion cannot balance nonlinearity: counterintuitively, it decreases with nonlinear
steepening of the perturbations. The non-trivial dynamics within the framework of the
evolution equation (3.38) and its reductions is studied in the follow-up companion paper.

Here, we stress that the model (3.38) is self-contained: the evolution equation describes
the dynamics of a single long-wave mode which is weakly decaying in the linear setting.
Under the adopted scaling the weakly nonlinear dynamics in the critical layer is dominated
by viscosity. This enables us to solve the nonlinear equations governing the critical layer.
Crucially, in contrast to the no-slip setting, to leading order the lower deck does not affect
the main deck, i.e. the critical layer dynamics does not affect the processes in the bulk of
the boundary layer which we are primarily interested in.

The asymptotic derivation largely follows the earlier derivations (Shrira 1989;
Voronovich et al. 1998) of related evolution equations, with three important distinctions.
First, the derivation has been extended to weakly stratified free-surface boundary layers
with the no-stress boundary conditions at the surface, which resulted in an extra dispersion
which, to the best of our knowledge, is novel. For sufficiently long perturbations the
novel dispersion is dominant, which can change the dynamics qualitatively. Second, the
range of the allowed Reynolds numbers was extended towards lower values, down to
Re ∼ ε−2, which results in the Rayleigh friction-type term in the evolution equation. Third,
the restriction which excluded the flow profiles with inflection points employed in the
earlier derivations of related evolution equations was lifted. Viscous linear instabilities in
no-stress boundary layers have been a priori excluded from consideration by our focus
on linearly decaying perturbations, they might be relevant in certain contexts and will be
considered elsewhere.

The work also raises many questions which currently remain open. The model itself
is examined in the companion follow-up paper. Here, we just very briefly discuss the
limitations of the model and how it can be extended. One of the obvious limitations is
the total neglect of possible inhomogeneity of the basic flow and non-parallel effects.
The assumption of spatial homogeneity with respect to horizontal coordinates allows both
the direct and inverse Fourier transforms under easy to satisfy Dirichlet’s conditions,
which greatly facilitates the derivation. It is in principle possible to incorporate weakly
inhomogeneous and non-parallel effects into the employed asymptotic scheme. This has
been partly done in Shrira et al. (2005) for a free-surface boundary layer in non-stratified
fluid. However, a detailed investigation of these effects requires a dedicated study and goes
beyond the scope of the present work. In contrast to the most of no-slip boundary layers in
the laminar–turbulent transition, accounting for inhomogeneous and non-parallel effects
is not the primary concern in the oceanic context, where most often there is a sufficient
scale separation to make a homogeneous boundary layer a viable approximation.
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To fix the idea the present work is confined to the simplest unidirectional generic
boundary layer, but it also offers a possibility to extend the developed asymptotic approach
to other types of no-stress boundary layers, such as 3-D boundary layers, confined
boundary layers, situations with density stratification outside the boundary layer and with
a compliant free-surface boundary. The extension of the derivation to these situations
enables one to get a broad new class of novel nonlinear evolution equations which might
prove of interest in other contexts as well. Although the general idea of how the extension
of the derivation might work has been made clear, the derivation should be carried out
from scratch in each case.

The prime motivation for undertaking this work was the desire to get a new insight into
the physics of mixing in the oceanic upper layer. To this end we derived a model which
in the context of this aim would be fair to refer to as a toy model. In its present form the
model is applicable under benign conditions of gentle wind (U10 < 4 m s−1) and moderate
solar heating, when surface boundary layers are laminar and weakly stratified. Such
situations are not uncommon, but from the viewpoint of ocean–atmosphere interaction
are not the most interesting ones. Here, we will not speculate how the model might be
extended for more challenging and more interesting, in this context, turbulent boundary
layers. To what extent this work helps in closing the gap in our understanding of mixing
mechanisms in the already turbulent oceanic boundary layer remains unclear. The key
assumption that the dynamics of turbulent boundary layer can indeed be modelled by
adopting the Boussinesq closure with constant scalar eddy viscosity remains to be verified.
This requires a substantial dedicated effort and is beyond the scope of the present work.
This model might be also relevant for describing a route to mixing in many other physical
contexts with no-stress boundary layers, e.g. in engineering (e.g. Dasgupta, Nath & Bhanja
2019).

Throughout this work we assumed the surface tangential stress τ to be constant. In
reality, wind always fluctuates, and the statistical properties of these fluctuations have been
studied for many years (e.g. Jiménez 2012; Yousefi, Veron & Buckley 2020). The airflow
turbulence creates wind fluctuations with reasonably well-known statistical properties,
which generates fluid motions beneath the water surface. To account for these motions
it is straightforward to extend our evolution equation by adding a stochastic forcing due
to fluctuations of τ . We expect that there is a range of temporal and spatial scales where
the response in the water is dominated by the vorticity modes (1.5), even if the modes are
weakly decaying, as is typical of other shear flows (e.g. Schmid & Henningson (2000),
§ 7.3). Our work highlights the existence of the modes with the dispersion relation (1.5).
The dispersion relation, and hence the response, are sensitive to the properties of the
boundary layer and, in particular, to the weak stratification. This makes these modes a
serious contender for a role in remote sensing of the oceanic boundary layer. Although
in this work we described the water surface as rigid, this is a simplification one can
easily drop when necessary. Upon taking into account small but finite Froude numbers
in the free-surface boundary condition it is straightforward to find the small free-surface
displacements caused by the vorticity modes we study. The displacements, although tiny,
might be probed remotely, since in the ocean there are no energetic motions with the
same spatio-temporal characteristics. Another kind of surface signature of the studied
vorticity waves is also possible. Inhomogeneities of surface velocity field due to the
vorticity waves affect surface roughness and might create distinctive roughness signatures
similar to those caused by internal gravity waves (e.g. Apel et al. 1975). In the long term,
tracing and deciphering the dynamics of such signatures might help in remote probing of
the characteristics of the surface boundary layer inaccessible by other means. We hope
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that our work will stimulate new observations in subsurface boundary layers in laboratory
facilities and natural water basins.
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Appendix A. Viscous sub-layer

Here, we solve the Navier–Stokes equations in the lower deck, i.e. in the viscous sub-layer,
the region immediately adjacent to the boundary, and then match these inner solutions
with the outer solutions already obtained for the main deck in § 3.4. Hence, the resulting
matched asymptotic expansion will be uniformly valid by construction. We are using the
terms ‘viscous sub-layer’ and ‘critical layer’ interchangeably, which is justified in our
context.

Following Voronovich et al. (1998), we scale the critical layer thickness δ as

δ = (εReU′
0)

−1/3 = (ε−1Re∗U′
0)

−1/3 ∼ ε1/3 (U′
0 = U′|z=0, Re∗ = ε2Re), (A1)

which ensures that δ is small compared with the O(1) overall thickness of the boundary
layer δBL. For further consideration it is crucial that

1 	 δ 	 ε, (A2)

which means that the thickness of viscous critical layer we are considering far exceeds
the thickness of nonlinear critical layer, while it remains small compared with the
boundary-layer thickness. The scaling specifies the regime where viscosity is dominant,
while nonlinearity is small but finite and, hence, not negligible.

A.1. Re-scaling. Inner variable
To proceed, we re-scale our variables as follows:

ξ = z
δ
; T = U′

0τ ; U − c = δU′
0ξ + o(δ); N2 = (U′

0)
2N̆2,

u = U′
0ŭ; v = ε

δ
U′

0v̆; w = δU′
0w̆; p = ε(U′

0)
2p̆.

⎫⎪⎬
⎪⎭ (A3)
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In terms of the new variables, after some algebra, the Navier–Stokes equations for w and
other components of velocity take the form

ξ2(U′
0)

3∂2
xx∂

2
ξξ w̆ + 2

ε

δ
ξ(U′

0)
3∂2

xT∂
2
ξξ w̆ = ε

δ
ξ(U′

0)
3∂ξ ∂

2
xx
[
ŭ∂xŭ + w̆∂ξ ŭ

]
− ε(U′

0)
3Ri∗∇2

⊥N̆2w̆ + (ε−1Re∗)−1

δ3 (U′
0)

2∂xξ∂
4
ξξξξ w̆, (A4a)

(U′
0)

2ξ∂xŭ + ε

δ
(U′

0)
2∂T ŭ + (U′

0)
2w̆ + ε

δ
(U′

0)
2p̆x

= −ε
δ
(U′

0)
2
[
ŭ∂xŭ + ε

δ
v̆∂yŭ + w̆∂ξ ŭ

]
+ (ε−1Re∗)−1

δ3 U′
0∂

2
ξξ ŭ, (A4b)

ξ(U′
0)

2∂xv̆ + (U′
0)

2 ε

δ
∂T v̆ + (U′

0)
2p̆y

= −(U′
0)

2
[
ε

δ
ŭ∂xv̆ +

(ε
δ

)2
v̆∂yv̆ + ε

δ
w̆∂ξ v̆

]
+ (ε−1Re∗)−1

δ3 U′
0∂

2
ξξ v̆, (A4c)

U′
0ŭx + ε

δ
U′

0v̆y + U′
0w̆ξ = 0. (A4d)

The only difference of the re-scaled equations above from those in Voronovich et al.
(1998) is the O(ε) stratification term in (A4a). On eliminating U′

0 and substituting
δ = (ε−1U′

0Re∗)−1/3, where Re∗ = ε2Re is re-scaled Reynolds number, while retaining
only the leading-order O(1) terms and ε/δ correction terms, equations (A4) can be written
as

(∂2
ξξ − ξ∂x)w̆′′ = ε

δ

(
2∂Tw̆′′ − ∂ξ ∂x(ŭŭx + w̆ŭξ )

)
, (A5a)

(∂2
ξξ − ξ∂x)ŭ = w̆ + ε

δ
(∂T ŭ + p̆x + ŭŭx + w̆ŭξ ), (A5b)

(∂2
ξξ − ξ∂x)v̆ = p̆y + ε

δ
(∂T v̆ + ŭv̆x + w̆v̆ξ ), (A5c)

ŭx + w̆ξ = −ε
δ
v̆y, (A5d)

where w̆′′ = ∂2
ξξ w̆, and ŭ, v̆, w̆, p̆ are the re-scaled dependent variables, while T is

re-scaled time. We re-iterate here that the quantities with breve symbol and the partial
derivatives with respect to both x and y are treated as order-one quantities, since the
explicit smallnesses due to ε have all been pulled out. Therefore, in the above re-scaled
Navier–Stokes equations we have only one small parameter, ε/δ ∼ ε2/3. We stress that,
under the adopted scaling, the O(ε) buoyancy term proportional to N̆2, proved to be
negligible in the critical layer. Therefore, we are justified in retaining only the correction
to leading order due to nonlinearity which is ε/δ ∼ ε2/3. However, the weak stratification
does affect the dynamics of the viscous sub-layer through the matching conditions which
we discuss later. With the buoyancy term dropped, these governing equations (A5) become
identical to their counterparts in the Voronovich et al. (1998). The new small parameter
ε/δ = ε2/3, defined as the ratio of nonlinear critical layer width ε to that of viscous critical
layer width δ, is the inverse of the Haberman number. Since (A5) have only the small
parameter ε/δ, we look for the solution of (A5) in the form of asymptotic power series
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in ε/δ, rather than ε, subject to the no-stress boundary conditions at the boundary and
matching conditions at infinity.

The formulation of the boundary value problem in the viscous sub-layer is completed
by complementing (A5) with the no-flux condition at the boundary ξ = 0

w̆ = 0, (A6)

and the no-stress condition at ξ = 0,

ŭ′ = v̆′ = 0. (A7)

The inner solutions at ξ → ∞ should match the main-deck solutions taken at z → 0,
which, in terms of inner variable ξ , implies

ŭ → −A + ε

δ
Pyy

1
ξ
, (A8a)

v̆ → (R − Pxy)
1
ξ
, (A8b)

w̆ → Axξ + ε

δ

(
AT − ∇2

⊥Px − AAx + 1
Re∗

[
U′′′(0)
(U′(0))2

]
A +

[
N2

0
2(U′(0))2

]
Ĝ2[Ax]

)
,

(A8c)

p̆ → Pxx − R, (A8d)

P =
(

Umax

U′(0)

)2 (
fZ1 ∗ ∇−2

⊥ A
)
, R = N2

0
2(U′(0))2

Ĝ3[A], (A8e)

where Ĝ2 and Ĝ3 are integral operators introduced in (§ 3). In the Fourier space, the
integral operators Ĝ2 and Ĝ3 are, respectively, just multiplication operators k2

y/k
2
x , while

Ĝ3 = k3
y/k

3
x .

A similar, but slightly less general, boundary value problem has been considered in
Voronovich et al. (1998). Here, we provide the solution in a somewhat different form
in terms of the classical Airy functions and their integrals for a broader range of the
Reynolds numbers. In contrast to Voronovich et al. (1998), here we also allow the weak
stratification to alter the dynamics in the critical layer through the matching with the
stratification-dependent main-deck solution.

A.2. The inner solution in the critical layer and its matching with the outer solution of
the main deck

A.2.1. Asymptotic expansion
We seek solution to the above boundary value problem in terms of an asymptotic series in
ε/δ

ŭ = ŭ0 + ε

δ
ŭ1 + · · · , (A9a)

v̆ = v̆0 + ε

δ
v̆1 + · · · , (A9b)

w̆ = w̆0 + ε

δ
w̆1 + · · · , (A9c)

p̆ = p̆0 + ε

δ
p̆1 + · · · . (A9d)
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A novel (2+1)-dimensional nonlinear evolution equation

A.2.2. Leading-order solutions w̆0 and ŭ0
In this section we solve the Navier–Stokes equations (A5) using the asymptotic series (A9).
To leading order in ε/δ we obtain a linear boundary value problem because the scaling we
adopted ensures that viscosity dominates nonlinearity in the viscous sub-layer. It is easy
to see that, to leading order in ε/δ, (A5a) is a fourth-order homogeneous linear ordinary
differential equation of the form

(∂2
ξξ − ξ∂x)w̆′′

0 = 0. (A10)

It is also fairly straightforward to see that

w̆0 = Cξ, (A11)

is a particular solution to (A10) satisfying the no-flux condition w̆0 = 0 at ξ = 0, with
C being an arbitrary integration constant. Hereinafter in this section, unless explicitly
specified otherwise, the ‘constants’ are understood as quantities not depending on ξ , while
retaining unspecified dependence on x, y, T . This constant is specified as Ax by matching
the found particular solution (A11) with the leading order of the expression for w̆ in (A8c)
as ξ → ∞. The general solution to (A10) contains three other arbitrary constants which
for the chosen particular solution are all set to be zero. On substituting ansatz (A11) into
(A5b) and retaining just the leading-order terms we immediately obtain an inhomogeneous
Airy equation for ŭ0 with the right-hand side term dependent on ξ

(∂2
ξξ − ξ∂x)ŭ0 = Axξ. (A12)

It is easy to see that ŭ0 = −A is a particular solution of (A12) satisfying to leading order
the matching condition (A8a) as ξ → ∞. Therefore, we conclude our brief analysis in this
section by outlining the found simple solutions for the no-stress boundary satisfying both
the governing equations and matching condition, i.e.

ŭ0 = −A, w̆0 = Axξ. (A13a,b)

The zero-order solution for v̆0(ξ) will be derived later, once pressure p̆0 is found. These
solutions were first found in Voronovich et al. (1998) for the same boundary conditions.
Here, we provide the derivation, since we will need it for the next steps.

A.3. First-order solutions
The found particular leading-order solutions ŭ0 = −A and w̆0 = Axξ have a remarkable
property: as we show below, on substituting these solutions into (A5a), it immediately
follows that the O(ε/δ) right-hand side vanishes and we get for ∂2

ξξ w̆1 the homogeneous
Airy equation identical to the equation for w̆0.

A.3.1. Equation for w̆1
Consider more closely the right-hand side R1 of the equation for w̆′′

1

(∂2
ξξ − ξ∂x)w̆′′

1 = R1, R1 = ε

δ

(
2∂Tw̆′′

0 − ∂ξ ∂x(ŭ0ŭ0x + w̆0ŭ0ξ )
)
. (A14a,b)

Let us first simplify R1 using the already found leading-order solutions ŭ0(ξ) and w̆0(ξ).
It is easy to see that the first term, ∂Tw̆′′

0, vanishes because w̆0 is linear in ξ . Next, we
simplify the second term in R1 inside the brackets. We stress that at this step there is no
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loss of generality and no specific form of ŭ0(ξ) is used. To leading order the continuity
equation (A5d) is one-dimensional

ŭ0x = −w̆0ξ , w̆0 = Axξ. (A15a,b)

Therefore

∂x∂ξ (ŭ0ŭ0x + w̆0ŭ0ξ ) = ∂x∂ξ (−ŭ0Ax + Axξ ŭ0ξ ) = Axx(−ŭ0ξ + ŭ0ξ + ξ ŭ0ξξ ) = Axxξ ŭ0ξξ .

(A16)

On substituting this simplifications of R1 into (A13a,b), we re-write it in a much simpler
form:

(∂2
ξξ − ξ∂x)w̆′′

1 = −Axxξ ŭ0ξξ . (A17)

By virtue of (A13a,b) ŭ0 does not depend on ξ , ŭ0ξξ = 0. This reduces (A13a,b) to the
homogeneous equation for w̆1

(∂2
ξξ − ξ∂x)w̆′′

1 = 0. (A18)

Hence, we have to solve the same fourth-order homogeneous linear differential equation
(A10) as for the leading-order w̆0. However, we cannot set w̆1 to be zero or incorporate it
into w̆0, since, by virtue of (A8c), it has a different asymptotics as ξ → ∞, in contrast to
linearly growing w̆0, w̆1 tends to a constant.

A.3.2. Solution for w̆1
On performing the Fourier transform of (A18) and recalling that in the Fourier space ∂x
yields ikx, we obtain

(∂2
ξξ − ξ ikx) ˆ̆w′′

1 = 0. (A19)

To proceed, we first introduce an auxiliary function S = ˆ̆w′′
1 and re-write (A19) as

(∂2
ξξ − ξ ikx)S = 0. (A20)

The general solution to (A20) is a superposition of the Airy functions with two arbitrary
constants C1 and C2

S(ξ) = C1Ai
[
(ikx)

1/3ξ
]

+ C2Bi
[
(ikx)

1/3ξ
]
. (A21)

To find ˆ̆w1 we integrate solution (A21) twice. The solution we obtain contains four
arbitrary constants C1,C2,C3 and C4

ˆ̆w1 = C1

∫ ξ

0

[∫ s2

0
Ai
[
(ikx)

1/3s1

]
ds1

]
ds2 + C2

∫ ξ

0

[∫ s4

0
Bi
[
(ikx)

1/3s3

]
ds3

]
ds4

+ C3ξ + C4, (A22)

where s1, s2, s3 and s4 are dummy variables. We set C2 = 0, since the term containing the
integral of Bi diverges exponentially as ξ → ∞. Hence, the solution for ˆ̆w1 becomes

ˆ̆w1 = C1

∫ ξ

0

[∫ s2

0
Ai
[
(ikx)

1/3s1

]
ds1

]
ds2 + C3ξ + C4. (A23)
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A novel (2+1)-dimensional nonlinear evolution equation

Applying the formula for the double integral of the Airy function (e.g. Olver et al. (2010),
(9.10.20)) we re-write the solution (A23) as follows:

ˆ̆w1 = C1

[
ξ

∫ ξ

0
Ai
[
(ikx)

1/3s2

]
ds2 − (ikx)

1/3Ai′
[
(ikx)

1/3ξ
]

+ (ikx)
1/3Ai′(0)

]
+ C3ξ + C4. (A24)

Requiring ˆ̆w1 to satisfy the no-flux condition at ξ = 0 dictates C4 = 0.
Let us take a closer look at the terms in the square brackets of (A24). Noting that for

ξ → ∞ the integral equals 1/(3(ikx)
1/3) (Olver et al. (2010), (9.10.11) and (9.10.1)), then

the large ξ asymptotics of solution (A24) can be presented as

ˆ̆w1 = 1
3(ikx)1/3

C1ξ − C1(ikx)
1/3Ai′

[
(ikx)

1/3ξ
]

+ C1(ikx)
1/3Ai′(0)+ C3ξ. (A25)

The matching condition (A5c) requires ˆ̆w1 → constant as ξ → ∞. Since the large ξ
asymptotics (A25) of ˆ̆w1 diverges linearly as ξ → ∞, we set C1 = −3(ikx)

1/3C3, which
eliminates this divergence. Substituting C1 = −3(ikx)

1/3C3 into (A25) and taking into
account the vanishing derivative of the Airy function Ai′ at ξ → ∞, we obtain a solution
for ˆ̆w1, that tends to a constant as ξ → ∞

ˆ̆w1|ξ→∞ = −3(ikx)
1/3C3Ai′(0) = Ĉ = constant,

Ai′(0) = −
31/6Γ

(
2
3

)
2π

= − 1

31/3Γ

(
1
3

) .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A26)

Matching the derived inner solution of the viscous sub-layer to the outer solution requires
ˆ̆w1 = Ĉ(k, T). This specifies the value of this constant in the x-space by virtue of (A8c),

C =
(

AT − ∇2
⊥Px − AAx + 1

Re∗

[
U′′′

0
(U′

0)
2

]
A −

[
N2

0
2(U′(0))2

]
Ĝ2[Ax]

)
,

P =
(

Umax

U′(0)

)2 (
fZ1 ∗ ∇−2

⊥ A
)
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A27)

where the specific value of the constant Ĉ(k, T) of (A26) is obtained by taking the Fourier
transform of (A27)

Ĉ = F{C}. (A28)

Thus, we have specified all the arbitrary constants in the derived solution (A24) for ˆ̆w1

that satisfies boundary and matching conditions. Finally, the solution for ˆ̆w1 is

ˆ̆w1 = Ĉ
Ai′(0)

[
ξI − (ikx)

1/3Ai′(Z)+ (ikx)
1/3Ai′(0)− 1

3(ikx)1/3
ξ

]
, (A29)

where

I =
∫ ξ

0
Ai
[
(ikx)

1/3s2

]
ds2, Z = (ikx)

1/3ξ, (A30a,b)

and Ĉ is specified by (A27), (A28).
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A.3.3. Equation for ŭ1
Here, we proceed to finding the streamwise component of the perturbation velocity ŭ1
from the Navier–Stokes equations (A5b). Recall, that ŭ1 is diverging in the outer solution.
On applying regular perturbations and retaining O(ε/δ) terms we obtain the governing
equation for ŭ1

(∂2
ξξ − ξ∂x)ŭ1 = w̆1 + ∂T ŭ0 + p̆0x + ŭ0ŭ0x + w̆0ŭ0ξ . (A31)

The last term of the above equation vanishes by virtue of (A13a,b).
Recall the expressions for w̆0, ŭ0 and w̆1

ŭ0 = −A, w̆0 = Axξ.

w̆1 = AT − ∇2
⊥Px − AAx + 1

Re∗

[
U′′′(0)
(U′(0))2

]
A +

[
N2

0
2(U′(0))2

]
Ĝ2[Ax],

⎫⎪⎪⎬
⎪⎪⎭ (A32)

where

P =
(

Umax

U′(0)

)2 (
fZ1 ∗ ∇−2

⊥ A
)
. (A33)

On substituting these expressions for ŭ0, w̆0 and w̆1 into (A31) and carrying out further
simplification, we get a much simplified equation for ŭ1

(∂2
ξξ − ξ∂x)ŭ1 = −∇2

⊥Px + 1
Re∗

[
U′′′(0)
(U′(0))2

]
A +

[
N2

0
2(U′(0))2

]
Ĝ2[Ax] + p̆0x. (A34)

The above equation (A34) for ŭ1 includes p̆0, which has to be found prior to solving (A34).
Pressure does not vary across the the critical layer and therefore can be determined by
matching with the pressure term of the outer solution. That is, to find p̆0 inside the critical
layer we match the boundary layer pressure solution p3 (see (3.26))

p̆0 = ∂2
xxP −

[
N2

0
2(U′(0))2

]
Ĝ2[A],

(
P =

(
Umax

U′(0)

)2 (
fZ1 ∗ ∇−2

⊥ A
))
. (A35a,b)

On substituting (A35a,b) into (A34), the buoyancy terms cancel out, hence, we find the
streamwise velocity perturbations ŭ1 from the following inhomogeneous Airy equation
with the right-hand side independent of ξ :

(∂2
ξξ − ξ∂x)ŭ1 = −Pxyy + 1

Re∗

[
U′′′(0)
(U′(0))2

]
A, (A36)

where

P =
(

c
U′(0)

)2

( fZ1(0) ∗ ∇−2
⊥ A), c = Umax. (A37)

The expressions above differ from those obtained in Voronovich et al. (1998) by the
account of the viscous effect inside the main deck, which yields the term with Re∗
on the right-hand side of (A36). Note that, under the adopted scaling, viscous effects
contribute into the equation for the perturbation velocity streamwise component ŭ1, but,
as we show below, do not affect the spanwise component v̆0. In contrast, we will show in
the next section that, counterintuitively, stratification affects the spanwise component of
the velocity v̆0, but not its streamwise counterpart ŭ1.
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A.3.4. Solution for ŭ1
Here, we solve the inhomogeneous Airy equation with the right-hand side independent of
ξ . To find solution to (A36) we perform the Fourier transform with respect to independent
variables x and y. Recall that the operations of differentiation and integration we encounter
in the x-space and in the Fourier space are related as follows:

∂x ⇔ ikx, ∂y ⇔ iky, ∇2
⊥ ⇔ −(k2

x + k2
y) = −k2, ∇−2

⊥ ⇔ − 1
k2 . (A38a–d)

Recall also that, ∂Z1 fk(0) ⇔ k = |k| and f (0) = 1, and

P =
(

Umax

U′(0)

)2

( fZ1(0) ∗ ∇−2
⊥ A), =⇒ P̂(k) = −1

k

(
Umax

U′(0)

)2

Â(k). (A39a,b)

Substituting (A38a–d) and (A38a–d) in (A36) yields the following inhomogeneous Airy
equations for the Fourier components ˆ̆u1 with the right-hand side independent of ξ :

(∂2
ξξ − ikxξ) ˆ̆u1 = −i

kxk2
y

k

(
c

U′(0)

)2

Â(k)+ 1
Re∗

[
U′′′(0)
(U′(0))2

]
Â(k). (A40)

Its general solution expressed in terms of the Airy and Scorer functions can be found by
the method of variation of parameters

ˆ̆u1(ξ) = d1Ai(Z)+ d2Bi(Z)+ πB̂Â(k)g(Z), (A41)

where

B̂ = π

[
(ikx)

1/3k2
y

k

(
c

U′(0)

)2

+ (ikx)
−2/3

Re∗

[
U′′′(0)
(U′(0))2

]]
, Z = (ikx)

1/3ξ, (A42a,b)

while d1, d2 are arbitrary constants. The Airy functions Ai(Z) and Bi(Z) are two
fundamental solutions of the homogeneous Airy equation and g(Z) is a particular solution
of (A40). The particular solutions can be expressed in terms of the Scorer functions Gi(Z)
and Hi(Z) (Olver et al. (2010), (9.12.4), (9.12.5))

Gi(Z) = Bi(Z)
∫ ∞

Z
Ai(t) dt + Ai(Z)

∫ Z

0
Bi(t) dt,

Hi(Z) = Bi(Z)
∫ Z

−∞
Ai(t) dt − Ai(Z)

∫ Z

−∞
Bi(t) dt.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (A43)

We look for solutions satisfying the no-stress boundary conditions at ξ = 0 and matching
with the outer solution at ξ → ∞. By setting d2 = 0 we eliminate the divergence in (A41)
as ξ → ∞ due to the term Bi(Z). Thus, we are left with the sum of the Ai component
of the homogeneous solution and a particular solution expressed in terms of the Scorer
functions. The asymptotic behaviour of the Scorer functions for large ξ is (e.g. Olver et al.
(2010), (9.12.25), (9.12.27))

Gi(Z) ∼ 1
πZ

[
1 + 1

Z3

∞∑
n=0

(3n + 2)!
n!(3Z3)n

]
, |ph(Z)| ≤ 1

3
π −Δ

Hi(Z) ∼ − 1
πZ

[
1 + 1

Z3

∞∑
n=0

(3n + 2)!
n!(3Z3)n

]
, |ph(Z eiπ)| ≤ 2

3
π −Δ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
, (A44)

where Δ is an arbitrary small positive constant.
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Thus, both Gi(Z) and Hi(Z) decay as Z−1 as ξ → ∞, but in different sectors of the
complex plane. On the Z-plane the sector of validity for the Scorer function Gi includes
positive wavenumbers kx > 0, but not kx < 0. Therefore, we discard it and retain only the
Hi solution which has a much wider sector of validity, the explicit large ξ expansion given
above is valid for both kx < 0 and kx > 0. Thus, on discarding the contribution of Gi(Z)
we obtain

ˆ̆u1 = B̂Â(k)[αkAi(Z)+ Hi(Z)], (A45)

where

B̂ = π

[
(ikx)

1/3k2
y

k

(
c

U′(0)

)2

+ (ikx)
−2/3

Re∗

[
U′′′(0)
(U′(0))2

]]
. (A46)

Thus, B̂ is determined by the matching condition (A8a), while the unspecified yet arbitrary
constant αk will be determined below by applying the no-stress condition at ξ = 0. To this
end consider the Maclaurin series of Hi(Z) at ξ → 0 (Olver et al. (2010), (9.12.17))

Hi(Z) = 3−2/3

π

∞∑
n=0

Γ

(
n + 1

3

)
(31/3Z)n

n!
, (A47)

where Γ (s) is the gamma function. As ξ → 0 Hi(Z) tends to a constant

Hi(ξ = 0) = 3−2/3

π
Γ

(
1
3

)
= 3−2/3

2π
Γ (1/3) = 2

37/6Γ

(
2
3

) . (A48)

Since in the no-stress case u′ = v′ = 0 at ξ = 0

B̂Â
(
(ikx)

1/3Hi′(Z)+ (ikx)
1/3αkAi′(Z)

)
= 0. (A49)

Hence, we specify coefficient αk by standard renormalization of Airy and Scorer functions
as

αk = − Hi′(Z)
Ai′(Z)

∣∣∣∣
ξ=0

= 2√
3
, Hi′(ξ = 0) = 2

35/6Γ

(
1
3

) ,

Ai′(ξ = 0) = − 1

31/3Γ

(
1
3

) .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A50a–c)

Thus, the solution for ˆ̆u1 is given in closed form by (A45). It is regular everywhere.
The solution is a sum of the Airy function Ai(Z) contributed by the homogeneous Airy
equation and the ‘inhomogeneous’ contribution described by the Scorer function Hi(Z).
The Airy function contribution vanishes as ξ → ∞ and does not contribute to matching
with the outer solution. The Scorer function Hi(Z) for large values of its argument behaves
as Z−1 and is matched with the outer solution at ξ → ∞, which specifies constant B̂ in
(A45). The only role of the Airy function contribution is to satisfy the no-stress conditions
at ξ = 0, which is ensured by our choice of αk.

To summarize our findings in this section, the Airy function Ai(Z) decays exponentially
as ξ → ∞ and does not contribute to matching, while the Scorer function Hi in this limit
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tends to Z−1. Consequently, the solution (A45) is matched to the outer solutions. Thus, the
apparent singularities in the main-deck solutions are eliminated, while the critical layer
contribution to nonlinear evolution in the main deck remains negligible.

A.3.5. Solution for v̆0
In this section we solve the Navier–Stokes equation (A5c) to find the leading-order solution
for the spanwise perturbation velocity v̆0. In contrast to the streamwise velocity component
ŭ1, the spanwise component of velocity v̆0 is unaffected by viscosity, but is modified
by stratification N2

0 via matching with the main deck constant pressure term of ((3.26)).
Therefore, the resulting equation differs from its counterpart in Voronovich et al. (1998)
(see (47))

(∂2
ξξ − ξ∂x)v̆0 = Pxxy − T , P =

(
Umax

U′(0)

)2

( fZ1(0) ∗ ∇−2
⊥ A),

T = N2
0

2(U′(0))2
Ĝ2[Ax].

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (A51a–c)

In the Fourier space the resulting equation (A50a–c) for ˆ̆v0 is the inhomogeneous Airy
equation with the right-hand side independent of ξ

(∂2
ξξ − ξ ikx) ˆ̆v0 = i

[
kyk2

x

k

(
Umax

U′(0)

)2

−
[

N2
0

2(U′(0))2

]
k2

y

kx

]
Â(k). (A52)

This equation can be solved using the method of variation of parameters similarly to
the case for ˆ̆u1 analysed in this appendix (see (A40)). Therefore, to avoid unnecessary
repetition we just give the final form of the spanwise perturbation velocity ˆ̆v0 in the Fourier
space

ˆ̆v0 = −Ψ̂1Â(k)[αkAi(Z)+ Hi(Z)],

Ψ̂1 = π

[
kx

ky(ikx)
1/3

k

(
c

U′(0)

)2

−
[

i1/3N2
0

2(U′(0))2

]
k2

y

k5/3
x

]
,

⎫⎪⎪⎬
⎪⎪⎭ (A53a,b)

where αk is a constant specified in (A50a–c) and Hi(Z) is the Scorer function. This solution
incorporates the homogeneous part of the solution Ai(Z) which is decaying exponentially
to zero as ξ → ∞. Similarly to (A45), the ‘inhomogeneous’ contribution is described by
the Scorer function Hi(Z) which decays as Z−1 for large values of its complex argument.
Thus, when ξ → ∞ the perturbation of streamwise velocity matches the main-deck
solution. The same choice of αk in the solution (A53a,b) specified in (A50a–c) ensures
that no-stress condition at ξ = 0 is satisfied for v̆0 as well.

Matching the derived inner solution of the viscous sub-layer to the outer solution
requires ˆ̆v0(ξ → ∞) ∼ 1/ξ . To perform this, in the standard manner we first re-write
the expression for the main-deck solution in terms of the inner variable ξ using the
relation ξ = z/δ, then substitute it into the expression for v3 of the main deck (see (3.41)).
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By virtue of (A8b)

v̆0(ξ) → (R − Pxy)
1
ξ
, P =

(
Umax

U′(0)

)2 (
fZ1 ∗ ∇−2

⊥ A
)
, R = N2

0
2(U′(0))2

Ĝ3[A].

(A54a–c)

Thus, we have derived solution for v̆0 that satisfies both the boundary and matching
conditions.

A.4. Uniformly valid solutions inside the viscous sub-layer: summary
Here, we summarize the lengthy analysis of the appendix by providing in one place closed
expressions for the uniformly valid solutions. The expressions for the streamwise, spanwise
and cross-boundary perturbation velocities satisfying the matching conditions with the
outer solutions and no-stress boundary conditions given either in the x- or Fourier space
are

w̆0 = Axξ,

ˆ̆w1 = Ĉ
Ai′(0)

[
ξI − (ikx)

1/3Ai′
[
(ikx)

1/3ξ
]

+ (ikx)
1/3Ai′(0)− 1

3(ikx)1/3
ξ

]
,

⎫⎪⎬
⎪⎭ (A55)

where

I =
∫ ξ

0
Ai
[
(ikx)

1/3s2

]
ds2, (A56)

and constant Ĉ(k, T) = F{C} is the Fourier transform of C. Here, C is specified in the
x-space by (A8c)

C =
(

AT −
(

Umax

U′(0)

)2 (
fZ1 ∗ Ax

)+ AAx + 1
Re∗

[
U′′′

0
(U′

0)
2

]
A −

[
N2

0
2(U′(0))2

]
Ĝ2[Ax]

)
.

ŭ0(ξ) = −A,

ˆ̆v0 = −Ψ̂1Â(k)[αkAi(Z)+ Hi(Z)],

Ψ̂1 = π

[
kx

ky(ikx)
1/3

k

(
c

U′(0)

)2

−
[

i1/3N2
0

2(U′(0))2

]
k2

y

k5/3
x

]
.

ˆ̆u1 = B̂Â(k)[αkAi(Z)+ Hi(Z)],

B̂ =
[
(ikx)

1/3k2
y

k

(
c

U′(0)

)2

+ (ikx)
−2/3

Re∗

[
U′′′(0)
(U′(0))2

]]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A57)

A.5. Conclusions
Thus, we derived the inner solution describing dynamics in the critical layer matched
with the main-deck solution. Under the adopted scaling the inner solution represents a
forced motion caused by the dynamics in the main deck through the matching conditions.
It is expressed as nonlinear functional of amplitude A – the amplitude of the main-deck
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perturbation. The uniformly valid expansion (A8a), (A8b), (A8c) we derived describes the
motion in the bulk of the boundary layer, while § (A.4) gives the summary of solutions in
the critical layer.

Note that, here, we examined the motion in the critical layer from a particular view
point: our main aim was to get an uniformly valid asymptotic solution. We showed that
its dynamics does not affect motions in the main deck and, hence, the evolution equation
obtained by applying the no-flux condition at the surface to the main-deck expansion is
correct. However, in other contexts, for example, for detailed comparison with numerics,
the derived explicit inner solution might be also of interest per se.
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