ON CONWAY'S CONJECTURE FOR INTEGER SETS

BY
WILLIAM G. SPOHN, JR.

Let A be a finite set of integers $\left\{a_{i}\right\}$ and $A+A$ denote $\left\{a_{i}+a_{j}\right\}$ with p different members and $A-A$ denote $\left\{a_{i}-a_{j}\right\}$ with m different members, the interesting conjecture of Conway [1] states that $p<m$, unless A is symmetric.

Marica [2] proves:
Theorem A: $p=m$ if A is symmetric.
Theorem B: $p=m=15$ for the nonsymmetric $A=\{0,1,3,4,5,8\}$, counter to Conway's Conjecture.

Theorem C: $p>m$ for $A=\{1,2,3,5,8,9,13,15,16\}$ to further violate the Conjecture. Here $p=30, m=29$.

We present several related conjectures based on numerical evidence. First, note that the a_{i} may be taken as distinct, since we allow $i=j$ in forming $A+A$ and $A-A$. If A consists of the $n+1$ integers $a_{0}<a_{1}<\cdots<a_{n}$, all numbers may be shifted by a constant without changing the values of p and m. Thus the set may be normalized by taking $a_{0}=0$. Then the set A can be characterized by the n positive differences $\left\{d_{i}\right\}$ where $d_{i}=a_{i}-a_{i-1}$. We note further that the values of p and m are unchanged if the d_{i} are multiplied by a constant or are reversed.

Conjecture 1. For nonsymmetric $A, p<m$ for $n<4$.
Example. The set with differences $1,1,2,1$ has $p=m=11$ for $n=4$.
Conjecture 2. $p \leq m$ for $n<8$.
Example. The counterexample in Theorem C has 8 differences $1,1,2,3,1,4$, 2, 1.

Conjecture 3. The smallest value of p for which $p>m$ is 28.
Example. The differences $1,1,2,1,4,3,1,1$ yield $p=28, m=27$.
Conjecture 4. $p \leq m$ if the differences are restricted to 1 's, 2 's, and 3 's.
Conjecture 5. A block of differences beginning and ending with 1 may be repeated any number of times yielding the same value of $p-m$.

Example. The block 1, 1, 2, 1, 4, 3, 1, 1 yields for (p, m) on repetition the values $(28,27),(56,55),(84,83), \ldots$

Corollary. $p>m$ infinitely often.
Conjecture 6. The repetition of certain interior blocks can cause p to be increased by a greater constant than that by which m is increased.

Question. Must the interior block contain at least 3 elements?
Example 1. For the block 1, 1, 2, 1, 4, 3, 2, 2, 1 repetition of the interior block $1,4,3$ gives (p, m) the values $(34,33),(50,47),(66,61), \ldots$. The limiting value of p / m is $8 / 7$.

Corollary. $p-m$ can be arbitrarily large.
Example 2. For the block $1,1,3,1,2,1,5,7,1,1,3,1,2,1$ repetition of the interior block $1,5,7,1$ gives (p, m) the values $(61,57),(89,81),(117,105), \ldots$. The limiting value of p / m is $7 / 6$.

Example 3. For the block $1,1,2,1,4,3,1,4,4,3,1,4,4,3,1,4,3,2,2,1$ repetition of the interior block $4,4,3,1,4$ gives (p, m) the values $(94,87),(126,113)$, $(158,139), \ldots$ The limiting value of p / m is $16 / 13$. From this Example, on repetition of the interior block 652 times or more, follows the

Theorem. There exist sets for which $p / m>1.23$.

References

1. J. H. Conway, Problem 7 of Section VI of H. T. Croft's Research problems, mimeographed notes, Cambridge, August, 1967.
2. J. Marica, On a conjecture of Conway, Canad. Math. Bull. 12 (1969), 233-234.

Johns Hopkins University, Appled Physics Laboratory, Silver Spring, Maryland

