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Wave turbulence is the study of the long-time statistical behaviour of equations describing
a set of weakly nonlinear interacting waves. Such a theory, which has a natural asymptotic
closure, allows us to probe the nature of turbulence more deeply than the exact
Kolmogorov laws by rigorously proving the direction of the cascade and the existence
of an inertial range, predicting stationary spectra for conserved quantities, or evaluating
the Kolmogorov constant. An emblematic example is given by fast rotating fluids for
which a wave turbulence theory has been derived by Galtier (Phys. Rev. E, vol. 68,
issue 1, 2003, p. 015301). This work involves non-trivial analytical developments for a
problem that is anisotropic by nature. We propose here a new path for the derivation
of the kinetic equation by using the anisotropy at the beginning of the analysis. We
show that the helicity basis is not necessary to obtain the wave amplitude equation for
the canonical variables that involve a combination of poloidal and toroidal fields. The
multiple time scale method adapted to this anisotropic problem is then used to derive
the kinetic equation that is the same as the original work when anisotropy is eventually
taken into account. This result proves the commutativity between asymptotic closure and
anisotropy. In addition, the multiple time scale method informs us that the kinetic equation
can be derived without imposing restrictions on the probability distribution of the wave
amplitude such as quasi-Gaussianity, or on the phase such as random phase approximation
that naturally occurs dynamically.

Key words: rotating turbulence, wave-turbulence interactions, homogeneous turbulence

1. Introduction

As we celebrate two hundred years of the Navier–Stokes equations, it is remarkable to
note that hydrodynamic turbulence is still a much studied subject. Among the different
fields of study, there is wave turbulence that has become important in geophysics and
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astrophysics where waves are omnipresent (Galtier 2023b). The strength of the (weak)
wave turbulence theory is that it offers the possibility of a deep understanding of physical
systems composed of a set of random waves interacting nonlinearly. The reason for this is,
first of all, the possibility of analytically deriving a set of integro-differential equations for
second-order spectral cumulants – the so-called kinetic equations – which are free from the
closure problem classically encountered in eddy turbulence. Indeed, in wave turbulence
there is a natural asymptotic closure rooted on the existence of a small parameter, the
wave amplitude. Secondly, exact solutions (Kolmogorov–Zakharov spectra) can be found
from the kinetic equations. In addition to the usual thermodynamic solutions, the kinetic
equations have finite flux solutions that capture the flow of conserved densities from
sources to sinks. Thirdly, these solutions correspond to power law spectra that can be
compared with the data. The number of experiments, observations and diagnostics have
increased considerably over the past two decades and today, thanks also to direct numerical
simulations (DNS), wave turbulence has become a leading field in turbulence where new
fundamental questions are being raised (Galtier & Nazarenko 2017; Hassaini & Mordant
2017; Hassaini et al. 2019; Savaro et al. 2020; Galtier & Nazarenko 2021; Ricard & Falcon
2021; David & Galtier 2022; Falcon & Mordant 2022; Griffin et al. 2022; Hrabski & Pan
2022; Kochurin & Kuznetsov 2022; Onorato et al. 2022; Rodda et al. 2022; Zhang & Pan
2022; Dematteis & Lvov 2023; Galtier 2023a; Lanchon et al. 2023; Novkoski, Pham &
Falcon 2023; Zhu et al. 2023).

Rotating fluids are one of the most studied examples in (strong/weak) wave turbulence
as it involves inertial waves that are easy to excite experimentally (Hopfinger, Gagne &
Browand 1982; Jacquin et al. 1990; Morize, Moisy & Rabaud 2005). This regime is of
interest in a number of fields such as geophysics where the Coriolis force is felt, for
example, through large-scale atmospheric motions. Very early, it was recognized that
rotating turbulence behaves differently from classical eddy turbulence with a reduction
of the cascade along the axis of rotation Ω0 with possibly a steeper energy spectrum than
the well-known Kolmogorov spectrum (Hossain 1994; Zeman 1994; Zhou 1995; Cambon,
Mansour & Godeferd 1997; Smith & Waleffe 1999; Baroud et al. 2002; Godeferd & Moisy
2015). Another remarkable feature, still not understood, is the self-similarity found in the
scaling of velocity structure functions in the direction transverse to Ω0 = Ω0e‖ (Baroud
et al. 2002; van Bokhoven et al. 2009), which is in strong contrast with intermittency
observed in hydrodynamic turbulence. In recent years, the (weak) inertial wave turbulence
regime has been specifically studied experimentally (Yarom & Sharon 2014; Monsalve
et al. 2020). For example, it was shown that the energy spectrum is concentrated along the
dispersion relation, as expected in wave turbulence, with a scaling in agreement with the
theoretical prediction. Numerical simulations (including DNS) have also been carried out,
notably to study the spectral properties (Bellet et al. 2006; Scott 2014; Clark di Leoni &
Mininni 2016; Le Reun et al. 2017; Sharma, Verma & Chakraborty 2018; Galtier & David
2020; Le Reun, Favier & Le Bars 2020; Yokoyama & Takaoka 2021). They confirm the
previous experimental and theoretical results and reveal, for example, the existence of a
non-stationary solution different from the stationary Kolmogorov–Zakharov spectrum.

The theory of inertial wave turbulence has been derived by Galtier (2003). The kinetic
equation obtained is valid in the most general case, i.e. without making the assumption
of anisotropy. However, a simple argument based on the resonance condition shows that
the cascade is anisotropic with a transfer mainly in the perpendicular (⊥) direction to
Ω0. Using this feature, the kinetic equation was eventually reduced to the axisymmetric
case from which the exact (Kolmogorov–Zakharov) energy spectrum was derived. This
solution takes the form E(k⊥, k‖) ∼ k−5/2

⊥ k−1/2
‖ , with k = k⊥ + k‖e‖ the wavevector.
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Multiple time scale approach for inertial waves

As recently proved by David & Galtier (2023), this energy spectrum corresponds to a local
turbulence (with an inertial range independent of the largest and smallest scale) for which
we can also estimate the Kolmogorov constant. The derivation of the kinetic equation
of inertial wave turbulence in the general case (without the axisymmetry assumption) is
cumbersome and the use of the Hamiltonian formalism does not drastically simplify the
calculation (Gelash, L’vov & Zakharov 2017). Here, it is proposed to take another path for
the derivation of such an equation by using the anisotropy assumption (k⊥ � k‖) at the
beginning of the analysis. As shown in § 2, in this case the wave amplitude equation can
be obtained without the introduction of a complex helicity basis, which is an interesting
simplification: the velocity field is decomposed into poloidal and toroidal fields from
which we can define the canonical variables. In § 3 the multiple time scale method
introduced by Benney & Saffman (1966) is adapted (a few points are also clarified) to
this anisotropic problem and then used to derive such a kinetic equation that is the same
as the original work when anisotropy is finally taken into account. This result shows the
commutativity between asymptotic closure and anisotropy. Furthermore, the multiple time
scale method informs us that the kinetic equation (of weak wave turbulence) can be derived
without imposing restrictions on the probability distribution of the wave amplitude such
as quasi-Gaussianity, or on the phase such as random phase approximation that naturally
occurs dynamically. Finally, we conclude with a discussion in § 4.

2. Wave amplitude equation

2.1. Canonical variables
The Navier–Stokes equations with the Coriolis force read

∂w
∂t

− 2(Ω0 · ∇)u = (w · ∇)u − (u · ∇)w + ν∇2w, (2.1)

where u is a solenoidal velocity (∇ · u = 0), w = ∇ × u the vorticity and Ω0 a constant
rotation rate. Hereafter, we neglect the viscosity. We introduce the toroidal (ψ) and
poloidal (φ) scalar fields in the following manner:

u = ∇ × (ψe‖)+ ∇ × (∇ × (φe‖)). (2.2)

Here the Fourier transform writes

ûk = iψ̂kk × e‖ − φ̂kk × (k × e‖) = iψ̂kk × e‖ + φ̂k(k2e‖ − k‖k), (2.3)

from which we deduce the vorticity vector (|k| = k)

ŵk = ψ̂k(k2e‖ − k‖k)+ ik2φ̂kk × e‖. (2.4)

It is straightforward to show in Fourier space that the linear contribution of (2.1) leads,
after projection, to

∂φ̂k

∂t
= 2iΩ0

k‖
k2 ψ̂k, (2.5a)

∂ψ̂k

∂t
= 2iΩ0k‖φ̂k. (2.5b)

The linear solutions are the well-known (helical) inertial waves with the angular frequency
(∂2

t = −ω2
k can be used)

ω2
k = 4Ω2

0

k2
‖

k2 . (2.6)
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S. Galtier

From this property, we introduce the canonical variables

As
k ≡ As(k) = k2φ̂k − skψ̂k, (2.7)

with s = ± the directional polarity. With such a choice of canonical variables, we have

|A+
k |2 + |A−

k |2 = 2|ûk|2 (2.8)

and at the linear level
∂As

k
∂t

+ isωkAs
k = 0. (2.9)

2.2. Resonance condition
The resonance condition for three-wave interactions can be written as (Galtier 2023b)

sωk + spωp + sqωq = 0, (2.10a)

k + p + q = 0. (2.10b)

In the case of inertial waves, these relations are equivalent to the conditions

sqq − spp
sωk

= sk − sqq
spωp

= spp − sk
sqωq

. (2.11)

Assuming that the system is initially excited at large scale in a narrow isotropic domain
in Fourier space, a situation often considered in DNS, the dynamics will initially be
dominated by local interactions such that k � p � q. As the locality of the interactions
is a property of turbulence that is generally verified, we can extend its use beyond the
initial instant. We obtain

sq − sp

sk‖
� s − sq

spp‖
� sp − s

sqq‖
. (2.12)

From this expression, we can show that the associated cascade is necessarily anisotropic.
Indeed, if k‖ is non-zero, the left-hand term will only give a non-negligible contribution
when sp = −sq. The immediate consequence is that either the middle or the right-hand
term has its numerator that cancels (to leading order), which implies that the associated
denominator must also cancel (to leading order) to satisfy the equality: for example, if s =
sp then q‖ � 0. This condition means that the transfer in the parallel direction is negligible:
indeed, the integration of the wave amplitude equation in the parallel direction (see below)
is then reduced to a few modes (since p‖ � k‖), which strongly limits the transfer between
parallel modes. The cascade in the parallel direction is thus possible but relatively weak
compared with that in the perpendicular direction. In the following, we take advantage of
this property and consider the anisotropic limit k⊥ � k‖ to simplify the derivation. Note
that once turbulence is anisotropic, we can still use the locality condition with k ∼ k⊥;
we then obtain k⊥ ∼ p⊥ ∼ q⊥, whereas the parallel wavenumbers are limited to a narrow
domain.

2.3. Wave amplitude equation
In the derivation of the wave amplitude equation, we consider a continuous medium that
can lead to mathematical difficulties connected with infinite dimensional phase spaces.
For this reason, it is preferable to assume a variable spatially periodic over a box of finite
size L. However, in the derivation of the kinetic equation, the limit L → +∞ is finally
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taken (before the long-time limit, or equivalently, the limit ε → 0). As both approaches
lead to the same kinetic equation, for simplicity, we anticipate this result and follow the
original approach of Benney & Saffman (1966). Note that the anisotropic limit (k⊥ � k‖)
will also be taken before the (asymptotic) long-time limit.

The first nonlinear term of (2.1) writes

̂(w · ∇)uk = i
∫
(ŵp · q)ûqδk,pq dp dq

= i
∫

[iφ̂pφ̂qp2(q · (p × e‖))(q2e‖ − q‖q)− φ̂pψ̂qp2(q · (p × e‖))(q × e‖)

− ψ̂pφ̂q(p‖p · q − p2q‖)(q2e‖ − q‖q)− iψ̂pψ̂q(p‖p · q − p2q‖)(q × e‖)]
× δk,pq dp dq, (2.13)

with δk,pq ≡ δ(k − p − q). In the anisotropic limit (k⊥ � k‖), the following first
simplification arises

̂(w · ∇)uk = i
∫

[iφ̂pφ̂qp2
⊥q2

⊥(e‖ · (q⊥ × p⊥))e‖ − φ̂pψ̂qp2
⊥(e‖ · (q⊥ × p⊥))(q⊥ × e‖)

− ψ̂pφ̂qq2
⊥(p‖p⊥ · q⊥ − p2

⊥q‖)e‖ − iψ̂pψ̂q(p‖p⊥ · q⊥ − p2
⊥q‖)(q⊥ × e‖)]

× δk,pq dp dq. (2.14)

The second nonlinear term of (2.1) reads

̂(u · ∇)wk = i
∫
(ûp · q)ŵqδk,pq dp dq

= i
∫

[iφ̂pφ̂q(p2q‖ − p‖p · q)q2(q × e‖)

+ φ̂pψ̂q(p2q‖ − p‖p · q)(q2e‖ − q‖q)

− ψ̂pφ̂q(q · (p × e‖))q2(q × e‖)

+ iψ̂pψ̂q(q · (p × e‖))(q2e‖ − q‖q)]

× δk,pq dp dq, (2.15)

which simplifies in the anisotropic limit to

̂(u · ∇)wk = i
∫

q2
⊥[iφ̂pφ̂q(p2

⊥q‖ − p‖p⊥ · q⊥)(q⊥ × e‖)

+ φ̂pψ̂q(p2
⊥q‖ − p‖p⊥ · q⊥)e‖

− ψ̂pφ̂q(e‖ · (q⊥ × p⊥))(q⊥ × e‖)+ iψ̂pψ̂q(e‖ · (q⊥ × p⊥))e‖]

× δk,pq dp dq. (2.16)
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The addition of these two nonlinear contributions leads to the simplified expression

N̂L(k) = ̂(w · ∇)uk − ̂(u · ∇)wk

=
∫
φ̂pφ̂qp2

⊥q2
⊥(e‖ · (p⊥ × q⊥))e‖δk,pq dp dq

+ i
∫
φ̂pψ̂qp2

⊥(e‖ · (p⊥ × q⊥))(q⊥ × e‖)δk,pq dp dq

− i
∫
ψ̂pφ̂qq2

⊥(e‖ · (p⊥ × q⊥))(q⊥ × e‖)δk,pq dp dq

−
∫
ψ̂pψ̂qq2

⊥(e‖ · (p⊥ × q⊥))e‖δk,pq dp dq. (2.17)

The introduction of the canonical variables

ψ̂k = − 1
2k⊥

∑
s

sAs
k, (2.18a)

φ̂k = 1
2k2

⊥

∑
s

As
k, (2.18b)

gives

N̂L(k) = 1
4

∑
spsq

∫
A

sp
p A

sq
q (e‖ · (p⊥ × q⊥))e‖δk,pq dp dq

− i
4

∑
spsq

∫
A

sp
p A

sq
q

sq

q⊥
(e‖ · (p⊥ × q⊥))(q⊥ × e‖)δk,pq dp dq

+ i
4

∑
spsq

∫
A

sp
p A

sq
q

sp

p⊥
(e‖ · (p⊥ × q⊥))(q⊥ × e‖)δk,pq dp dq

− 1
4

∑
spsq

∫
A

sp
p A

sq
q spsq

q⊥
p⊥
(e‖ · (p⊥ × q⊥))e‖δk,pq dp dq. (2.19)

The dummy variables p, q and sp, sq can be exchanged to symmetrise the equation; we find
that

N̂L(k) = 1
8

∑
spsq

∫
A

sp
p A

sq
q

e‖ · (p⊥ × q⊥)
p⊥q⊥

( p2
⊥ − q2

⊥)spsqe‖δk,pq dp dq

+ i
8

∑
spsq

∫
A

sp
p A

sq
q

e‖ · (p⊥ × q⊥)
p⊥q⊥

(spq⊥ − sqp⊥)(k⊥ × e‖)δk,pq dp dq. (2.20)

Coming back to the wave amplitude equation, we can write(
∂ψ̂k

∂t
− 2iΩ0k‖φ̂k

)
k2
⊥e‖ +

(
ik2

⊥
∂φ̂k

∂t
+ 2Ω0k‖ψ̂k

)
k × e‖ = N̂L(k); (2.21)
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Multiple time scale approach for inertial waves

therefore, after projection and use of the dispersion relation, we obtain

∂ψ̂k

∂t
− iωkk⊥φ̂k =

∑
spsq

∫
A

sp
p A

sq
q

e‖ · (p⊥ × q⊥)
8k2

⊥p⊥q⊥
( p2

⊥ − q2
⊥)spsqδk,pq dp dq, (2.22a)

∂φ̂k

∂t
− iωk

ψ̂k

k⊥
=
∑
spsq

∫
A

sp
p A

sq
q

e‖ · (p⊥ × q⊥)
8k2

⊥p⊥q⊥
(spq⊥ − sqp⊥)δk,pq dp dq. (2.22b)

With the introduction of the canonical variables (2.7), the weighted addition of the
previous expressions gives

∂As
k

∂t
+ isωkAs

k =
∑
spsq

∫
sspsq

e‖ · (p⊥ × q⊥)
8k⊥p⊥q⊥

(q2
⊥ − p2

⊥ + sk⊥(sqq⊥ − spp⊥))

× A
sp
p A

sq
q δk,pq dp dq. (2.23)

Remarking that
q2
⊥ − p2

⊥ = (sqq⊥ − spp⊥)(spp⊥ + sqq⊥), (2.24)

we can rearrange the expression in the following manner:

∂As
k

∂t
+ isωkAs

k =
∑
spsq

∫
sspsq

e‖ · (p⊥ × q⊥)
8k⊥p⊥q⊥

(sqq⊥ − spp⊥)(sk⊥ + spp⊥ + sqq⊥)

× A
sp
p A

sq
q δk,pq dp dq. (2.25)

We introduce the interaction representation for waves of weak amplitude (0 < ε � 1)

As
k = εas

k exp(−isωkt), (2.26)

and eventually get the wave amplitude equation after a few last manipulations,

∂as
k

∂t
= ε

∑
spsq

∫
L

sspsq
kpq a

sp
p a

sq
q exp(iΩk,pqt)δk,pq dp dq, (2.27)

with Ωk,pq ≡ sωk − spωp − sqωq and

L
sspsq
kpq ≡ ωk

e‖ · (p⊥ × q⊥)
8k⊥p⊥q⊥

spsq

(
sqq⊥ − spp⊥

sωk

)
(sk⊥ + spp⊥ + sqq⊥). (2.28)

Expression (2.28) satisfies the following properties (relation (2.11) is used):

L
sspsq
0pq = 0, (2.29a)

L
ssqsp
kqp = L

sspsq
kpq , (2.29b)

L
spssq
pkq = −spωp

sωk
L

sspsq
kpq , (2.29c)

L
−s−sp−sq
kpq = −L

sspsq
kpq , (2.29d)

L
sspsq
−kpq = L

sspsq
kpq , (2.29e)

L
sspsq
−k−p−q = L

sspsq
kpq . (2.29f )

The wave amplitude equation (2.27) governs the slow evolution of inertial waves of weak
amplitude in the anisotropic limit. It is a quadratic nonlinear equation that corresponds to
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the interactions between waves propagating along p and q, in the positive (sp, sq > 0) or
negative (sp, sq < 0) direction. The multiple time scale method introduced in the next
section is based on this expression. The symmetries listed above will also be used to
simplify the derivation of the kinetic equation. Unlike the original derivation by Galtier
(2003), expression (2.27) has been derived without going through a complex helicity
basis. The wave amplitude equation tells us that the nonlinear coupling between the states
associated with the wavevectors p⊥ and q⊥ vanishes when these wavevectors are collinear.
Moreover, we note that the nonlinear coupling disappears when the wavenumbers p⊥ and
q⊥ are equal if their associated directional polarities, sp and sq, are also equal. These are
general properties for helical waves (Kraichnan 1973; Waleffe 1992; Turner 2000; Galtier
2003, 2006, 2014).

3. Asymptotic sequential closures

The method outlined here was first proposed by Benney & Saffman (1966) for three-wave
interactions, but to our knowledge it has never been explicitly applied to a physical system.
In fact, originally the main motivation for such a development was four-wave interactions
that describe gravity waves (Hasselmann 1962; Newell 1968), and for which the main
prediction of wave turbulence (Kolmogorov–Zakharov spectrum) is now well observed
(Lenain & Melville 2017).

Unlike the classical perturbation analysis, the multiple time scale method is based on the
existence of a sequence of time scales, T0, T1, T2, . . ., with by definition (Nayfeh 2004)

T0 ≡ t, T1 ≡ εt, T2 ≡ ε2t, . . . . (3.1)

Because of the weak dependence in t of T1, T2, . . ., all these variables will be treated
(it is an approximation) as independent. Furthermore, the smaller ε is, the better the
approximation. The variation of the wave amplitude with T1 and T2 represents the slow
variation that we wish to extract. (In practice, our analysis will be limited to O(ε2).) Using
the chain rule, we obtain (T0 being replaced by t)(

∂

∂t
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ · · ·

)
as

k = ε
∑
spsq

∫
L

sspsq
kpq a

sp
p a

sq
q exp(iΩk,pqt)δk,pq dp dq. (3.2)

The variable as
k must also be expanded to the power of ε to make the various scales appear

in time,

as
k =

+∞∑
n=0

εnas
k,n(t, T1, T2, . . .) = as

k,0 + εas
k,1 + ε2as

k,2 + · · · . (3.3)

Expression (3.3) is then introduced into the fundamental equation (3.2); we obtain, for the
first three terms,

∂as
k,0

∂t
= 0, (3.4a)

∂as
k,1

∂t
= −∂as

k,0

∂T1
+
∑
spsq

∫
L

sspsq
kpq a

sp
p,0a

sq
q,0 exp(iΩk,pqt)δk,pq dp dq, (3.4b)

∂as
k,2

∂t
= −∂as

k,1

∂T1
− ∂as

k,0

∂T2
+
∑
spsq

∫
L

sspsq
kpq

[
a

sp
p,1a

sq
q,0 + a

sp
p,0a

sq
q,1

]
exp(iΩk,pqt)δk,pq dp dq.

(3.4c)
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Multiple time scale approach for inertial waves

To lighten the writing, the time dependency of the variables has been omitted. After
integration on t, one finds that

as
k,0 = as

k,0(T1, T2, . . .), (3.5a)

as
k,1 = −t

∂as
k,0

∂T1
+ bs

k,1, (3.5b)

as
k,2 = t2

2

∂2as
k,0

∂T2
1

− t
∂as

k,0

∂T2
−
∫ t

0

∂bs
k,1

∂T1
dt + b̃s

k,2, (3.5c)

with by definition

bs
k,1 ≡

∑
spsq

∫
L

sspsq
kpq a

sp
p,0a

sq
q,0Δ(Ωk,pq)δk,pq dp dq, (3.6)

Δ(X) ≡
∫ t

0
eiXt dt = eiXt − 1

iX
, (3.7)

and

b̃s
k,2 ≡

∑
spsq

∫
L

sspsq
kpq

∫ t

0

[
a

sp
p,1a

sq
q,0 + a

sp
p,0a

sq
q,1

]
exp(iΩk,pqt) dtδk,pq dp dq. (3.8)

The previous equation is modified when expression (3.5b) is introduced; one finds that

b̃s
k,2 = −

∑
spsq

∫
L

sspsq
kpq

∂(a
sp
p,0a

sq
q,0)

∂T1

(∫ t

0
t exp(iΩk,pqt) dt

)
δk,pq dp dq

+
∑
spsq

∫
L

sspsq
kpq

(∫ t

0
(b

sp
p,1a

sq
q,0 + b

sq
q,1a

sp
p,0) exp(iΩk,pqt) dt

)
δk,pq dp dq. (3.9)

Expression (3.5c) becomes

as
k,2 = t2

2

∂2as
k,0

∂T2
1

− t
∂as

k,0

∂T2
+ bs

k,2, (3.10)

with

bs
k,2 = −

∑
spsq

∫
L

sspsq
kpq

∂(a
sp
p,0a

sq
q,0)

∂T1

(∫ t

0

[
Δ(Ωk,pq)+ t exp(iΩk,pqt)

]
dt
)
δk,pq dp dq

+
∑

spsqsp′ sq′

∫
2L

sspsq
kpq L

spsp′ sq′
pp′q′ a

sp′
p′,0a

sq′
q′,0a

sq
q,0

(∫ t

0
Δ(Ωp,p′q′) exp(iΩk,pqt) dt

)
× δk,pqδp,p′q′ dp dq dp′ dq′. (3.11)

The time integrals give the relations∫ t

0

[
Δ(Ωk,pq)+ t exp(iΩk,pqt)

]
dt = tΔ(Ωk,pq), (3.12)∫ t

0
Δ(Ωp,p′q′) exp(iΩk,pqt) dt = Δ(Ωk,p′q′q)− Δ(Ωk,pq)

i(Ωk,p′q′q −Ωk,pq)
, (3.13)

that will be used below in the long-time limit.
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S. Galtier

3.1. First asymptotic closure at time T1

With the previous definitions, the perturbative expansion of the second-order moment
writes

〈as
kas′

k′ 〉 = 〈(as
k,0 + εas

k,1 + ε2as
k,2 + · · · )(as′

k′,0 + εas′
k′,1 + ε2as′

k′,2 + · · · )〉
= 〈as

k,0as′
k′,0〉 + ε〈as

k,0as′
k′,1 + as

k,1as′
k′,0〉

+ ε2〈as
k,0as′

k′,2 + as
k,1as′

k′,1 + as
k,2as′

k′,0〉 + · · · , (3.14)

where 〈〉 denotes the ensemble average. We shall assume that this turbulence is statistically
homogeneous. In this case, the second-order moment can be written in terms of the
second-order cumulant, qss′(k,k′) ≡ qss′

k , such that

〈as
kas′

k′ 〉 = qss′
k δ(k + k′), (3.15)

where the presence of δ(k + k′) is the consequence of the statistical homogeneity (Galtier
2023b). We have to adapt the original formalism developed for isotropic problems (Benney
& Saffman 1966) to this anisotropic case where the dispersion relation depends not only
on the wavenumber k but also on the component k‖. In this case, a contribution from qss′ is
only relevant if s = s′, whereas it is for s = −s′ in the case of an isotropic problem. (With
such conditions qss′

k is real.) We assume – and this is the basic idea of the method – that
the second-order moment (in fact, the coefficient qss′

k in front of the delta function) on the
left-hand side of expression (3.14) remains bounded at all time (Benney & Saffman 1966).
As an example, we can think of the energy spectrum that, as we know, remains physically
bounded. Therefore, the contributions on the right-hand side must also be bounded at each
order in ε. We will see that secular terms can appear at different orders in ε; this leads to
certain conditions to cancel their contributions to keep the development uniform in time.
As we shall see, at order O(ε2) this condition leads to the so-called kinetic equations. The
main problem is therefore to account for all the secular contributions.

At order O(ε0), we have the contribution of 〈as
k,0as′

k′,0〉 that will therefore be assumed to
be bounded at all times.

At order O(ε1), we have the contribution

〈as
k,0as′

k′,1 + as
k,1as′

k′,0〉 =
〈

as
k,0

(
−t
∂as′

k′,0
∂T1

+ bs′
k′,1

)
+
(

−t
∂as

k,0

∂T1
+ bs

k,1

)
as′

k′,0

〉

= −t
∂

∂T1
〈as

k,0as′
k′,0〉 + 〈as

k,0bs′
k′,1〉 + 〈bs

k,1as′
k′,0〉. (3.16)

The first term on the right-hand side gives a secular contribution proportional to t. For the
second term, we have∑

spsq

∫
L

sspsq
kpq 〈as

k,0a
sp
p,0a

sq
q,0〉Δ(Ωk,pq)δk,pq dp dq. (3.17)

The long-time limit (t � 1/ω) of this oscillating integral will be given by the
Riemann–Lebesgue lemma (the proof requires the use of generalized functions)

Δ(X) = eiXt − 1
iX

t → +∞−−−−−→ πδ(X)+ iP
(

1
X

)
, (3.18)
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Multiple time scale approach for inertial waves

where P is the Cauchy principal value of the integral. Therefore, the long-time limit of
expression (3.17) gives no secular contribution. The same conclusion is obtained for the
third term of expression (3.16). Also, the condition to cancel the unique secular term is

∂〈as
k,0as′

k′,0〉
∂T1

= 0, (3.19)

which means that the second-order moment does not evolve over a time scale T1. As will be
seen later, a turbulent cascade in inertial wave turbulence is only expected on a time scale
T2. (Here we have a point of disagreement with expression (2.43) in Benney & Saffman
(1966): it is not correct, but this has no impact on the rest of the paper.)

3.2. Second asymptotic closure at time T2

The analysis continues at order O(ε2). With expression (3.10), the next contribution reads

〈as
k,1as′

k′,1 + as
k,0as′

k′,2 + as
k,2as′

k′,0〉 =
〈(

−t
∂as

k,0

∂T1
+ bs

k,1

)(
−t
∂as′

k′,0
∂T1

+ bs′
k′,1

)〉

+
〈

as
k,0

(
t2

2

∂2as′
k′,0

∂T2
1

− t
∂as′

k′,0
∂T2

+ bs′
k′,2

)
+ as′

k′,0

(
t2

2

∂2as
k,0

∂T2
1

− t
∂as

k,0

∂T2
+ bs

k,2

)〉
,

(3.20)

which gives after development and simplifications

〈as
k,1as′

k′,1 + as
k,0as′

k′,2 + as
k,2as′

k′,0〉 = t2

2

∂2〈as
k,0as′

k′,0〉
∂T2

1
− t

∂〈as
k,0as′

k′,0〉
∂T2

+ 〈bs
k,1bs′

k′,1〉

− t

〈
∂as

k,0

∂T1
bs′

k′,1 + bs
k,1

∂as′
k′,0
∂T1

〉
+ 〈as

k,0bs′
k′,2 + as′

k′,0bs
k,2〉. (3.21)

The first term on the right-hand side cancels over the long time as required by the first
asymptotic closure. The second term gives a secular contribution. The other three terms
can potentially give a secular contribution: it is obvious for the fourth term and non-trivial
for the third and fifth terms that require further development.

The third term on the right-hand side writes〈
bs

k,1bs′
k′,1

〉
=

∑
spsqsp′ sq′

∫
L

sspsq
kpq L

s′sp′ sq′
k′p′q′ 〈asp

p,0a
sq
q,0a

sp′
p′,0a

sq′
q′,0〉Δ(Ωk,pq)Δ(Ωk′,p′q′)

× δk,pqδk′,p′q′ dp dq dp′ dq′. (3.22)

Here again, the theory of generalized functions gives us the long-time behaviour of this
oscillating integral (with the Poincaré–Bertrand formula – see, e.g. Benney & Newell
1969),

Δ(X)Δ(−X)
t → +∞−−−−−→ 2πtδ(X)+ 2P

(
1
X

)
∂

∂X
. (3.23)

Therefore, a secular contribution (proportional to t) involving a Dirac function is possible.
The fourth-order moment in expression (3.22) can be decomposed into products of
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S. Galtier

second-order cumulant plus a fourth-order cumulant such that (the statistical homogeneity
is used as well as 〈as

k,0〉 = 0)

〈asp
p,0a

sq
q,0a

sp′
p′,0a

sq′
q′,0〉 = q

spsqsp′ sq′
pqp′,0 δ(p + q + p′ + q′)+ q

spsq
p,0 q

sp′ sq′
p′,0 δ(p + q)δ(p′ + q′)

+ q
spsp′
p,0 q

sqsq′
q,0 δ(p + p′)δ(q + q′)+ q

spsq′
p,0 q

sqsp′
q,0 δ(p + q′)δ(q + p′). (3.24)

Note that according to expression (3.14) by homogeneity we also have the relation k =
−k′. We obtain

〈bs
k,1bsk′

k′,1〉 =
∑

spsqsp′ sq′

∫
L

sspsq
kpq L

s′sp′ sq′
k′p′q′

[
q

spsqsp′ sq′
pqp′,0 δ(p + q + p′ + q′)

+ q
spsq
p,0 q

sp′ sq′
p′,0 δ(p + q)δ(p′ + q′)+ q

spsp′
p,0 q

sqsq′
q,0 δ(p + p′)δ(q + q′)

+ q
spsq′
p,0 q

sqsp′
q,0 δ(p + q′)δ(q + p′)

]
Δ(Ωk,pq)Δ(Ωk′,p′q′)δk,pqδk′,p′q′ dp dq dp′ dq′. (3.25)

We are looking for secular contributions. In the second line the first term does not
contribute since it imposes k = 0 that cancels L

sspsq
kpq , but the second term can contribute

(in this anisotropic problem) when the conditions sp = sp′ and sq = sq′ are satisfied.
Likewise, in the third line a contribution is possible when sp = sq′ and sq = sp′ . There
is no contribution from the first line, which means that the situation is the same as if the
distribution were Gaussian (however, we do not make this assumption). In summary, in the
long-time limit the secular contribution, written Ct〈bs

k,1bs′
k′,1〉, is

Ct〈bs
k,1bs′

k′,1〉 = 4πt
∑
spsq

∫
L

sspsq
kpq L

sspsq
k−p−qq

spsp
p,0 q

sqsq
q,0 δ(Ωk,pq)δk,pqδkk′ dp dq

= 4πt
∑
spsq

∫
|Lsspsq

kpq |2q
spsp
p,0 q

sqsq
q,0 δ(Ωk,pq)δk,pqδkk′ dp dq. (3.26)

The fourth term on the right-hand side of (3.21) does not contribute over the long time
because it depends on the T1 derivative. The proof is given by a new relation involving the
n-order moments that can be written as

〈as
kas′

k′as′′
k′′ · · · 〉 = 〈as

k,0as′
k′,0as′′

k′′,0 · · · 〉
+ ε〈as

k,1as′
k′,0as′′

k′′,0 · · · + as
k,0as′

k′,1as′′
k′′,0 · · · + as

k,0as′
k′,0as′′

k′′,1 · · · .+ · · · .〉
+ ε2〈· · · .〉 + · · · . (3.27)

As for the second-order moment, we demand that the moments (i.e. the coefficients in
front of the delta functions) of order n are bounded. At order O(ε), we obtain the relation

〈as
k,1as′

k′,0as′′
k′′,0 · · · + as

k,0as′
k′,1as′′

k′′,0 · · · + as
k,0as′

k′,0as′′
k′′,1 · · · + · · · 〉

=
〈(

−t
∂as

k,0

∂T1
+ bs

k,1

)
as′

k′,0as′′
k′′,0 · · · + as

k,0

(
−t
∂as′

k′,0
∂T1

+ bs′
k′,1

)
as′′

k′′,0 · · · + · · ·
〉

= −t
∂〈as

k,0as′
k′,0as′′

k′′,0 · · · 〉
∂T1

+ 〈bs
k,1as′

k′,0as′′
k′′,0 · · · 〉 + 〈as

k,0bs′
k′,1as′′

k′′,0 · · · 〉 + · · · . (3.28)

974 A24-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

82
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.825


Multiple time scale approach for inertial waves

Only the first term of the last line gives a secular contribution over the long time, which
means that we have to impose the asymptotic condition

∂〈as
k,0as′

k′,0as′′
k′′,0 · · · 〉

∂T1
= 0, (3.29)

at any order n. Therefore, the probability density function does not depend on T1 and we
can assume that the variable itself does not depend on T1. (It is a mild hypothesis because it
is difficult to imagine a turbulent system where everything fluctuates, and in which it would
be possible to have a T1 dependence for the amplitude whereas the probability density
function has no such dependence.) This shows that the fourth term on the right-hand side
of (3.21) does not contribute in the long time.

The last term of (3.21) writes

〈as
k,0bs′

k′,2 + as′
k′,0bs

k,2〉 =
∑

spsqsp′ sq′

∫
2L

s′spsq
k′pq L

spsp′ sq′
pp′q′ 〈as

k,0a
sp′
p′,0a

sq′
q′,0a

sq
q,0〉

×
(

Δ(Ωk′,p′q′q)− Δ(Ωk′,pq)

i(Ωk′,p′q′q −Ωk′,pq)

)
δk′,pqδp,p′q′ dp dq dp′ dq′

+
∑

spsqsp′ sq′

∫
2L

sspsq
kpq L

spsp′ sq′
pp′q′ 〈as′

k′,0a
sp′
p′,0a

sq′
q′,0a

sq
q,0〉

(
Δ(Ωk,p′q′q)− Δ(Ωk,pq)

i(Ωk,p′q′q −Ωk,pq)

)
× δk,pqδp,p′q′ dp dq dp′ dq′. (3.30)

The secular contributions will be given by the theory of generalized functions with the
relation

Δ(X)− Δ(0)
iX

t → +∞−−−−−→ πtδ(X)+ itP
(

1
X

)
. (3.31)

We also need to use the following development (and its symmetric in k′):

〈as
k,0a

sp′
p′,0a

sq′
q′,0a

sq
q,0〉 = q

ssp′ sq′ sq

kp′q′,0 δ(k + p′ + q′ + q)+ q
ssq
k,0q

sp′ sq′
p′,0 δ(k + q)δ(p′ + q′)

+ q
ssq′
k,0 q

sp′ sq

p′,0 δ(k + q′)δ(p′ + q)+ q
ssp′
k,0 q

sq′ sq

q′,0 δ(k + p′)δ(q′ + q). (3.32)

On the right-hand side of expression (3.32) the first two terms do not give a secular
contribution; however, the last two terms give a contribution when the following conditions
are satisfied, namely s = sq′ , sp′ = sq and s = sp′ , sq′ = sq, respectively. After substitution
and simplification, we obtain the secular contributions in the long-time limit

Ct〈as
k,0bs′

k′,2 + as′
k′,0bs

k,2〉

= +4t
∑
spsq

∫
L

s′spsq
k′pq L

spsqs′
p−qk′qs′s′

k′,0q
sqsq
q,0

(
πδ(Ωk′,pq)+ iP

(
1

Ωk′,pq

))
δk′,pqδkk′ dp dq

+ 4t
∑
spsq

∫
L

sspsq
kpq L

spsqs
p−qkqss

k,0q
sqsq
q,0

(
πδ(Ωk,pq)+ iP

(
1

Ωk,pq

))
δk,pqδkk′ dp dq

= 8πt
∑
spsq

∫
L

sspsq
kpq L

spsqs
p−qkqss

k,0q
sqsq
q,0 δ(Ωk,pq)δk,pqδkk′ dp dq. (3.33)
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S. Galtier

The last writing is obtained by using the general property L
sspsq
−k−p−q = L

sspsq
kpq and the

symmetry in p → −p and q → −q.
If in expression (3.21) we impose the nullity of the sum of the different secular

contributions, we find the asymptotic condition (after integration over k′)

∂qss′
k,0

∂T2
= 4π

∑
spsq

∫
|Lsspsq

kpq |2q
spsp
p,0 q

sqsq
q,0 δ(Ωk,pq)δk,pq dp dq

+ 8π
∑
spsq

∫
L

sspsq
kpq L

spsqs
p−qkqss

k,0q
sqsq
q,0 δ(Ωk,pq)δk,pq dp dq. (3.34)

Introducing es
k ≡ qss

k,0, we end up with (some simple manipulations are also used to
symmetrise the equation)

∂es
k

∂t
= πε2

16sωk

∑
spsq

∫ (
sin θk

k⊥

)2

(spp⊥ − sqq⊥)2(sk⊥ + spp⊥ + sqq⊥)2

×
[
sωke

sp
p e

sq
q + spωpes

ke
sq
q + sqωqes

ke
sp
p

]
δ(Ωkpq)δkpq dp dq, (3.35)

with θk the opposite angle to k⊥ in the triangle k⊥ = p⊥ + q⊥. Expression (3.35) is the
kinetic equation for inertial wave turbulence in the anisotropic limit (see (7) in Galtier
(2003); the small difference (sign and numerical factor) depends only on the normalisation
of the canonical variables (2.7)). This result proves that the anisotropic and asymptotic
limits commute. Note that the kinetic equation for inertial wave turbulence does not
describe the slow mode (k‖ = 0) that involves strong turbulence.

4. Discussion and conclusion

Our study completes the original derivation of Galtier (2003) where the delicate issue
of the asymptotic limit was mentioned but not explicitly used. We obtained the kinetic
equation using a multiple time scale method that leads to sequential asymptotic closures
at times T1 and T2. This method consists of imposing the nullity of secular terms
(proportional to t) that emerge over asymptotically long times in order to guarantee a
bounded value for the associated moments and, thus, keep the development uniform
in time. These secular terms do not involve fourth-order cumulants but only products
of second-order cumulants. Consequently, the derivation of the kinetic equation (3.35)
is performed in a systematic and consistent manner, and does not require any closure
assumptions such as quasi-Gaussianity. In addition, the random phase approximation is
natural as it arises dynamically from the separation of time scales. The latter property
was first mentioned by Benney & Saffman (1966), but has not always been recognized as
an inherent property of wave turbulence (Zakharov, L’Vov & Falkovich 1992; Nazarenko
2011). Generally, the random phase approximation is introduced (initially or subsequently)
to fully justify the closure. This fundamental difference with the multiple time scale
method suggests that the latter is the most natural method for deriving the kinetic equation
of wave turbulence. Note, however, that the derivation made, although systematic, says
nothing about the remaining terms (not used to obtain the kinetic equation) in the small ε
perturbation expansion, the implicit conjecture being that they are subdominant. The proof
of this conjecture remains a mathematical challenge (Deng & Zaher 2021).

The domain of validity of wave turbulence has already been discussed in Galtier
(2003). The conclusion is that we can always find a finite domain where inertial wave
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turbulence exists. To show this, we introduce the linear time τW ∼ 1/ωk ∼ k/(k‖Ω0) and
the nonlinear time τNL ∼ 1/(ku). In the anisotropic limit we have k ∼ k⊥, and we obtain
the time ratio

χ = τW

τNL
∼ k2

⊥u
k‖Ω0

, (4.1)

which depends on the scale. If the system under study is initially excited locally at large
scale, isotropically and with a Rossby number much smaller than 1, then we can obtain
χ � 1 at large scale, which is the condition for having weak turbulence. As we have
explained, such turbulence becomes anisotropic, with the energy cascading towards a
region of Fourier space where k⊥ � k‖. This leads to an increase of χ (the dependence
of u on wavenumbers does not alter this trend). Clearly, at sufficiently large values of k⊥,
we can find χ ∼ 1, which is synonymous with strong turbulence (and the critical balance
regime). There is therefore a domain in Fourier space where the condition for the validity
of wave turbulence can be satisfied even in the anisotropic limit.

In summary, it can be said that inertial wave turbulence for three-wave interactions is
characterised by a dynamics on two time scales. On short time scales, of the order of the
wave period, there is phase mixing that leads, due to the dispersive nature of the waves,
to the decoupling of the correlations if they are initially present and to a statistics close
to Gaussianity, as expected from the central limit theorem. This happens with a decay
in 1/t. On a longer time scale, the nonlinear coupling – weak at short times – becomes
non-negligible due to the resonance mechanism. This coupling leads to a regeneration of
the cumulants via the product of lower order cumulants. It is these terms that are at the
origin of the energy transfer mechanism.

The second novelty of our study is the demonstration that anisotropy and asymptotic
closure commute. (Note that this property was also found in Alfvén wave turbulence
Galtier et al. 2002.) Therefore, to obtain the main properties of inertial wave turbulence
(exact power law solution, direction of the cascade, Kolmogorov constant, existence of
an inertial range), the limit k⊥ � k‖ can be taken before any statistical development. The
study also reveals that it is not necessary to use an helicity basis, which simplifies the
treatment. The third novelty is that the multiple time scale method has been generalized
to an anisotropic problem involving different types of correlation in terms of directional
polarity.

Note that in the present derivation, the system under study is assumed to be of infinite
size and can therefore be treated as continuous. The numerical simulation with its grid of
points escapes this description. Effects (freezing of the cascade) linked to the discretisation
of the Fourier space can appear because the resonance conditions are a priori more
difficult to satisfy (see, for example, Connaughton, Nazarenko & Pushkarev (2001) for
capillary waves). In theory, the weaker the nonlinearities, the more important these
effects are. In inertial wave turbulence, Bourouiba (2008) has shown that discretisation
effects become non-negligible when the Rossby number, Ro, is smaller than 10−3. Beyond
this value, but still for a small Ro � 1, these effects are negligible because of the
quasi-resonances that, with the resonances, contribute to the energy transfer.
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