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Abstract. A new, purely objective criterion is developed for the rejection of observations with 
nonaccidental errors. A mathematically rigorous procedure is devised for the determination of 
the weights of individual observations. 

For the investigation of orbits of one-apparition comets from a statistical point of 
view it is necessary to discuss all the comets in the same manner, using the same 
astronomical constants and the same methods for reducing the observations and 
utilizing the observational material. 

The first problem will then be to introduce systematic corrections to the observa­
tions: corrections due to differences between the star catalogues (including the con­
stants of precession, nutation and aberration, and the proper motions of the stars) 
and between methods of reduction, time scales, etc. 

The other important problem in the homogenization of the observations is the 
quite objective, purely mathematical question as to the best use of the observational 
material. It is known that observations of the celestial coordinates of a comet at 
specified moments of time are just the particular values of the observed variables 
arising from the general functional dependence between the elements of the orbit 
and the position in the sky at these times. But the observational data of position and 
time are influenced by errors of various types and are of different weights. We may 
simplify the problem arbitrarily by putting it in a fictitious form in which we con­
sider the observed times to be completely free from error but introduce the errors 
that necessarily exist in the times into further errors in the positions. We consider 
therefore the positions as particular values of a random variable and the mean square 
error of the positions as the dispersion of this random variable. 

Summing up, we take into consideration two properties of an observation: its 
weight and its correctness of performance and elaboration. These two problems have 
been investigated analytically and numerically and solved with the help of statistical 
methods. We present here a brief account of these investigations and their results. 

First let us consider briefly the classification of observations from the point of view 
of their doubtfulness, i.e., the conventional classification as a set of observations 
with accidental errors only. This implies that the observations should have been 
obtained and reduced correctly within the possibilities of the instruments used and 
the methods of observation. There are many methods used for this classification -
mainly the ones for rejecting observations with nonaccidental errors - from the naive 
guess or primitive criterion such as 3cr to procedures that are very complicated both 
analytically and numerically and well-nigh impossible to apply. 
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Among these methods one draws particular attention because it is fairly objective 
and easy to handle numerically. This method, based on Chauvenet's (1891) reason­
ing, derives from a simple and sound principle: the probability that an error will 
exceed a given magnitude ad is 1 — P(0), where a denotes the dispersion, 6 the limiting 
coefficient, and we have 

2 - 1 / 2 0 

P(9)=l f e-t26t. (1) 
o 

When TV observations are made the probable number of those surpassing ad is 
N[\ -P(0)]. If N[l -P(6)]= 1/2, then 

P(6) = {IN - l)/2N. (2) 

Let e be an error such that if |e| > ad, the corresponding observation is to be rejected 
on the ground that it will have a greater probability against it than for it. The numeri­
cal application is thus based on the consecutive formulae 

P(0CrV2)= 1 -Jfi (3) 

2 - 1 / 2 0 C r l / 2 

P(.eCTll2) = l j e-*dt (4) 
0 

°rCrl/2 = °"0Crl/2> (5) 

where we define this criterion as Cr 1/2. 
The coefficient 0Crll2 is a function only of N and can be tabulated. The reasoning 

is based on the fact that the probable number of residuals (a residual has to replace 
the deviation of a measurement from the truth) larger than the limit aCr 1/2 is smaller 
than 1/2, which means that measurements with such residuals should not exist: if 
any do, they apparently suffer from an abnormal source of error and should be 
rejected. The process should of course be repeated to the limit, where none of the 
measurements retained has a residual exceeding the corresponding value o-Crl/2. 

In principle, the criterion Cr 1/2 seems to be reasonably correct, and what is more 
important, it is quite objective. It has, however, a drawback resulting from the fact 
that the factor a in the calculation of the limit aCr 1/2 is a random variable as well. 
Therefore in actual applications this factor leads to uncertainty in classifying measure­
ments into those with accidental and those with nonaccidental errors. 

The random variable a has a distribution in which the probable error can be esti­
mated. This error is equal to 

0.4769363 . . . 
VN ^ ( 6 ) 

hence the condition 
/1 0.47 . . A L 0.47 . . A 

theor<T I —vW~) < realCT < lheor(71 + ~VN~) ( } 
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is realized with probability 1/2, and so is the condition 

L 0 .47 . . . Y1 L 0 . 4 7 . . . \ ' x 

real<T I + ~VN~) < theor<T < real<T I ~ ~ W 7 ' (8) 

In our case the criterion Cr 1/2 is based on the mean value, i.e., on the theoretically 
accepted theorCT = reaiCT. We obtain the limiting condition for theor̂  when we accept 
that this criterion should work when the probability of existence of a class of non-
accidental errors in the range from a vanishing state to the theoretical mean state 
attains a value of not more than 1/2. This is the condition when the probability of 
existence of theor̂  reaches the value 1/2 in an increasing direction from the mean 
value. 

According to the above reasoning, taking into account the uncertainty of the ex­
pression theortf> we accept as our basis the formula 

L 0.47... \~\ 
GCv 1/2,1/2 — O" I 1 /— I C 7Crl/2> \ y ) 

where Cr 1/2, 1/2 represents the new criterion and crCrll2tlt2 gives us the limiting 
residual for the rejection of measurements with nonaccidental errors. This new 
criterion takes into consideration the fact that the number of measurements with 
residuals larger than the limit should be less than 1/2, with the probability of existence 
of these measurements also smaller than 1/2 because of the uncertainty of the observa­
tional mean square error. It is easy to see that the criterion Cr 1/2, 1/2 is more liberal 
than the Cr 1/2 criterion in classifying the observations as correct, i.e., with acci­
dental errors only. This feature is particularly important when the number of measure­
ments is not too large. On the other hand, the number of measurements cannot be 
too small, or the statistical methods used for developing the criterion would not be 
applicable. In practice the minimum value of N is about 20, the accuracy of the 
determination of aCrl/2, ll2 being about 10%. In actual examples we have found that 
application of this criterion causes the elimination of about 10 to 15% of the observa­
tions. Perhaps 60 to 70% of the observations eliminated can be corrected and re­
covered; there remains about 3 to 5% of the whole that is completely lost. Owing 
to the increasing use of automation in the measurement and reduction of observa­
tions we lose a smaller percentage of modern observations. The criteria Cr 1/2 and 
Cr 1/2, 1/2 can be included in computer programmes using tables or suitable 
functional models. It must be remembered that the necessary condition for application 
of this criterion is that the observations have equal weights. To investigate the effects of 
the criteria in sets of observations a large number of numerical tests have been devised 
and performed on digital computers. The results of these tests and investigations lead 
us to accept the above criterion Cr 1/2, 1/2 as correct and applicable in the classifi­
cation of observational material. 

Let us take now into consideration the other property of the observations - their 
different weights. Attention should be drawn to the fact that for the homogenization 
of the observations it is necessary to consider weights, both when solving the observa­
tional equations by the method of least squares and when applying the criterion of 
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rejection for observations with nonaccidental errors. When the weights have been 
determined numerical application is easy. 

The weights should be determined in a purely objective way and they must in prin­
ciple result from the same observational material. There are many methods for giv­
ing weights to observations. One can quote from Plummer (1939): "In any case 
the decision should be based on the intrinsic circumstances which affect the observa­
tion: the fact that it may give a result not agreeing with expectation or with the 
results of other observers, is a most dangerous guide in assessing its value." Indeed, 
all methods based on this type of expectation are applied incorrectly. 

Only the mathematical determination of the local mean error at different points 
in a series of observations enables us to obtain local weights and hence the whole 
set of weights for the series. The determination of the local mean square error (i.e., 
the local dispersion of the observation function) can be carried out fairly easily under 
certain suppositions. One way of doing it is to consider a subinterval surrounding a 
point in the series and containing a sufficient number (which cannot be too small) 
of observations, and to represent this subinterval with some particular function ac­
cording, say, to the method of least squares. The next step is to determine the dis­
persion, i.e., the mean square error of a single observation. We suppose that all 
observations have the same accuracy in this subinterval - it cannot be too long -
and that they have only accidental errors. It is advisable to take into consideration 
only observations that are quite certainly reliable, i.e., to base the result on a con­
ventional 'nucleus of accuracy' of observations, defined identically in all the sub-
intervals investigated. This can be achieved if we apply a rather sharp criterion for 
the local rejection of doubtful observations, separately in each subinterval. It is 
known from practice that the Chauvenet criterion of Cr 1/2 is sufficient for this. This 
is permissible, since in the determination of sets of weights it is not the values of the 
mean errors themselves, but the ratios of these errors, that are important. Repeti­
tion of this process at different points of the observation interval gives us local mean 
errors of the 'nucleus of accuracy' type at these points. These local mean errors 
correspond to definite values of the time and hence they can be interpolated and 
extrapolated for all points in the series of observations. By choosing a conventional 
mean square error for the unit of weight we may determine the whole set of observa­
tional weights. 

The basic problem is the form of the function representing the residuals in the 
subintervals. The set of residuals depends on this form, and hence the elimination 
process of doubtful measurements does as well. So does the mean square error of the 
observations in each subinterval, and hence the weights of the observations. 

Two particular cases can be quoted here: the a posteriori type of mean error, re­
sulting from the application of the same functional form as for solving the whole 
problem; and the a priori type of mean error, demonstrating the observational in­
accuracy of a single observation. Both of these types of mean error are of great im­
portance in assigning sets of weights, which therefore can be of different types also. 

Accepting as the basis of the solution of a problem the determination of the most 
probable orbit according to Newtonian gravitation only, i.e., using a posteriori mean 
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errors, we shall consider the nongravitational effects as additional influences aug­
menting the accidental errors of the observations. Then the elements of the orbit 
will be the best according to Newtonian gravitation and suitable for the detectability 
of nongravitational effects - their existence and influence on the residuals. 

On the other hand, when we use a priori mean errors, the orbit will be the best 
mean result for both pure Newtonian gravitation and various nongravitational 
effects. Such an orbit will be particularly suitable for the definitive analysis and 
determination of such nongravitational effects and the Newtonian orbit of the 
comet. 

Numerical mean errors of the a posteriori type, i.e., after the application of the 
Newtonian mathematical model, can be obtained immediately. The mean errors of 
the a priori type must be determined in another way: there does exist a purely mathe­
matical manner for determining them, utilizing variance properties of ordinary and 
divided differences; see Bielicki (1958, 1967). There are many interesting details of 
application which will not be mentioned here. 

It is easy to see that the two problems - the calculation of a set of weights and the 
elimination of observations with abnormal sources of errors - have some common 
points, and therefore they are numerically solved together as follows: First we elimin­
ate the observations that are obviously wrong (e.g., the preliminary residuals are 
more than 50")- Then, by means of the subinterval procedure, we determine the local 
mean square 'nucleus of accuracy' errors (either a priori or a posteriori or some other 
type) for separate points on the observational interval. Next we find mean errors of 
the adopted type for particular observations using methods of smoothing, interpola­
tion, and extrapolation, and hence we establish the weights. Since the local mean 
error depends on the set of residuals, and this set depends on the weights of the 
observations, the process of weight determination must be an iterative one. It is 
also connected with the elimination process. The procedure is rapidly convergent, 
however, and because the weights are not required with very great accuracy (e.g., 
to about 10% only), two, three or four approximations already give a good result. 
After obtaining the final weights we apply them to the observations and then subject 
the whole observational material to the new classification criterion (Cr 1/2, 1/2), 
which eliminates almost all the observations affected by some abnormal source of 
error. 

The problem of weighting and the elimination of doubtful observations has been 
solved for the case where the total number of observations is more than 20. When 
this number is less there are other, simplified methods for application that make use 
of less information. 

We have in general two or more possibilities for the solution, depending on which 
type of weights we assign to the observations. Each of these possibilities has its im­
portance for further investigation of the motion of the comet. 

In connection with the above reasoning about weights, elimination processes, etc., 
we have performed a large number of investigations and tests on computers. As an 
example we considered 83 observations of comet 1953 I. A series of experiments 
was carried out in which we considered different divisions into subintervals, different 
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methods and criteria for rejecting doubtful observations, different mathematical 
models for representing the residuals, etc. Finally we investigated the iterative pro­
cess for determining mean square errors of the a priori and a posteriori types and the 
sets of weights that follow from these errors. Figure 1 shows that the a priori mean 
error increases rather suddenly from 1" to 3" about a hundred days before the comet 
passes perihelion; then it increases more slowly to 4" at the end of the observational 
interval. The sudden change of this mean error is accompanied by an increase in the 

Fig. 1. The local mean errors for comet 1953 I (Harrington). 

nongravitational effects, which in turn cause the great increase to 5" in the a posteriori 
mean error. The nongravitational influence decreases slowly after perihelion, and 
both mean errors end up near 4". It follows from the changes in the mean errors that 
the weights of the observations vary considerably during the observational interval, 
by a factor of 15 for the a priori case and 20 for the a posteriori weights. This has an 
important effect on determination of the orbit. Further details concerning the appli­
cation to comet 1953 I are given by Sitarski (1972). 
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