
A NEW VIEWPOINT IN DIFFERENTIAL GEOMETRY 

S. BOCHNER 

1. Introduction. The law of transformation for a general mixed tensor 

a) r •••'**...,, 
is somewhat complicated at first sight, but algebraically it can be stated suc
cinctly in the following manner. If, without regard to the original position of 
various indices, we denote the components of the tensor in some fixed simple 
ordering by 

(2) u\ . . . , uN, 

where 

(3) N = n^\ 

then the law of transformation is the set of linear homogeneous relations 

(4) uA{y) = aiuB(x) 

[summation over B from 1 to N] in which 

(5) {ai}^{ai(y;x)} 
is a square matrix of dimension Ny and this matrix is the Kronecker product 
of p ^-dimensional matrices 

(6) i-l 
KdXj) and q w-dimensional matrices 

(7) 
(dXj\ 

\dyJ ' 
Also, if (1) is not a "scalar" tensor but a tensor of weight W we must add to 
this as a further Kronecker factor the one-dimensional "matrix' ' 

(8) 
d(x) 

d(y) 

w 

or, if W is an integer, which it need not be, we may add the W one-dimensional 
factors 

<9) In • 
d(y) 

if this be preferrred. 
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If we set down relations (4) with unspecified matrices (5) and examine the 
properties needed for the erection of a calculus of tensors we find that we first 
of all require certain properties of "consistency" by which to validate relations 
(4) intrinsically, and to that purpose the self-explanatory properties 

(10) ai(z; y) a%{y\ x) = a£(s; x) 

(11) ai(y;x) = ôi 

are obviously sufficient; and the latter ones are verifiable from the mere chain 
property 

(12) ** 2 * = St 
dyj dxk 

without using any other feature of (6), say. If, however, we proceed to 
introduce the interlocking concepts of "affine connection" and "covariant 
differentiation"—which, after all, are the heart of differential geometry— then 
the feature of tangentiality as manifest in the partial derivatives (6) is of the 
very essence, and the matrix (6) itself [or something resembling it] must of 
necessity be embodied in the calculus. We have found, however, in examin
ing the nature of the ordinary affine connection L% that only one of its lower 
indices need be interacting with our special matrix (6), or (7) to be more pre
cise, and we have correspondingly generalized it to an object 

(13) l£i 

in which the other two indices A, B will be interacting with some other matrix 
(5), with only properties (10) and (11) presupposed known, which other matrix 
will be given in addition to, and quite independently from, the classical matrix 
(6) proper. This separation of algebraic from analytical pre-requisites, as 
it were, will not only clarify things but also imply a substantial generalization 
of the theory, and perhaps the most tangible advantage will be as follows. 

If an ordinary tensor is symmetric, ta = fy», then we first of all may view 
it as an object (2) with N = n2, but it should be noted that the "independent" 
components ta (i ^ j), whose number is 

N = JW(» + 1), 

are likewise an object of our kind, and it will have an affine connection entirely 
of its own to fit its own matrix structure. Similarly, a skew symmetric tensor 

tii . . . i with f l independent components corresponding to i l < z2 < . . . < ip 

will be such an object. In particular, for p = n, we have de facto only one 
component fi . . . n, its matrix a\(y\ x) being the Jacobian (9), so that from our 
approach it is entirely indistinguishable from an ordinary scalar density, and 
our affine connection (13), which in the present case has only components 
4̂ = B = 1 is nothing else but the classical contraction Lj,-, or something 

differing from it by a vector a» as we shall see. 
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2. Vectoroids. We will introduce three positive integers n, N, v, and their 
sizes will not be tied in explicitly in any manner whatsoever, although the 
contexts in which they will be given may imply dependencies per force. In
dices i,j, ky . . . whether upper or lower will range from 1 to n, indices A, B, C 
from 1 to N, and indices a, /5, y, . . . from 1 to v. 

We take an ^-dimensional manifold Mn, compact or not (it need not even 
be separable), and on it a fixed covering by a family or arbitrary local coordinate 
systems—hereafter termed "allowable"—and we are defining a mathematical 
object, which we will call a vectoroid, in the following manner. In each allow
able system it has N coordinate functions (2)—the number N will be called 
its dimension—and on the intersection of two allowable systems Ui(x), U2(y) 
we have relations (4) for a matrix (5) for which (11) is satisfied on the inter
section of any U(x) with itself and (10) is satisfied on the intersection of any 
three systems Ui(x), U2(y), Uz{z). 

An assemblage of matrices with properties (10), (11) will be called a {matrix) 
structure. In algebraic parlance we may say that a structure constitutes a 
matrix "representation" of the "groupoid" of coordinate transformations 

(14) yi = fifa, . . . , xn) i = 1, . . . , n 

prevailing on intersections of pairs of allowable systems, and in topological 
parlance we may add that this generates a space of affinely interlocking 
iV-dimensional linear fibers over Mn as base space and that a vectoroid is a 
continuous map of the base space into the full fiber bundle, the map of each 
base point being a point in the fiber over it. 

As already stated in the introduction, any ordinary tensor of any weight 
may be interpreted as a vectoroid, and this includes, for N — 1, also scalars of 
any weight. For a scalar of weight 0, absolute scalar, that is, we have 

(15) a\(y;x) = l. 

In the introduction we have also mentioned the possibility of reducing the 
dimension N whenever "symmetries" occur, and a general principle for so 
doing may be stated as follows. 

Take a non-singular constant matrix A#, denoting its inverse by /*#, and 
transform the structure (5) into 

(16) bi(y;x) = x£ <£(?;*)/£ 

and, correspondingly, the vectoroid u into 

(17.) vA = \é uc. 

If now it so happens that the new structure (16) fully decomposes into struc
tures of dimension Nu N2, Ni + N2 = N, then in a suitably normalization 
of indices we may introduce the system of relations 

(18) Xc uc{x) = 0 , A = Nx + 1, . . . , N 
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as "symmetry conditions" to be imposed on the original vectoroid (2); and if 
they happen to be fulfilled, then there exists a vectoroid of dimension Ni only, 
having the components 

(19) v\ . . , A 

and this new vectoroid may be said to be a fair substitute for the original one. 
If a structure (5) has been given and is held fast, then the vectoroid (2) 

previously introduced is a " contra variant" one, and its "covariant" counter
part is an object tA for which the law of transformation is 

(20) tA(y) =a%(x;y)tB(x), 

or, what is the same 

(21) aB
A{T,x)tB{y) =tA(x). 

If, however, we introduce the transposed inverse matrix 

(22) âi(y;x) = a%(x;y) 

then tA can be easily identified with a vectoroid which is contravariant with 
regard to the new structure, and thus the contrast between contravariant and 
covariant is only a relative one. 

Next, if we are given several of our matrix structures, equal or not, then any 
Kronecker product of them is again a structure, and a vectoroid pertaining to 
such a structure will sometimes be denoted by the symbol 

(23) tAl...Av
B>---B*, 

and then termed a tensoroid, whenever its structure is a product of q straight 
factors and p transposed inverse factors given. Also, if, for instance, in (23) 
the lower index A\ and the upper index B\ both pertain to the same structure, 
then we form the contraction 

(24) tA2...Av
B2'"Bq = tCA2...A

 CB>-'B° 
p 

as usual. In particular, if tA, uA belong to the same structure then 

(25) tAuA 

is an absolute scalar. 
If in addition to the structure (5) we are given a second structure 

(26) b% a,0 = l,... 

if v — N, and if we are given a tensoroid JiAa for which 

(27) det \hAa\ * 0, 

then there exists a tensoroid hAa for which we have 

(28) hcahW = 5?, hAyh^ = of; 
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and if furthermore the two structures are identical then the pair of tensoroids 
tiAa, hAa, which we will now denote by 

(29) JIAB, h**, 

may be used for pulling indices pertaining to the structure (5) up and down 
as usual. We will always assume that the tensoroids (29) are symmetric, 
although for the shifting of indices alone this requirement would not be strictly 
needed. 

Finally we note that there always exists a matrix structure defined by the 
Kronecker symbol, thus 

(30) bap(y;x) = 8J a, 0, = 1, . . . , v 

and that a contravariant vectoroid pertaining to it has the law of transfor
mation 

(31) u'*(y) = w*(x), 

and thus consists of v individual absolute scalars, and similarly for covariant 
vectoroids. If now we form the Kronecker product of an arbitrary structure 
(5) with the special structure (30), then a tensoroid uAa pertaining to the pro
duct is a set of v vectoroids uA pertaining to (5) each, and any set of v such 
vectoroids may be so viewed. In other words, from our general approach 
there is only a relative distinction between indices which are vectorial and 
those which are enumerative, and this merger of the two types of indices has 
some technical advantages. 

3. Covariant differentiation. In the right side of (5) we have introduced 
both symbols y and x simultaneously and in a given order and in this way the 
consistency rules (10) and (11) have become self-explanatory. However, 
analytically, the individual components of the tensor (5) will be viewed as 
functions either of the variables x = (xi, . . . , xn) or of the variables y = (yi, 
• . . , yn) by themselves, depending on whether we view the intersection of the 
neighbourhoods Ui(x), Ui{y) as being part of the one or of the other; and in 
forming partial derivatives with respect to the variables Xi or y, the variables 
exhibited will be those underlying. 

If we are given a structure (5), and if the functions (5) and (14) belong to 
differentiability class C1, then we define an affine connection 

(32) Lli A,B = l , . . . , i \ T ; * = l,...,n 

by the law of transformation 

(33) aliy; x) d-liL%{y) = - ^ l É . + ac
B{y; x) LB

Ai(*), 
dXi dXi 

and the following theorem can be easily verified. 

THEOREM 1. If tA is a covariant vectoroid then the components 
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(34) tA. i = — - tBLB
Ai 

dXi 

constitute a tensoroid for the Kronecker product of (5) and (6). 
Also, if (34) is to constitute a tensoroid for arbitrary vectoroids tA locally, then 

(33) must be satisfied. 
Furthermore, if uA is contr avariant vector oid then 

uA,i = + uBLii 
dXi 

is a mixed tensoroid, that is to say, if LBi is an affine connection for a structure (5) 
then — LBÎ is one for the structure (22). 

It should be noted, however, that given a structure, the affine connection 
(32), if one exists, is determined up to an arbitrary additive tensor TBi only, 
so that associating — LB% with the structure (22) is a deliberate act of 
normalization, pursuant to the fixed normalization of (32) for (5) itself. 

If there is given a second structure (26) and if it has an affine connection 
Aa», then the Kronecker product of (5) and (26) admits the affine connection 

(35) L{B
A% = faL

B
Ai + bWai, 

and the resulting formula 

(36) tAa,i = — tBaLAi — tA^ai 
dXi 

is the generalization of a classical one; and similarly for mixed tensoroids. 
For the special structure (30), relations (33) reduce to 

(37) ^ A'a] = Ki. 
dXi 

and that means that A„i is a vector with regard to the index i, with a and y 
being enumerative indices. In particular (37) will be satisfied by 

(38) Mi = 0, 

in which case (36) will reduce to the expression 

(39) tAa,i = " — tBa LAir 
dXi 

but it must be stated that (38) is a deliberate "canonical" normalization for 
the solution of (37) and not the only one possible. 

We are turning to the general expression (36). If we have 

(40) tAa,i = 0 

that is 
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(41) a — tAfi^ai = tBaL^i 
ÔXi 

and if, for v = N, tAa has a transposed inverse tAa, then (34) implies 

(42) LC. = t C a ^ „tCatAfiA0if 

ÔXi 

and thus Lc
Ai is uniquely determined by A -̂. In particular for (38) we obtain 

(43) Lc
Ai = F* 

ÔXi 

and this is a generalization from vectors to vectoroids of the known theorem 
that if there are given n independent parallel vector fields, the affine connec
tion is uniquely determined hereby. 

Finally, if we are also given a (non-symmetric) affine connection r# to fit 
the structure (6), then if everything given is twice difïerentiable, we can form 
the second covariant derivative 

(44) tA,i,j = L — tB,iLAj — tA,k^ijy 

dXj 

and we obtain 

(45) tA,i,j— tA,j,i = tB LAij, 

where 

(46) LAij = — —— + LCiLAj — LCj LAi + tA,k(Tji — r#) 

is a tensoroid. We always have 

and for 

we also have 

TB - — TB 

-UA%3 -t^Aji 

•pk -p& 
1 ij 1 ji 

^Aij,k + LAJJCÏ + L>Aki,j — 0 . 

4. Remark on affine connections. Affine connections are a particular case 
of a general type of coefficients in invariant systems of linear partial differen
tial operators, as we are going to describe briefly. 

Consider for an ordinary scalar t the expression 

(47) c« - ^ - +ck— +ct 
dXidXj dx,k 

with cij = cji. If this is to be formally invariant under the transformation 
(14) then we must have 
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(48) ct'ïx) = c'»*(y) ÊïiÈïi,' 
dyv dyq 

(49) c\x) = J**(y) - ^ - + c"(y) —* , 
dypdyq dyr 

(50) c(*) = c(y), 

and it can be easily verified that the entire system of coefficients 

constitutes a vectoroid for an appropriate structure. However the sub-system 
{cij} forms a vectoroid by itself, and if we insert some special values for this 
subset, and if we ignore the quantity c itself which is a scalar "by accident," 
then the remaining coefficients ck transform themselves by relation (49) after 
the manner of an affine connection. 

After this preliminary instance we will now set up a very comprehensive 
situation. If IA is an unspecified vectoroid for a given structure (5) and if we 
demand that for some given integer / the system of partial differential operators 

(51) Oa(t) = £ CaAh...ix f^''lXtA , a = l,...,v, 
0 </! + . . . + zXl </ dxi1 . . . dx\'\ 

shall form a vectoroid pertaining to some other structure (26), identically in 
all IA, then the set of all coefficents occuring in all individual operators (51) 
form a vectoroid for a suitable structure. However the subset of those co
efficients for which 

(52) h + ... + h = l 

form a vectoroid by themselves, and if we insert some special values for this 
subset then the remaining "additional" coefficients transform in the manner 
of an affine connection. 

In the particular case (34) we have 1=1 and the structure (26) is the 
Kronecker product of (5) and (6). Thus every index a = ao is a pair of indices 
A = Ao, i'• = i0 and the highest coefficients corresponding to (52) have been 
specialized in the following "invariant" manner: if A = A0, i •= io then 
CdAh...i\ = i^ otherwise = 0. 

5. Compact manifolds. On a compact Mn we stipulate the following data, 
all of differentiability class C2: a matrix structure (5), with an affine connection 
(32), a positive definite symmetric tensor (29) with 

(53) hAB
ti = 0, 

that is 

(54) %- + }fB LA
ci + h*c LB

ci = 0, 
OXi 

an ordinary (non-symmetric) affine connection 
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(55) Tfj, 

and an ordinary positive definite symmetric tensor gij which need not be related 
to (55). 

We note that the Kronecker symbol ôf is a mixed tensoroid for (5), and if 
for any mixed tensoroid t\ we adopt the definition 

rna\ *B _ d/A *B TC , 4c TB 
WW M»i — -Q--m ~~ lC L.Ai -f- IA L>cij 

as we will, then we obtain 

(57) ôli = 0, 

and on recalling the relation 

hAchBC = dl 

we now obtain from (53) and (57) the further inference 

(58) hAB,i = 0. 

Therefore, if we will employ the tensor (29) for shifting indices up and down, 
this operation of shifting will be commutative with covariant differentiation. 
Thus, if for a vectoroid tA we form the scalar "square length'* 

(59) 0 = hABtAtB, 

then we obtain 

(60) | £ = 4>,i = 2hABtAjB = tA,itA = tAtA,i. 

If we differentiate once more we obtain 

(61) i4>,iti = hABtAJBj + hABtA,ijB, 

where of course 

\p*) <t>,i,j = —— i v — , 
dXidXj dXk 

and tA,i,j is given by (41). And finally, if we introduce the invariant operator 

(63) A* = *« ^ m t« J%. - g*l r» Et , 
dXidXj dXk 

we obtain the equation 

(64) JA4> = gijhABtAjBtj + hAB(giHA.i.s)tB = 7\ + T2 

which we will now analyze. 
As on previous occasions1 we will use the lemma that, since Mn is compact, 

lSee our papers: Vector fields and Ricci-curvature, Bull. Amer. Math. Soc , vol. 52 (1946), 
776-797, and Curvature and Betti numbers, Ann. of Math., vol. 49 (1948), 379-390 and II in 
vol. 50 (1949), 77-93. 
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we cannot have 

(65) A</> ^ 0 

on Mn unless we have 

(66) A<t> = 0 . 

Fur thermore we have identically 7 \ ^ 0, and 7 \ = 0 if and only if IA,% = 0. 
Thus , if for special reasons we have 

(67) T2 Ï 0, 

then we must of necessity have 

(68) T2 = 0 

and also 

(69) tA.i = 0. 

In order to bring abou t (67) we introduce some fixed symmetr ic matr ix SAB 
and set up the system of partial differential equations 

(70) gO'tAM = SB
AtB{ s SABP), 

and since this implies 

(71) T2 = SA*tAtB, 

we obtain the following conclusion. 

T H E O R E M 2. If on our compact Mn we are given a symmetric matrix SAB 
which is positive definite then there is no vectoroid IA other than 0 which satisfies 
the equations (70). 

If the matrix is only semi-definite then the only solutions of (70) are those for 
which we have 

tA.i — 0, SA ts = 0, 
simultaneously. 

If f a is an ordinary vector field, and if it is harmonic (curl f = div J = 0) 
then i t satisfies the equations 

gijta.i.j = - Rah f6 

where Rab is the Ricci tensor based on gij, provided the affine connection is 
the ordinary one; and if the vector is a Killing vector (f»,y + fy.» = 0) then it 
satisfies the a l ternate equat ions 

g^a.ij = Rabtb-

T h u s Theorem 2 includes the following s ta tements made previously among 
others.1 If — Rab is positive definite there exists no harmonic vector, and if 
it is negative definite there exists no Killing vector, and if it is semi-definite 
then in either case we must have 
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r«..- = o, Rabtb = o, 
simultaneously. 

In the papers cited we also had results bearing on tensors of several indices. 
Some of them, in particular those referring to complex manifolds could also be 
subsumed under Theorem 2, but the analysis would have to be rather detailed 
and would not be profitable in the end. However, we would like to terminate 
with giving a sample of another type of Theorem2 which is especially adapted 
to complex spaces and which actually gave us the impetus for devising the 
generalization from vector to vectoroid. The theorem is largely preanalytic 
in the sense that no affine connection will be involved or even assumed exist
ing, and although the theorem originated in algebraic geometry2 no algebraic 
structure will be involved either. 

Let Mn be a compact space of n complex (that is 2n real) variables for which 
the functions (14) are holomorphic functions, that is local power series, from 
the complex variables %i to the complex variables yj, and let the matrix struc
ture (5) be likewise holomorphic in either set of variables, and let tA, UA be 
holomorphic fields of vectoroids on all of Mn. The contraction (25) is an 
absolute scalar and also holomorphic, and being so on a compact manifold it 
must be a numerical constant 
(72) tAuA = c. 

If now there are given N + 1 covariant vectoroids tA(a = 1, . . . , N + 1) then 
a contra variant vectoroid uA, if existing, has to satisfy a set of relations 

(73) tAuA = ca, a = 1, . . . , N + 1 

and the following theorem ensues.2 

THEOREM 3. If on a compact complex Mn there exist N + 1 holomorphic 
vectoroids IN, if the rank of the N by N + 1 matrix 

t^-

is somewhere N and if for no set of constants ca, not all zero, is the determinant 

det | / ; , . . . ,ta
N,ca

N\ a = 1, . . . ,N+ 1 

identically 0, then there exists on Mn no holomorphic contravariant vectoroid uA 

whatsoever. 

If for each 0 = 1, . . . , N + 1 we introduce the determinant 

D* = det \t\, . . . , fA~\ A+\ -.., $+1\ 4 = 1 N 

then each D$ is a holomorphic density with the density factor 

det ai(x;y) A, B = 1, . . . , N 

and the conditions of the theorem can also be stated in this way that these 
N+1 densities shall not be linearly dependent for constant complex coefficients. 

Princeton University 
2 Vector fields on complex and real manifolds, Ann. of Math. vol. 52 (1950), 642-649. 
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