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ON THE LOW FREQUENCY ASYMPTOTICS FOR THE 2-D
ELECTROMAGNETIC TRANSMISSION PROBLEM

C. N. ANESTOPOULOSS ' and E. E. ARGYROPOULOS2

(Received 6 April, 2005)

Abstract

We examine the transmission problem in a two-dimensional domain, which consists of two
different homogeneous media. We use boundary integral equation methods on the Maxwell
equations governing the two media and we study the behaviour of the solution as the two
different wave numbers tend to zero. We prove that as the boundary data of the general
transmission problem converge uniformly to the boundary data of the corresponding elec-
trostatic transmission problem, the general solution converges uniformly to the electrostatic
one, provided we consider compact subsets of the domains.
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1. Introduction

Low frequency boundary-value problems for acoustics, electromagnetism and linear
elasticity have already been considered by many researchers. The case of the three-
dimensional problem is presented in the books by Dassios and Kleinman [5] and Colton
and Kress [4]. Transmission boundary-value problems in three dimensions have been
considered by Kress and Roach [7] in acoustics, and Wilde [10] in electromagnetics
who proved the uniqueness of the solution.

The essential characteristic of the two-dimensional case, as compared to the three-
dimensional one, is that the fundamental solution, which is the Hankel function of
first kind and order zero, tends to infinity as the wave number k tends to zero. The
low frequency behaviour of the solution for the exterior boundary-value problem, in
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two dimensions, is presented in the works of Werner [9] and Kress [6]. These authors
considered a suitable combination of a single and double layer potential and proved
that the solution of the Helmholtz equation tends to the solution of the Laplace equation
as k tends to zero. This idea has been adopted by the present authors in an exterior
boundary-value problem for the vector Helmholtz equation [2]. The transmission
problem for the Helmholtz equation in two dimensions is studied in [1]. There, the
case of different wave numbers is investigated, and the uniqueness of the solution is
proved under the assumption that the relevant parameters satisfy a suitable condition.

This paper is organised as follows. In the next section we recall some basic facts
about the two-dimensional electromagnetic problem. Then, in Section 3, we focus
on the electromagnetic transmission problem in R2 for two different regions, the
unbounded which is lossless and the bounded one, and establish the relevant formula-
tion. Finally, in the last section, we prove that the solution of the general transmission
boundary-value problem converges uniformly to the solution of the corresponding
electrostatic transmission problem as the relevant wave numbers of the two domains
both tend to zero. This is true provided that the boundary data of the general problem
converge uniformly to the boundary data of the corresponding electrostatic transmis-
sion problem, and we have considered compact subsets of the domains.

2. Basics of the two-dimensional electromagnetic problem

Let D, be a bounded open region in K2. We denote the exterior domain by
D, := IR2\D,, which is connected, and-the boundary by 3D, belonging to the class C2.
Let COa(dD), 0 < a < 1, be the space of uniformly Holder continuous functions
defined on 3D and the unit normal vector to the boundary, v, directed into the
exterior D,. We also define the normed subspaces [4]

3TOa{dD) = {a : 3D -+ C2 \ a • v = 0, a € COor(3D)}

of uniformly Holder continuous tangential fields and

yOa(dD) = {ae ?Oa(dD) | Diva € COa(dD)}

with Holder continuous tangential surface divergence fields, where Div a is the surface
divergence of a continuous tangential field, as defined in [4, page 60], and norms

Halite = llallco.. and \\a\\yo.* = ||a||c«.. + ||V -allc*...

We consider electromagnetic wave propagation in a homogeneous isotropic medium
in 082 with angular frequency co > 0, which will be described by the electric and
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magnetic fields

E(r, t) = (e + —) E(r)e-ia" and H(r, t) = fi-l/2H(r)e-ia",
\ a) '

where a is the electric conductivity, while the electric permittivity e and the magnetic
permeability \i are real positive constants.

The time-dependent Maxwell's equations

a
V x E(r,t) + fi—H(r,t) = 0 and

at
d

V x H(r, t) - e—E(r, t) = aE(r, t)
at

lead us to the time-reduced Maxwell's equations

V x E(r) - ikH(r) = 0 and V x H(r) + ikE(r) = 0, (2.1)

where the wave number k is given by k2 = efico2 + i/xaa) and we choose the sign of
the wave number such that Im k > 0.

If E and H satisfy (2.1), then it has been proved in [4] that they also satisfy the
vector Helmholtz equations

AE(r) + k2E(r) = 0 and AH(r) + k2H(r) = 0,

and that they are divergence free, that is,

V • E(r) = 0 and V • H{r) = 0.

Since E, H satisfy the same vector Helmholtz equation, with the same wave number,
respectively, in what follows we study the asymptotic behaviour of E, as k, kt —> 0.

3. The two-dimensional electromagnetic transmission problem

In order to distinguish the constitutive parameters and the field quantities in the
two different media De and D,, we introduce subscripts e or / respectively. Since
the medium in the unbounded domain De is assumed lossless (ae = 0), we omit the
subscript in the wave number ke = k > 0,

k2 = a?ee\xe.

By contrast, in D, the wave number k, is given by kj = £,//,a>2 + ifi/ViCD, with CT, > 0.
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Then the vector Helmholtz equations describing the situation in the two domains De

and D, appear as

k2Ek(r) = 0, in De and (3.1)

*,2F,,.(r) = 0, in D,. (3.2)

In order to study the transmission problem, the following boundary conditions must
be satisfied [8]:

v(r) x Ek(r) - v(r) x Fki(r) = ck(r) and (3.3)

— v(r) x Vr x Ek(r) - —v(r) x V, x Fkl(r) = dk(r), (3.4)
At, At/

where r e 3D, while ct, rf* € ^ O o r are given tangential fields. Moreover, the electric
field in De must satisfy the Silver-Miiller radiation condition:

+oo (3.5)

uniformly over all directions r/\r\. The index ^ denotes the dependence on the wave
number k > 0, since oe = 0 for a perfect dielectric.

When & = kj• = 0 we have the corresponding electrostatic transmission problem
for Maxwell's equations, that is, to find a solution Eo e C2(De) n C(De) and Fo e
C2(D,)nC(D,) of

V • £0(r) = 0 , V x £0(r) = 0 in D, and (3.6)

V • F0(r) = 0 , V x F0(r) = 0 in O, (3.7)

satisfying the boundary conditions

v(r) x £0(/-) - v(r) x F0(r) = co(r) and (3.8)

— v(r) x V, x £0(r) - —v(r) x Vr x F0(r) = do(r) (3.9)

where c0, rf0 € ^O o r are given tangential fields and at infinity

£0(r) = O(l), | r | -*-+oo (3.10)

uniformly over all directions r/\r\.
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4. Low frequency asymptotics

Let

d>t(r, r') = *-H<l\k\r - r'|), r ^ r ' , ^ 0

and

denote the fundamental solutions to the Helmholtz and the Laplace equation for the
two-dimensional case, respectively. Using the asymptotic behaviour of Hankel's
function H^ of order zero and of first kind

= § [m f + c - ^ ] + O (kP In 1 ) |:| - 0
and

we have

" n*), * ^ 0 (4.1)r ) ^

and
Vr4>t(r,r') = VrcDo(r,r') + 0(A:2lnA:), Jfc -> 0, (4.2)

where )/ = In 2 — c + ni/2 is a constant and c = 0.5772 . . . is the Euler constant.
Since the Hankel function / /Q" tends to infinity as k -*• 0, we consider the following

solution to the transmission electromagnetic problem described in Equations (3.1)-
(3.5), as done in the case of the exterior problem [2]:

Ekir) = ntVr x [ <Pk(r,r')ak(r')ds(r')
JdD

- T ^ - T I <Pk(r,r")ds(r") f bk{r')ds{r'), r € De. (4.3)
l o ^ l J»D JdD

Here ak,bk e yOa are continuous vector tangential density functions and |3D|
denotes the arclength of 3D. This solution has to satisfy the vector Helmholtz
equation and tends to the solution of the corresponding transmission problem of the
potential theoretical case k = 0, which also must satisfy Maxwell's equation. We see
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that the field (4.3) satisfies the equation (3.1) and the radiation condition (3.5). As r
tends to the boundary we can use the jump relations for vector fields [4] to obtain

v(r) x E+(r)

= fiMr) x Vr x f <Dt(r, r')ak(r')ds(r') + \neak(r)
JdD I

- ^A Hr) x j <t>k(r,r')bk(r')ds{r')

( r ) x I ®k(r,r")ds(r") f bk(r')ds(r'), r&dD, (4.4)
JdD JdD

where the superscript (+) indicates that the limit is obtained by approaching the
boundary from inside De .

Similarly

= /*,Vr x I <t>ki(r,r')ak(r')ds(r')
JdD

\oD\
[ <t>ki(r,r")ds(r") f bk(r')ds(r'), r € D,, (4.5)

JdD JdD

with continuous vector tangential density functions ak,bk. The field (4.5) satisfies
(3.2). By the jump relations for vector fields [4], as r tends to the boundary, we have

v(r) x F-(r)

= fi,v(r) x V, x / 4>ki(r,r')ak(r')ds(r') - -A*,-«*(r)
JdD ±

+ (1 - r— ) v(r) x f <t>k.(r,r')bk(r')ds(r')
\ In*,/ JdD

-7^T,v(r)x [ <t>k<(r,r")ds(r") [ bk(r')ds(r'), re 3D, (4.6)
\OL)\ JdD JdD

where the superscript (—) indicates that the limit is obtained by approaching the
boundary from inside D,.

Substituting (4.4) and (4.6) into (3.3), we obtain on the boundary

(fit + n.e)ak + Lk
nak + L\2bk = 2ck, k > 0, Im*, > 0, (4.7)

where

Lk
nak(r) = 2v(r) x Vr x I [^<Mr, r') - M,Ot,(r, r')]ak(r')ds(r')

JdD
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and

L\2bk(r)

=2v(r) x L [0 - S ) *t(r-r>) - 0 - S ) ^ r'}] bk{r')dsirl)

I ") I bk(r')ds(r').

Applying now the jump relation in (4.3), we find as r tends to the boundary that

y(r) x Vr x E+(r) = ^ v ( r ) x Vr x Vr x f <t>k(r, r')ctk(r')ds(r')
JdD

- —) v(r) x Vr x f <t>k(r,r')bk(r')ds(r')

Jac

f x / 4>k{r,r")ds(r") I
JBD J»D

x Vf x / 4>k{r,r")ds(r") I bk(r')ds(r')
J J

bk(r)ds(r), redD, (4.8)

while applying the jump relation to (4.5) once again, we find

v(r) x Vr x F~(r) = ^{r) x V, x Vr x f <t>ki(r, r')ctk(r')ds(r')
JaD

v(r) x Vr x / <t>ki(r,r')bk(r')ds(r')
JaD

v ( r ) x V r x /" <S>ki(r,r")ds(r")[ bk{r')ds(r')
JaD JAD3D

, r € 3D. (4.9)

Substituting (4.8) and (4.9) into (3.4), we obtain on the boundary

{- f1 ~ r r ) + -1 [l ~ rr))bk + L>*+ L»b* = 2d« (410)

\ixe \ \nkj ft, \ \nkJJ

k > 0, Im kt > 0, where
Lk

2lak(r) = 2v(r) x V , x V r x f [lMe4>k(r, r') - m<S>k,(r, r')]ak(r')ds(r')
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= 2v(r) x Vr x f \—(\- ^r) <*>k(r, r')
JaollJ-e V In*/

[8]

|3D|
, x f \—<t>k(r,r") - —<t>k,(r,r")]ds(r")

We now introduce the operators Jk and Lk defined as

0
Jk = and

-Lk -Lk

and the integral equations (4.7) and (4.10) can be written in a compact form as

(Jk - Lk)Xk = 2Bk,

where

We follow the same idea in order to find the corresponding integral equations for
k = 0. Taking the limit of the field Ek given by (4.3), as k ->• 0 and using (4.1) and
(4.2) we obtain

so(r) = /i«.Vr x / 4>o(r, r'
J;>D

\dD\
I * ( > (

ho
r") / bo(r

J()D
r 6 (4.11)

where a0, Z>oe ^ a " are continuous tangential density functions. We use (4.11) and
the jump relation as r tends to the boundary, so we have

f 1
x Vr x / cj>o(r, r')ao(r')ds(r') + -/*,

x I [<D0(r,r')+
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7^r.Hr)xf<t>o(r,r")ds(r") f bo(r')ds(r'), r e 3D.7^r.f f
(4.12)

Similarly, taking the limit of the field Fk. as kt —> 0 and using (4.1) and (4.2) for k,,
we obtain

f
Jd

dD

3D

T^TJ <t>o(r,r")ds(r")[ bo{r')ds(r'), r e D,, (4.13)
\oL>\JaD Jgc

/ 3D

where a0, Ao G S"0" are continuous tangential density functions. We use (4.13) and
the jump relation as r tends to the boundary, so we take

v(r) x F~(r) = /i,-v(r) x V, x / $„(/•, r')«0(r')rfi(r') - ^,-oo(r)
J3D ^

, ,^.,.-")ds(r") bo(r')ds(r'), redD.
\0L>\ JdD JdD

(4.14)

Substituting (4.12) and (4.14) in the boundary condition (3.8), we obtain

f 1
(/xe — fMj)v(r) x Vr x / <t>0(r, r')ao(r')ds(r') H—(fie + (j.j)ao(r) — co(r).

JdD *•

If we set
L°ua0(r) = 2(fxe - fii)v(r) x Vr x f <J>0(r, r')ao(r')ds(r'),

JdD

we have

L°ua0(r) + (fie + M,)«o(r) = 2c()(/-). (4.15)

Now in (4.11), we use the jump relation as r tends to the boundary, so we take

v(r) x Vf x £0
+(r)

= nMr) x Vr x V, x f 4>0(r, r')a{){r')ds{r') + l-b{)(r)
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x Vr x / [<D0(r, r ' )
Jaoao

'x f
J3D

--^-f bo(r)ds(r), r e 3D. (4.16)
\oD\ J;w

Similarly,

v(r) x Vr x F~(r)

x Vr x Vr x f <t>0(r,r')a0(r')ds(r') - ]-bo(r)
JdD *•

v(r) x Vr x / [4>0(r,r') + \]bo(r')ds(r')
JaD

-^— v ( r ) x V f x / <t>0{r,r")ds(r")[ bo(r')ds(r')
\oL>\ JBD JaD

bo(r)ds(r), re 3D. (4.17)

Substituting (4.16) and (4.17) in the boundary condition (3.9), we obtain

L"22h{r) + (— + - \ bo(r) = 2do{r), (4.18)

where

L°22b0(r)

= 2 (— - —) v(r) x Vr x [ <t>0(r,r')b0(r)ds(r')
\Mf Mi / JdD

-I- L") ̂ v ( r ) x Vr x I <t>0(r,r")ds(r")f bo(r')ds(r')
\He IJ-J |3D| JdD J3D

( )^frJ bo(r)ds(r).

We set

, + /* , ) / 0 _ r - L « , 0
° " L 0 -L°

and the integral equations (4.15) and (4.18) become

(Jo — LQ)XO = 2BQ,

where
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THEOREM 4.1. The integral operator Jo — Lo is injective.

PROOF. Suppose a solution Xo of (Jo — L0)X0 = 0 exists. With this solution we
construct the harmonic field Eo by (4.11) and Fo by (4.13), which are solutions of the
vector Helmholtz equations and satisfy the homogeneous boundary conditions. The
harmonic field Eo satisfies the radiation condition.

We extend the harmonic field Eo in Dh as in De by (4.11), then using the jump
relations for vector fields [4], as r tends to the boundary, r e De for Eo and as r tends
to the boundary, r e D, for Eo, we have

v(r) x £+(/•) - v(r) x E~(r) = nea0(r), r € 3D.

By the uniqueness of the solution of the homogenous transmission problem of the
vector Helmholtz equations [3], we obtain

- —v(r) x £-(/•) = o0(r), r e 3D. (4.19)

In a similar way, we extend the harmonic field Fo in De, as in D, by (4.13), then using
the jump relations for vector fields [4], as r tends to the boundary, r e D, for Fo and
as r tends to the boundary, r e De for Fo, we have

v(r) x F0
+(r) - v(r) x F~(r) = M,ao(r), r e 3D.

Then, by the uniqueness of the solution of the homogenous transmission problem of
the vector Helmholtz equations, we obtain

— v(r) x F+(r) = «0(r), r e 3D. (4.20)
At/

From (4.19) and (4.20), we take

— v(r)x F+(r) + —y(r)xE 0 - ( r ) = 0, r 6 3D. (4.21)
At/ At*

Now, using (4.16) and (4.17) and taking into account the relation (41) from [2], we
have

v(r) x Vr x F£(,r) + v(r) x Vr x £"(/•) = 0, r e 3D. (4.22)

We consider

£;(r) = —F0
+(r), r e De and F » = - — £(7(r), r e D,-,

At/ Atp
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then, from (4.21) and (4.22), the new harmonic fields satisfy the homogenous transmis-
sion problem (3.6)—(3.10) and by the uniqueness of the solution of the homogenous
transmission problem E'n(r) = F'0(r) — 0. This means that ao(r) = bo(r) = 0,
on 3D. Therefore the operator Jo — Lo is injective and by Riesz's theory (Jo — Lo)~

[

exists and is bounded. •

Let A(x) = [«mn(^)]2x2 be a 2 x 2 matrix, where amn(x) are functions on a
region D in OS2. We define the norm || AHOO.D by the equality

X.D = max I V * ||ormB IU D : m = 1, 2 1 , (4.23)

where ||amj|oo.o is the sup-norm of amn on D.

LEMMA 4.2. The integral operators Jk, Ja, Lk and Lo as they have been defined
above satisfy the relation

\ \ J k - l L k - J - l L n \ \ x . i t D = O[ r V ) + O ( — J — } , k , k i - + 0 . (4.24)

PROOF. The integral operators Jk and Jo are invertible, since they are diagonal and
ixe, fij > 0. We have

/ - ' L , - y- 'Lo = Jk~\Lk - Lo) ,

Using the asymptotic relations (4.1) and(4.2) for the entries of Lk — Lo we obtain

ll^i. - O°c . , ) D = O

= O UJ\n l^) + O (\k,\2 In -±-\ ,

as k, kj —> 0. From these last relations and (4.23) we have (4.24). •

We are now in a position to establish the following theorem.

THEOREM 4.3. The inverse operators (Jk — Lk)~
x exist and satisfy

|| - L,)- - (y0 - z.0)- |L,D = o(jL) + o ( ^ ) . *, k, -* o,

for k, ki sufficiently small, namely 0 < k,\kj\ < K < I.
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PROOF. We first prove that the inverse operators (/ — Jk~
l Lk)~

l exist and satisfy
for k, kj -» 0

for /:, &, sufficiently small, namely 0 < k, \k{\ < K < 1. We write

/ - jk
xLk = ( / - y o - 'L o ) [ / - ( / - j^Loy\jk-

xLk - yo- 'Lo)] .

Therefore (/ - Jk^Lky
{ exist. It follows from (4.24) that there is a K : 0 < Jfc, |*,-| <

K < 1 such that

|| (/ - j^ur\j-xLk - y o - ^o ) |L . a D < < ? < ! ,

then, by using the local Neumann expansion as in [9],

we obtain that (7 — Jk~
] Lk)~

l exist and satisfy (4.25).
Finally, we have

= [a - jk-
[Lky

l - (7 - yo-'Lo)-1]^-1 + (/ - yo-'Lor'ur1 - y0"').

and we use the triangle inequality to prove our assumption. •

We now formulate the main result of this paper.

THEOREM 4.4. The solution Ek, Fk. of the transmission electric problem for the
vector Helmholtz equations, with boundary data ck, dk, converges uniformly on com-
pact subsets of De, D, to the solution Eo, Fo, of the transmission electrostatic problem
for the vector Helmholtz equations, with boundary data c0, d0, if ck -*• c0, dk -> da

uniformly, as k,kj —*• 0.

PROOF. Let the solutions Ek, Eo as in (4.3), (4.11) and Fki, Fo as in (4.5), (4.13),
respectively. Then the corresponding densities become

where k, \kj\ are sufficiently small, and

Xi) = 2(y<) — Lo)
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From (4.25) and the triangle inequality, we have \\ak(r) - aoffOHoo.ao -»• 0 and
\\bk(r) - bo(r)\U3D -+ 0 as *, kt -». 0.

We write the differences

Ek-EQ = V{ + We
k, reDe, (4.26)

and

Fk, - F o = V! + Vf' reD,, (4.27)

where

Up(r) = /zpVr x f <D0(r, r')(ak(r') - ««,(#•')) ds(r')

+ f [<J>o(r. r') + l](*t(r') - *0(r')) ds(r')

and

(<D*(r, r') - 4>0(r, r'))ak{r') ds(r')
i)D

J U\- ^A 4>*(r,r') - *0(r,r') - ll bk{r')ds{r')

, r") - 4>0(r, r")) ^ ( r " ) /" 60(r') ds(r'),

J
T^r.f (*t(r, r) 40(r, r ) ) ^ ( r ) /
\oL)\Ji)D JdD

with p = e, i.
The vector function £//' behaves asymptotically, as \r\ —> oo

- I (bk(r')-b0(r'))ds(r')
JDD

+ M'\\bk-.

with some constants Mf, M[, p = e, i. We derive the uniform convergence Uk -*• 0,
p = e, i as k, kt -*• 0, by using the jump relations.

Using (4.1) and (4.2), for the vector function Wk, p = e, i, we obtain

Mp

\Wk
P(r)\ < T-j-

In k
for all r € OS2 with \r\ < R, R > 0 where M_(, A/f are constant and depend on R,
hence W? -*O,ask, A-, -^ 0.

This final step and Equations (4.26) and (4.27) prove the theorem. •
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