SETS WITH EVEN PARTITION FUNCTIONS AND CYCLOTOMIC NUMBERS

N. BACCAR

(Received 14 April 2015; accepted 4 August 2015; first published online 14 March 2016)

Communicated by I. E. Shparlinski

Abstract

Let $P \in \mathbb{F}_{2}[z]$ be such that $P(0)=1$ and degree $(P) \geq 1$. Nicolas et al. ['On the parity of additive representation functions', J. Number Theory $\mathbf{7 3}$ (1998), 292-317] proved that there exists a unique subset $\mathcal{A}=\mathcal{A}(P)$ of \mathbb{N} such that $\sum_{n \geq 0} p(\mathcal{A}, n) z^{n} \equiv P(z) \bmod 2$, where $p(\mathcal{A}, n)$ is the number of partitions of n with parts in \mathcal{A}. Let m be an odd positive integer and let $\chi(\mathcal{A}$,.) be the characteristic function of the set \mathcal{A}. Finding the elements of the set \mathcal{A} of the form $2^{k} m, k \geq 0$, is closely related to the 2 -adic integer $S(\mathcal{A}, m)=\chi(\mathcal{A}, m)+2 \chi(\mathcal{A}, 2 m)+4 \chi(\mathcal{A}, 4 m)+\cdots=\sum_{k=0}^{\infty} 2^{k} \chi\left(\mathcal{A}, 2^{k} m\right)$, which has been shown to be an algebraic number. Let G_{m} be the minimal polynomial of $S(\mathcal{A}, m)$. In precedent works there were treated the case P irreducible of odd prime order p. In this setting, taking $p=1+e f$, where f is the order of 2 modulo p, explicit determinations of the coefficients of G_{m} have been made for $e=2$ and 3. In this paper, we treat the case $e=4$ and use the cyclotomic numbers to make explicit G_{m}.

2010 Mathematics subject classification: primary 11P83; secondary 11B50, 11D88, 12F10.
Keywords and phrases: partitions, periodic sequences, order of a polynomial, cyclotomic polynomials, resultant, 2-adic integers, cyclotomic numbers, Gaussian periods.

1. Introduction

Let \mathbb{N} and \mathbb{Q} denote the sets of the integers and the rational numbers, respectively. For $\mathcal{A}=\left\{a_{1}<a_{2}<\cdots\right\}$ a nonempty subset of positive integers and for $n \in \mathbb{N}, p(\mathcal{A}, n)$ denotes the number of partitions of n into parts from \mathcal{A}; that is, the number of solutions of the diophantine equation

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots=n
$$

in nonnegative integers x_{1}, x_{2}, \ldots.
We set $p(\mathcal{A}, 0)=1$ and let $F_{\mathcal{A}}$ denote the generating series of $p(\mathcal{A}, n)$, which is known to equal the following product:

$$
F_{\mathcal{A}}(z)=\prod_{a \in \mathscr{A}} \frac{1}{1-z^{a}} .
$$

[^0]The set \mathcal{A} is called an even partition set if the sequence $(p(\mathcal{A}, n))_{n \geq 0}$ is even from a certain point on.

Let N be a positive integer and let \mathbb{F}_{2} be the field with two elements. In [10], Nicolas et al. proved that there exist 2^{N-1} even partition sets \mathcal{A} such that $p(\mathcal{A}, N)$ is odd and $p(\mathcal{A}, n)$ is even for all $n \geq N+1$. More precisely, for each of these sets there exists a unique polynomial $P(z)=P_{\mathcal{A}}(z) \in \mathbb{F}_{2}[z]$ of degree N satisfying

$$
\begin{equation*}
F_{\mathcal{A}}(z) \equiv P(z) \bmod 2 \tag{1.1}
\end{equation*}
$$

We shall also denote the set \mathcal{A} by $\mathcal{A}(P)$. As an example, take $P(z)=1+z^{q}$; then $\mathcal{A}(P)=\{q, 2 q, 4 q, \ldots\}$, since

$$
1+z^{q} \equiv \prod_{j \geq 0} \frac{1}{1-z^{2 j q}} \bmod 2
$$

Let \mathcal{A} be an even partition set and let m be an odd positive integer. To get a complete description of the elements of the set \mathcal{A} of the form $2^{k} m$, it is convenient to consider the 2 -adic integer $S(\mathcal{A}, m)$ defined by

$$
\begin{equation*}
S(\mathcal{A}, m)=\chi(\mathcal{A}, m)+2 \chi(\mathcal{A}, 2 m)+4 \chi(\mathcal{A}, 4 m)+\cdots=\sum_{k=0}^{\infty} 2^{k} \chi\left(\mathcal{A}, 2^{k} m\right) \tag{1.2}
\end{equation*}
$$

where $\chi(\mathcal{A}, d)$ is the characteristic function of the set \mathcal{A},

$$
\chi(\mathcal{A}, d)= \begin{cases}1 & \text { if } d \in \mathcal{A} \\ 0 & \text { otherwise } .\end{cases}
$$

In [2] (see also [1]), it is proved that $S(\mathcal{A}, m)$ is an algebraic number. Moreover, if P and Q are two polynomials of $\mathbb{F}_{2}[z]$, we have (cf. [2, Section 3.2])

$$
S(\mathcal{A}(P Q), m)=S(\mathcal{A}(P), m)+S(\mathcal{A}(Q), m)
$$

which implies that

$$
\begin{aligned}
S\left(\mathcal{A}\left(P^{2^{t}}\right), m\right) & =\chi\left(\mathcal{A}\left(P^{2^{t}}\right), m\right)+2 \chi\left(\mathcal{A}\left(P^{2^{t}}\right), 2 m\right)+4 \chi\left(\mathcal{A}\left(P^{2^{t}}\right), 4 m\right)+\cdots \\
& =2^{t} \chi(\mathcal{A}(P), m)+2^{t+1} \chi(\mathcal{A}(P), 2 m)+2^{t+2} \chi(\mathcal{A}(P), 4 m)+\cdots
\end{aligned}
$$

This means that

$$
\mathcal{A}\left(P^{2^{t}}\right)=2^{t} \cdot \mathcal{A}(P):=\left\{2^{t} n, n \in \mathcal{A}(P)\right\} .
$$

This formula follows easily from (1.1).
Let p be an odd prime and let f be the order of 2 modulo p; that is, f is the smallest positive integer such that $2^{f} \equiv 1 \bmod p$. Hence, one can write

$$
p=1+e f
$$

where e is a positive integer. Let $P(z) \in \mathbb{F}_{2}[z]$ be irreducible of order p (see [9, Definition 3.2]); that is, p is the smallest positive integer such that $P(z)$ divides $1+z^{p}$ in $\mathbb{F}_{2}[z]$. Let G_{m} denote the minimal polynomial of the algebraic number $S(\mathcal{A}, m)$,
where $\mathcal{A}=\mathcal{A}(P)$ is the even partition set satisfying (1.1). In [1] (see also [3]), using Gauss sums, the polynomial G_{m} was obtained explicitly for the case $e=2$. The case $e=3$ was treated in [5], where the authors made explicit the polynomial G_{m} by using the number of points of the elliptic curve $x^{3}+a y^{3}=1$ modulo p. In the present paper, we shall give explicitly the polynomial G_{m} in the case $e=4$. For that, we will use cyclotomic numbers and the Gaussian periods.

In this paper, we first recall some properties of G_{m}. Thereafter, we give some background on cyclotomic numbers and Gaussian periods. Finally, we shall give our main result.

2. Properties of the polynomial $\boldsymbol{G}_{\boldsymbol{m}}$

Throughout this paper, we assume that p is an odd prime and g is a primitive root $\bmod p$. Let f be the order of 2 modulo p and write $p=1+e f$, where e is a positive integer. Then the cyclotomic classes of degree e and conductor p are given by

$$
C_{i}^{(g)}=\left\{g^{i+e j} \bmod p, j=0, \ldots, f-1\right\}, \quad i=0, \ldots, e-1
$$

Such classes are defined as parts of $(\mathbb{Z} / p \mathbb{Z})^{*}$; however, by extension, they are also considered as parts of \mathbb{N}. Moreover, we can extend the definition of the $C_{i}^{(g)}$ to all values of $i \in \mathbb{Z}$ by

$$
C_{i}^{(g)}=C_{i \bmod e}^{(g)}
$$

For $i \in\{0,1,2, \ldots, e-1\}$, we denote by $\omega_{i}(n)$ the arithmetic function which counts the number of distinct prime divisors of n belonging to $C_{i}^{(g)}$; that is,

$$
\begin{equation*}
\omega_{i}(n)=\sum_{\substack{q \text { prime, } q \mid n \\ q \in C_{i}^{(8)}}} 1 \tag{2.1}
\end{equation*}
$$

Let \mathcal{P}_{0} be the set of odd positive integers defined by

$$
\begin{equation*}
m \in \mathcal{P}_{0} \Longleftrightarrow \operatorname{gcd}(m, p)=1 \quad \text { and } \quad \omega_{0}(m)=0 \tag{2.2}
\end{equation*}
$$

Let $\phi_{p}(z)=\left(1-z^{p}\right) /(1-z)=1+z+\cdots+z^{p-1}$ be the cyclotomic polynomial over \mathbb{F}_{2} of index p. Using the elementary theory of finite fields, ϕ_{p} factors in \mathbb{F}_{2} into e irreducible polynomials $P_{1}, P_{2}, \ldots, P_{e}$, each of degree f and of order p. For all ℓ, $1 \leq \ell \leq e$, let $\mathcal{A}_{\ell}=\mathcal{A}\left(P_{\ell}\right)$ be the even partition set obtained from (1.1).

A necessary condition (see [4, Theorem 1]) for an integer n to be in \mathcal{A}_{ℓ} is that

$$
n=2^{k} m p^{c},
$$

where k is a nonnegative integer, $c \in\{0,1\}$ and $m \in \mathcal{P}_{0}$. From now on, we consider m to be in \mathcal{P}_{0} and let

$$
\begin{equation*}
\delta=\delta(m) \tag{2.3}
\end{equation*}
$$

be the unique integer in $\{0,1, \ldots, e-1\}$ such that $m \in C_{\delta}^{(g)}$.

For all $\ell, 1 \leq \ell \leq e$, let $S\left(\mathcal{A}_{\ell}, m\right)$ be the 2 -adic integer given by (1.2) and let \mathcal{M}_{m} be the monic polynomial whose roots are the $S\left(\mathcal{A}_{\ell}, m\right)$:

$$
\mathcal{M}_{m}(y)=\left(y-S\left(\mathcal{A}_{1}, m\right)\right)\left(y-S\left(\mathcal{A}_{2}, m\right)\right) \cdots\left(y-S\left(\mathcal{A}_{e}, m\right)\right)
$$

Let μ denote, as customary, the Möbius function and denote by \widetilde{m} the squarefree kernel of m; that is, \widetilde{m} is the product of the distinct primes dividing m. Let $R_{m}(y)$ be the polynomial with integer coefficients defined by the resultant,

$$
R_{m}(y)=\operatorname{res}_{z}\left(\phi_{p}(z), m y+\sum_{h=0}^{e-1} \alpha_{h} \sum_{j=0}^{f-1} z^{\left(2^{j} g^{(\delta-h) \bmod e}\right) \bmod p}\right),
$$

where, for all $h, 0 \leq h \leq e-1$,

$$
\begin{equation*}
\alpha_{h}=\alpha_{h}(m)=\sum_{d \widetilde{m}, d \in C_{h}^{(g)}} \mu(d) . \tag{2.4}
\end{equation*}
$$

In [1], it is proved that

$$
R_{m}(y)=m^{p-1} \prod_{\ell=1}^{e}\left(y-S\left(\mathcal{A}_{\ell}, m\right)\right)^{f}
$$

which means that

$$
\mathcal{M}_{m}(y)=\frac{1}{m^{e}}\left(R_{m}(y)\right)^{1 / f} \in \mathbb{Q}[y] .
$$

Let G_{m} be the minimal polynomial of the algebraic number $S\left(\mathcal{A}_{e}, m\right)$. In fact, \mathcal{M}_{m} is a multiple of the polynomial G_{m} and the $S\left(\mathcal{A}_{\ell}, m\right)$ could be conjugates.

Let ζ be a p th root of unity and define the periods η_{i} by

$$
\begin{equation*}
\eta_{i}=\sum_{u \in C_{i}^{(8)}} \zeta^{u} ; \quad i \in \mathbb{Z} . \tag{2.5}
\end{equation*}
$$

Since for all $i \in \mathbb{Z}, \eta_{i+e}=\eta_{i}$, one can consider the η_{i} to be indexed with $\mathbb{Z} / e \mathbb{Z}$. Here, $\eta_{0}, \eta_{1}, \ldots, \eta_{e-1}$ are the so-called Gaussian periods of degree e in the algebraic number fields $\mathbb{Q}(\zeta)$; they are known to be Galois conjugates and the period polynomial

$$
\begin{equation*}
F_{e}(y)=\left(y-\eta_{0}\right)\left(y-\eta_{1}\right) \cdots\left(y-\eta_{e-1}\right) \tag{2.6}
\end{equation*}
$$

is their common minimal polynomial over \mathbb{Q}. One can also note (see [12]) that $\mathbb{Q}\left(\eta_{0}\right)$ is the unique subfield of $\mathbb{Q}(\zeta)$ of degree e over \mathbb{Q} and the set $\left\{\eta_{0}, \eta_{1}, \ldots, \eta_{e-1}\right\}$ is an integral basis of $\mathbb{Q}\left(\eta_{0}\right)$.

For $i \in\{0,1, \ldots, e-1\}$, we define $\theta_{i}=\theta_{i}(m)$ as follows:

$$
\begin{equation*}
\theta_{i}=\sum_{h=0}^{e-1} \alpha_{h} \eta_{\delta-h+i}, \tag{2.7}
\end{equation*}
$$

where α_{h} has been defined in (2.4) and $\delta=\delta(m)$ in (2.3). In [1, formula (3.32)], it is shown that for all $\ell, 0 \leq \ell \leq e-1$, there exists some $i_{\ell} \in\{0,1, \ldots, e-1\}$ such that

$$
m S\left(\mathcal{A}_{\ell}, m\right)=-\theta_{i_{\ell}} .
$$

Moreover, it turns out that

$$
\begin{equation*}
\mathcal{M}_{m}(y)=\frac{1}{m^{e}}\left(m y+\theta_{0}\right)\left(m y+\theta_{1}\right) \cdots\left(m y+\theta_{e-1}\right) \tag{2.8}
\end{equation*}
$$

On the other hand, also in [1, page 188], it is shown that the elements of the form $2^{k} \mathrm{pm}$ of the sets \mathcal{A}_{ℓ} are given by the 2-adic expansion of the roots of the polynomial $R_{m}(-p y-\epsilon f)$, where $\epsilon=1$ if $m=1$, else $\epsilon=0$. More precisely,

$$
\left(y-S\left(\mathcal{A}_{1}, p m\right)\right)\left(y-S\left(\mathcal{A}_{2}, p m\right)\right) \cdots\left(y-S\left(\mathcal{A}_{e}, p m\right)\right)=\frac{1}{(-p)^{e}} \mathcal{M}_{m}(-p y-\epsilon f)
$$

In the cases $e=2$ (see [1] or [3]) and $e=3$ (see [5]), it turns out that $\mathcal{M}_{m}=G_{m}$. Moreover, we have the following explicit formulas:
$e=2[1$, formula (4.5)]:

$$
G_{1}(y)=y^{2}-y+\frac{1-(-1)^{f} p}{4}
$$

and, for $m \geq 3$,

$$
\begin{equation*}
G_{m}(y)=y^{2}-\frac{(-1)^{f} 2^{2 \omega_{1}-2} p}{m^{2}} \tag{2.9}
\end{equation*}
$$

$e=3[5$, Theorems 7 and 11]:

$$
G_{1}(y)=y^{3}-y^{2}-f y+\frac{p(L+3)-1}{27}
$$

and, for $m \geq 3$,

$$
\begin{equation*}
G_{m}(y)=y^{3}-\frac{\frac{3}{4} p u^{2}}{m^{2}} y+\frac{v}{m^{3}} \tag{2.10}
\end{equation*}
$$

with $u=u(m)=2.3^{\left(\left(\omega_{1}+\omega_{2}\right) / 2\right)-1}$ and

$$
v=v(m)= \begin{cases}\frac{1}{8}(-1)^{\left(\omega_{2}-\omega_{1}\right) / 2} p u^{3} L & \text { if } \omega_{2}-\omega_{1} \text { is even }, \\ \frac{3 \sqrt{3}}{8}(-1)^{\left(\omega_{2}-\omega_{1}-1\right) / 2} p u^{3} M & \text { if } \omega_{2}-\omega_{1} \text { is odd }\end{cases}
$$

where L and M are the unique integers satisfying $4 p=L^{2}+27 M^{2}, L \equiv 1 \bmod 3$ and $(L+9 M) /(L-9 M) \equiv\left(g^{2}\right)^{(p-1) / 3} \bmod p$.

3. Some results on cyclotomic numbers and Gaussian periods

Let p be an odd prime and let e and f be positive integers such that $p=1+e f$. Let g be a primitive root modulo p. Gauss introduced (see [6]) the cyclotomic numbers of order e given by

$$
(i, j)_{e}=\#\left\{u \in(\mathbb{Z} / p \mathbb{Z})^{*}, u \in C_{i}^{(g)} \text { and } 1+u \in C_{j}^{(g)}\right\}, \quad 0 \leq i, j \leq e-1
$$

For $i, j \in \mathbb{Z}$, define $(i, j)_{e}$ by

$$
(i, j)_{e}=(i \bmod e, j \bmod e)_{e}
$$

We start by listing some properties of the cyclotomic numbers (see [12]). For all $i, j \in \mathbb{Z}$,

$$
\begin{align*}
& (i, j)_{e}= \begin{cases}(j, i)_{e} & \text { if } f \text { is even, } \\
\left(j+\frac{1}{2} e, i+\frac{1}{2} e\right)_{e} & \text { if } f \text { is odd, }\end{cases} \\
& (i, j)_{e}=(-i, j-i)_{e}, \\
& \sum_{k=0}^{e-1}(i, k)_{e}=f-\delta_{i, s}, \tag{3.1}
\end{align*}
$$

and

$$
\sum_{k=0}^{e-1}(k, j)_{e}=f-\delta_{0, j},
$$

where δ is Kronecker's delta and $s:=s(f)=0$ or $e / 2$ according as f is even or odd.
Let $\eta_{0}, \eta_{1}, \ldots, \eta_{e-1}$ be the Gaussian periods of degree e as defined in (2.5) and let F_{e} (cf. (2.6)) be their common minimal polynomial. It is well known that determining the coefficients of the polynomial F_{e} is intimately connected to the cyclotomic numbers of order e. Here is a property that characterizes Gaussian periods and cyclotomic numbers (see [6, formula (7)]):

$$
\begin{equation*}
\eta_{i} \eta_{i+k}=\sum_{h=0}^{e-1}(k, h)_{e} \eta_{i+h}+f \delta_{k, s} \tag{3.2}
\end{equation*}
$$

In the sequel, we need the following lemma.
Lemma 3.1. For $i, j, k \in \mathbb{Z}$, let $\Theta_{i, j, k}$ be the quantity defined by

$$
\Theta_{i, j, k}=\sum_{\ell=0}^{e-1} \eta_{\ell} \eta_{\ell+i} \eta_{\ell+j} \eta_{\ell+k}
$$

Then

$$
\Theta_{i, j, k}= \begin{cases}p f \delta_{k, s} \delta_{j-i, s}-f^{3}+p \sum_{h=0}^{e-1}(k, h)_{e}(i-h, j-h)_{e} & \text { if } f \text { is even }, \tag{3.3}\\ p f \delta_{k, s} \delta_{j-i, s}-f^{3}+p \sum_{h=0}^{e-1}(k, h)_{e}\left(i-h, j-h+\frac{1}{2} e\right)_{e} & \text { if } f \text { is odd. }\end{cases}
$$

Proof. For $k, k^{\prime} \in \mathbb{Z}$, we define Δ_{k} and $\Omega_{k, k^{\prime}}$ as follows:

$$
\begin{equation*}
\Delta_{k}=\sum_{i=0}^{e-1} \eta_{i} \eta_{i+k} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega_{k, k^{\prime}}=\sum_{i=0}^{e-1} \eta_{i} \eta_{i+k} \eta_{i+k^{\prime}} \tag{3.5}
\end{equation*}
$$

Hence (cf. [6, formula (20)]),

$$
\begin{equation*}
\Delta_{k}=p \delta_{k, s}-f \tag{3.6}
\end{equation*}
$$

and (cf. [12, formula (15)])

$$
\Omega_{k, k^{\prime}}= \begin{cases}-f^{2}+\left(k, k^{\prime}\right)_{e} p & \text { if } f \text { is even, } \tag{3.7}\\ -f^{2}+\left(k, k^{\prime}+\frac{1}{2} e\right)_{e} p & \text { if } f \text { is odd. }\end{cases}
$$

In view of the fact that $\eta_{d}=\eta_{d \bmod e}$, it is clear that for all $u \in \mathbb{Z}, \sum_{i=u}^{u+e-1} \eta_{i} \eta_{i+k} \eta_{i+k^{\prime}}=$ $\sum_{i=0}^{e-1} \eta_{i} \eta_{i+k} \eta_{i+k^{\prime}}$. Consequently,

$$
\begin{equation*}
\Omega_{k, k^{\prime}}=\sum_{i=0}^{e-1} \eta_{i} \eta_{i-k} \eta_{i+k^{\prime}-k}=\Omega_{-k, k^{\prime}-k} \tag{3.8}
\end{equation*}
$$

For $v, k, k^{\prime} \in \mathbb{Z}$, let $E_{v, k}$ and $H_{v, k, k^{\prime}}$ be the quantities defined by

$$
\begin{aligned}
& E_{v, k}=\sum_{i=0}^{e-1} \eta_{i+v} \eta_{i+k} \\
& H_{v, k, k^{\prime}}=\sum_{i=0}^{e-1} \eta_{i+v} \eta_{i+k} \eta_{i+k^{\prime}} .
\end{aligned}
$$

Arguing as in (3.8),

$$
E_{v, k}=\Delta_{k-v}
$$

and

$$
H_{v, k, k^{\prime}}=\Omega_{k-v, k^{\prime}-v}
$$

Using (3.2),

$$
\begin{aligned}
\Theta_{i, j, k} & =\sum_{\ell=0}^{e-1} \eta_{\ell+i} \eta_{\ell+j}\left(\sum_{h=0}^{e-1}(k, h)_{e} \eta_{\ell+h}+f \delta_{k, s}\right) \\
& =\sum_{h=0}^{e-1}(k, h)_{e} H_{h, i, j}+f \delta_{k, s} E_{i, j} \\
& =\sum_{h=0}^{e-1}(k, h)_{e} \Omega_{i-h, j-h}+f \delta_{k, s} \Delta_{j-i} .
\end{aligned}
$$

Thus, to obtain (3.3), one just uses (3.7), (3.6) and (3.1).

4. Computation of the polynomial $G_{m}(y)$ in the case $e=4$

Let p be an odd prime, let f be the order of 2 modulo p and write $p=1+e f$, where e is a positive integer. Let $P_{1}, P_{2}, \ldots, P_{e}$ be all irreducible polynomials of order p and degree f over \mathbb{F}_{2}. For all $\ell, 1 \leq \ell \leq e$, let \mathcal{A}_{ℓ} be the even partition set satisfying (1.1) and $S\left(\mathcal{A}_{\ell}, m\right)$ be the 2 -adic integer defined by (1.2). Recall that G_{m} (cf. Section 2) denotes the minimal polynomial of $S\left(\mathcal{A}_{e}, m\right)$. As will be seen, one of the key tools to get our main result is the classical theory of cyclotomy. In particular, one can wish to look at a special application of this theory with the intention of finding explicit formulas of the polynomial $G_{m}(y)$ for different values of e. Indeed, from (2.5)-(2.7) and (2.8), it is clear that

$$
G_{1}(y)=(-1)^{e} F_{e}(-y) .
$$

For $m \geq 3$, as was already mentioned in (2.9) and (2.10), a formula was found for the polynomial $G_{m}(y)$ in the cases $e=2$ and $e=3$. In what follows, we assume that the prime p is such that $e=4$ (for example, $p=113,281,353,577,593,617,1033, \ldots$) and construct the polynomial $G_{m}(y)$. For that, we use cyclotomic numbers of order 4 and Gaussian periods.

Hence, by using the formula of $F_{4}(y)$ obtained by Gauss (see [8]),

$$
G_{1}(y)=y^{4}-y^{3}-\frac{1}{8}(3 p-3) y^{2}-\frac{1}{16}[(2 a-3) p+1] y+\frac{1}{256}\left[p^{2}-\left(4 a^{2}-8 a+6\right) p+1\right]
$$

where a is the unique integer such that

$$
p=a^{2}+4 b^{2}, \quad a \equiv 1 \bmod 4 .
$$

The last conditions determine a uniquely, and b up to sign. Note that the ambiguity of the sign b is solved in [7, Theorem 2] by

$$
g^{(p-1) / 4} \equiv \frac{a}{2 b} \bmod p
$$

Let g be a primitive root modulo p and recall that

$$
(\mathbb{Z} / p \mathbb{Z})^{*}=C_{0}^{(g)} \cup C_{1}^{(g)} \cup C_{2}^{(g)} \cup C_{3}^{(g)},
$$

where the $\mathcal{C}_{i}^{(g)}$ are the cyclotomic classes of degree 4 and conductor p. By observing that the class $C_{0}^{(g)}$ contains all the 4th-power residues and that $f=(p-1) / 4$ is the order of 2 modulo p, one can conclude that 2 belongs to $C_{0}^{(g)}$, which leads to the fact that 2 is square modulo p. Since 2 is a quadratic residue of primes of the form $1+8 k$ and $7+8 k$, it follows that f must be even.

For a positive integer n and any integer r, let us define

$$
\begin{equation*}
J(n, r)=\sum_{\substack{k=0 \\ k \equiv r \bmod 4}}^{n}\binom{n}{k}(-1)^{k} . \tag{4.1}
\end{equation*}
$$

Then we can state the following result.

Lemme 4.1. For n fixed, the sequence $(J(n, r))_{r \geq 0}$ is periodic with period 4. Moreover,

$$
\begin{equation*}
J(n, r)=2^{n / 2-1} \cos \left(r \frac{\pi}{2}+n \frac{\pi}{4}\right)+(-1)^{r} 2^{n-2} \tag{4.2}
\end{equation*}
$$

Proof. The statement follows from the formula (see [11, page 41])

$$
\sum_{\substack{k=0 \\ k \equiv r \bmod c}}^{n}\binom{n}{k}=\frac{1}{c} \sum_{j=0}^{c-1}\left(2 \cos \left(j \frac{\pi}{c}\right)\right)^{n} \cos \left(j(n-2 r) \frac{\pi}{c}\right)
$$

applied for $c=4$.
Before giving the formula of G_{m}, we need the following result.
Corollary 4.2. Let \mathcal{P}_{0} be the set defined by (2.2), let $m \geq 3$ be an element of \mathcal{P}_{0} and assume that \tilde{m} has the following complete factorization:

$$
\begin{equation*}
\widetilde{m}=q_{1,1} q_{1,2} \cdots q_{1, \omega_{1}} q_{2,1} q_{2,2} \cdots q_{2, \omega_{2}} q_{3,1} q_{3,2} \cdots q_{3, \omega_{3}} \tag{4.3}
\end{equation*}
$$

where, for $i, 1 \leq i \leq 3, \omega_{i}=\omega_{i}(m)$ is the integer defined by (2.1) and $q_{i, j} \in \mathcal{C}_{i}^{(g)}$. Let α_{h} be the integer given by (2.4). Then, for all $h, 0 \leq h \leq 3$,

$$
\begin{equation*}
\alpha_{h}=(-1)^{h} \rho+\gamma \cos \left(\frac{\lambda \pi}{4}+h \frac{\pi}{2}\right), \tag{4.4}
\end{equation*}
$$

with

$$
\begin{align*}
& \lambda=\lambda(m)=\omega_{1}-\omega_{3}, \tag{4.5}\\
& \gamma=\gamma(m)=2^{\left(\left(\omega_{1}+\omega_{3}+2 \omega_{2}\right) / 2\right)-1} \tag{4.6}
\end{align*}
$$

and

$$
\begin{equation*}
\rho=\rho(m)=2^{\omega_{1}+\omega_{3}-2} \kappa\left(\omega_{2}\right), \tag{4.7}
\end{equation*}
$$

where

$$
\kappa\left(\omega_{2}\right)= \begin{cases}1 & \text { if } \omega_{2}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Proof. First let us suppose that $\omega_{1} \neq 0, \omega_{2} \neq 0$ and $\omega_{3} \neq 0$. From (2.4), (4.3) and (4.1),

$$
\begin{align*}
\alpha_{h} & =\sum_{i_{1}=0}^{\omega_{1}}(-1)^{i_{1}}\binom{\omega_{1}}{i_{1}} \sum_{i_{2}=0}^{\omega_{2}}(-1)^{i_{2}}\binom{\omega_{2}}{i_{2}} \sum_{\substack{i_{3}=0 \\
i_{1}+2 i_{2}+3 i_{3}=h \bmod 4}}^{\omega_{3}}(-1)^{i_{3}}\binom{\omega_{3}}{i_{3}} \\
& =\sum_{i_{1}=0}^{\omega_{1}}(-1)^{i_{1}}\binom{\omega_{1}}{i_{1}} \sum_{i_{2}=0}^{\omega_{2}}(-1)^{i_{2}}\binom{\omega_{2}}{i_{2}} J\left(\omega_{3}, i_{1}+2 i_{2}-h\right) . \tag{4.8}
\end{align*}
$$

Denote the inner sum in (4.8) by $K\left(i_{1}, \omega_{2}, \omega_{3}, h\right)$. Then

$$
\begin{aligned}
K\left(i_{1}, \omega_{2}, \omega_{3}, h\right) & =\sum_{r=0}^{3} \sum_{\substack{i_{i}=0 \\
i_{2} \equiv r \bmod 4}}^{\omega_{2}}(-1)^{i_{2}}\binom{\omega_{2}}{i_{2}} J\left(\omega_{3}, i_{1}+2 i_{2}-h\right) \\
& =\sum_{r=0}^{3} J\left(\omega_{2}, r\right) J\left(\omega_{3}, i_{1}+2 r-h\right) .
\end{aligned}
$$

Using (4.2) and after simplifications,

$$
\begin{equation*}
K\left(i_{1}, \omega_{2}, \omega_{3}, h\right)=2^{\left(\left(\omega_{3}+2 \omega_{2}\right) / 2\right)-1} \cos \left(\left(i_{1}-h\right) \frac{\pi}{2}+\omega_{3} \frac{\pi}{4}\right) . \tag{4.9}
\end{equation*}
$$

Since

$$
\alpha_{h}=\sum_{i_{1}=0}^{\omega_{1}}(-1)^{i_{1}}\binom{\omega_{1}}{i_{1}} K\left(i_{1}, \omega_{2}, \omega_{3}, h\right)=\sum_{r=0}^{3} K\left(r, \omega_{2}, \omega_{3}, h\right) J\left(\omega_{1}, r\right),
$$

arguing as above and using (4.9),

$$
\alpha_{h}=2^{\left(\left(\omega_{1}+2 \omega_{2}+\omega_{3}\right) / 2\right)-2} \sum_{r=0}^{3} \cos \left((r-h) \frac{\pi}{2}+\omega_{3} \frac{\pi}{4}\right) \cos \left(r \frac{\pi}{2}+\omega_{1} \frac{\pi}{4}\right) .
$$

By transforming the cosine product in the sum, we get (4.4). This proves Lemma 4.2 when $\omega_{1} \omega_{2} \omega_{3} \neq 0$. Now, when $\omega_{1} \omega_{2} \omega_{3}=0$, by following exactly the same arguments as above with suitable modifications, we obtain (4.4).

Theorem 4.3. Let $m \geq 3$ be an element of \mathcal{P}_{0} and let $G_{m}(y)$ be the minimal polynomial of $S\left(\mathcal{A}_{4}, m\right)$. Let λ, ρ and γ be the quantities, respectively, defined by (4.5), (4.7) and (4.6). Then

$$
G_{m}(y)=\frac{1}{m^{4}}\left(m^{4} y^{4}+m^{2} v_{2} y^{2}+m v_{3} y+v_{4}\right),
$$

with

$$
\begin{align*}
& v_{2}=-\left(2 \rho^{2}+\gamma^{2}\right) p, \tag{4.10}\\
& v_{3}= \begin{cases}(-1)^{(\lambda / 2)+1} 2 \rho \gamma^{2} p a & \text { if } \lambda \text { is even }, \\
(-1)^{(\lambda-1) / 2} 4 \rho \gamma^{2} p b & \text { if } \lambda \text { is odd, },\end{cases} \tag{4.11}\\
& v_{4}= \begin{cases}p^{2} \rho^{2}\left(\rho^{2}-\gamma^{2}\right)+p b^{2} \gamma^{4} & \text { if } \lambda \text { is even }, \\
p^{2} \rho^{2}\left(\rho^{2}-\gamma^{2}\right)+\frac{1}{4} p a^{2} \gamma^{4} & \text { if } \lambda \text { is odd },\end{cases} \tag{4.12}
\end{align*}
$$

where the integers a and b are given by

$$
p=a^{2}+4 b^{2}, \quad a \equiv 1 \bmod 4 \quad \text { and } \quad g^{(p-1) / 4} \equiv \frac{a}{2 b} \bmod p
$$

Moreover, $S\left(\mathcal{A}_{1}, m\right), S\left(\mathcal{A}_{2}, m\right), S\left(\mathcal{A}_{3}, m\right)$ and $S\left(\mathcal{A}_{4}, m\right)$ are the roots of the polynomial $G_{m}(y)$.

Proof. Recall that $\mathcal{M}_{m}(y)$ is the polynomial of $\mathbb{Q}[y]$ whose roots are $S\left(\mathcal{A}_{1}, m\right)$, $S\left(\mathcal{A}_{2}, m\right), S\left(\mathcal{A}_{3}, m\right)$ and $S\left(\mathcal{A}_{4}, m\right)$. We claim that $G_{m}(y)=\mathcal{M}_{m}(y)$. For that, let σ be the automorphism of $\mathbb{Q}\left(\eta_{0}\right)$ over \mathbb{Q} given by $\sigma\left(\eta_{i}\right)=\eta_{i+1}$. Then σ maps θ_{0} onto θ_{1}, θ_{1} onto θ_{2}, θ_{2} onto θ_{3} and θ_{3} onto θ_{0}, which means that the $\theta_{i}(0 \leq i \leq 3)$ are conjugates. Furthermore, to prove that $\mathcal{M}_{m}(y)$ is the minimal polynomial of $S\left(\mathcal{A}_{e}, m\right)$, it suffices to prove that the $\theta_{i}(0 \leq i \leq 3)$ are distinct. For that, first note that $\theta_{0} \neq \theta_{1}$, since otherwise $\sigma\left(\theta_{0}\right)=\theta_{0}$, which is impossible because of the fact that $\theta_{0} \notin \mathbb{Q}$. Now suppose that $\theta_{0}=\theta_{2}$. Using the fact that $\eta_{0}, \eta_{1}, \eta_{2}$ and η_{3} are linearly independent, it follows that
$\alpha_{0}=\alpha_{2}$ and $\alpha_{1}=\alpha_{3}$, which is impossible (this can be easily seen by observing the formula giving α_{h} (cf. (2.4))). Finally, the equality $\theta_{0}=\theta_{3}$ is also impossible, since, by applying σ, we obtain $\theta_{0}=\theta_{1}$.

We denote by $\sigma_{k}, 1 \leq k \leq 4$, the elementary symmetric polynomials in four variables of degree k. Now, using (2.8), we can write

$$
G_{m}(y)=\frac{1}{m^{4}} \prod_{i=0}^{3}\left(m y+\theta_{i}\right)=\frac{1}{m^{4}}\left(m^{4} y^{4}+m^{3} v_{1} y^{3}+m^{2} v_{2} y^{2}+m v_{3} y+v_{4}\right)
$$

with

$$
\begin{equation*}
v_{k}=\sigma_{k}\left(\theta_{0}, \theta_{1}, \theta_{2}, \theta_{3}\right) ; \quad 1 \leq k \leq 4 \tag{4.13}
\end{equation*}
$$

and (cf. (2.7))

$$
\begin{equation*}
\theta_{i}=\sum_{h=0}^{3} \alpha_{h} \eta_{\delta-h+i} ; \quad 0 \leq i \leq 3 \tag{4.14}
\end{equation*}
$$

Computation of v_{1} : from (4.13) and (4.14),

$$
v_{1}=\sum_{h=0}^{3} \alpha_{h} \sum_{i=0}^{3} \eta_{\delta-h+i} .
$$

Since $\eta_{\delta-h+i}=\eta_{\delta-h+i \bmod 4}$, it follows that for a fixed $h, \sum_{i=0}^{3} \eta_{\delta-h+i}=\sum_{i=0}^{3} \eta_{i}$. On the other hand from (2.4), $\sum_{h=0}^{3} \alpha_{h}=\sum_{d \mid \widetilde{m},} \mu(d)$. Hence,

$$
v_{1}=\left(\sum_{d \mid \widetilde{m}} \mu(d)\right)\left(\sum_{i=0}^{3} \eta_{i}\right)=0
$$

since the first sum vanishes for $\widetilde{m} \neq 1$.
Computation of v_{2} : using (4.14) and (4.4), expanding in (4.13) and by grouping the product of the form $\eta_{i} \eta_{i+k}$,

$$
v_{2}=\sum_{k=0}^{2} V_{k} \Delta_{k}
$$

where the Δ_{k} are defined by (3.4), $V_{0}=-2 \rho^{2}-\gamma^{2}, V_{1}=4 \rho^{2}$ and $V_{2}=-V_{0}-V_{1}=$ $-2 \rho^{2}+\gamma^{2}$. Hence, by using (3.6), we get (4.10).

Computation of ν_{3} : the same calculation as in ν_{2} gives

$$
v_{3}=\sum_{k=0}^{3} U_{k} \Omega_{0, k}+U \Omega_{1,2}
$$

where the $\Omega_{\ell, k}$ are defined by (3.5) and $U_{0}, U_{1}, U_{2}, U_{3}, U$ are quantities depending solely upon the α_{h}, which can be simplified by (4.4) to find that

$$
U_{0}= \begin{cases}(-1)^{\lambda / 2} 2 \rho \gamma^{2} & \text { if } \lambda \text { is even } \\ 0 & \text { if } \lambda \text { is odd }\end{cases}
$$

$$
\begin{aligned}
& U_{1}= \begin{cases}-(-1)^{\lambda / 2} 2 \rho \gamma^{2} & \text { if } \lambda \text { is even, } \\
(-1)^{(\lambda-1) / 2} 4 \rho \gamma^{2} & \text { if } \lambda \text { is odd, }\end{cases} \\
& U_{2}= \begin{cases}-(-1)^{\lambda / 2} 2 \rho \gamma^{2} & \text { if } \lambda \text { is even, } \\
0 & \text { if } \lambda \text { is odd, }\end{cases} \\
& U_{3}= \begin{cases}-(-1)^{\lambda / 2} 2 \rho \gamma^{2} & \text { if } \lambda \text { is even, } \\
-(-1)^{(\lambda-1) / 2} 4 \rho \gamma^{2} & \text { if } \lambda \text { is odd, }\end{cases} \\
& U= \begin{cases}(-1)^{\lambda / 2} 4 \rho \gamma^{2} & \text { if } \lambda \text { is even, } \\
0 & \text { if } \lambda \text { is odd } .\end{cases}
\end{aligned}
$$

Hence, (4.11) follows from (3.7) and the fact that for f even (cf. [6] and [7]),

$$
\begin{gathered}
(1,3)_{4}=(2,3)_{4}=(1,2)_{4}, \quad(1,1)_{4}=(0,3)_{4}, \\
(2,2)_{4}=(0,2)_{4}, \quad(3,3)_{4}=(0,1)_{4}, \\
16(0,0)_{4}=p-11-6 a, \quad 16(0,1)_{4}=p-3+2 a+8 b, \quad 16(0,2)_{4}=p-3+2 a, \\
16(0,3)_{4}=p-3+2 a-8 b, \quad 16(1,2)_{4}=p+1-2 a .
\end{gathered}
$$

Computation of v_{4} : doing as above, the calculation yields

$$
v_{4}=\sum_{j=0}^{2} \sum_{k=j}^{3} U_{j, k} \Theta_{0, j, k}+V \Theta_{1,2,3},
$$

where the $U_{j, k}$ and V are quantities depending solely upon the α_{h}, which, with the use of (4.4), can be written as follows:

$$
\begin{aligned}
& U_{0,0}= \begin{cases}\rho^{4}-\rho^{2} \gamma^{2} & \text { if } \lambda \text { is even }, \\
\rho^{4}-\rho^{2} \gamma^{2}+\frac{1}{4} \gamma^{4} & \text { if } \lambda \text { is odd },\end{cases} \\
& U_{0,1}=-4 \rho^{4}+2 \rho^{2} \gamma^{2} \\
& U_{0,2}= \begin{cases}4 \rho^{4} & \text { if } \lambda \text { is even, } \\
4 \rho^{4}-\gamma^{4} & \text { if } \lambda \text { is odd },\end{cases} \\
& U_{0,3}=-4 \rho^{4}+2 \rho^{2} \gamma^{2} \text {, } \\
& U_{1,1}= \begin{cases}6 \rho^{4}-2 \rho^{2} \gamma^{2}+\gamma^{4} & \text { if } \lambda \text { is even, } \\
6 \rho^{4}-2 \rho^{2} \gamma^{2}-\frac{1}{2} \gamma^{4} & \text { if } \lambda \text { is odd, }\end{cases} \\
& U_{1,2}=-12 \rho^{4}-2 \rho^{2} \gamma^{2} \text {, } \\
& U_{1,3}= \begin{cases}12 \rho^{4}-2 \gamma^{4} & \text { if } \lambda \text { is even, } \\
12 \rho^{4}+\gamma^{4} & \text { if } \lambda \text { is odd },\end{cases} \\
& U_{2,2}= \begin{cases}3 \rho^{4}+\rho^{2} \gamma^{2} & \text { if } \lambda \text { is even }, \\
3 \rho^{4}+\rho^{2} \gamma^{2}+\frac{3}{4} \gamma^{4} & \text { if } \lambda \text { is odd },\end{cases} \\
& U_{2,3}=-12 \rho^{4}-2 \rho^{2} \gamma^{2} \text {, } \\
& V= \begin{cases}6 \rho^{4}+2 \rho^{2} \gamma^{2}+\gamma^{4} & \text { if } \lambda \text { is even }, \\
6 \rho^{4}+2 \rho^{2} \gamma^{2}-\frac{1}{2} \gamma^{4} & \text { if } \lambda \text { is odd. }\end{cases}
\end{aligned}
$$

Hence, from (3.3),

$$
v_{4}= \begin{cases}\left(-\frac{3}{8} p-\frac{5}{2} b^{2}-\frac{5}{8} a^{2}\right) p \rho^{2} \gamma^{2} & \\ \quad+\left(\frac{3}{8} p+\frac{5}{2} b^{2}+\frac{5}{8} a^{2}\right) p \rho^{4}+p b^{2} \gamma^{4} & \text { if } \lambda \text { is even }, \\ \left(-\frac{3}{8} p-\frac{5}{2} b^{2}-\frac{5}{8} a^{2}\right) p \rho^{2} \gamma^{2}+\left(\frac{3}{8} p+\frac{5}{2} b^{2}+\frac{5}{8} a^{2}\right) p \rho^{4} & \\ +\left(\frac{3}{32} p-\frac{3}{8} b^{2}+\frac{5}{32} a^{2}\right) p \gamma^{4} & \text { if } \lambda \text { is odd }\end{cases}
$$

which, by using the fact that $p=a^{2}+4 b^{2}$, gives (4.12).
Remark 4.4. To show the irreducibility over \mathbb{Q} of the polynomial $\mathcal{M}_{m}(y)$, one also could simply use Eisenstein's criterion, since in

$$
m^{4} \mathcal{M}_{m}(y)=m^{4} y^{4}+m^{3} v_{1} y^{3}+m^{2} v_{2} y^{2}+m v_{3} y+v_{4} \in \mathbb{Z}[y]
$$

all of the coefficients except m^{4} are divisible by the prime p, but v_{4} is not divisible by p^{2}.

Example $p=113$. In this case $e=4, f=28$ and we can take $g=3$. The four irreducible polynomials over $\mathbb{F}_{2}[z]$ of order 113 are

$$
\begin{aligned}
& P_{1}(z)=z^{28}+z^{25}+z^{24}+z^{22}+z^{21}+z^{15}+z^{14}+z^{13}+z^{7}+z^{6}+z^{4}+z^{3}+1, \\
& P_{2}(z)=z^{28}+z^{26}+z^{22}+z^{20}+z^{19}+z^{18}+z^{14}+z^{10}+z^{9}+z^{8}+z^{6}+z^{2}+1, \\
& P_{3}(z)= z^{28}+z^{23}+z^{22}+z^{20}+z^{17}+z^{16}+z^{15}+z^{14}+z^{13}+z^{12}+z^{11}+z^{8}+z^{6}+z^{5}+1, \\
& P_{4}(z)= z^{28}+z^{27}+z^{25}+z^{24}+z^{23}+z^{22}+z^{20}+z^{19}+z^{18}+z^{15}+z^{14}+z^{13} \\
& \quad+z^{10}+z^{9}+z^{8}+z^{6}+z^{5}+z^{4}+z^{3}+z+1 .
\end{aligned}
$$

For $\ell, 1 \leq \ell \leq 3$, let $\mathcal{A}_{\ell}=\mathcal{A}\left(P_{\ell}\right)$ be the set defined by (1.1). Since $p=a^{2}+4 b^{2}$, $a \equiv 1 \bmod 4$, where the sign of b is chosen so that $g^{(p-1) / 4} \equiv a / 2 b \bmod p$, we find that $a=-7$ and $b=4$.

- $m=1$

$G_{m}(y)$	$y^{4}-y^{3}-42 y^{2}+120 y-64$
The elements of the form $2^{k} m$ of \mathcal{A}_{1}	$4,8, \ldots, 2^{998}, 2^{999}, \ldots$
The elements of the form $2^{k} m$ of \mathcal{A}_{2}	$2,4,8,32 \ldots, 2^{996}, \ldots$
The elements of the form $2^{k} m$ of \mathcal{A}_{3}	$8,32, \ldots, 2^{996}, \ldots$
The elements of the form $2^{k} m$ of \mathcal{A}_{4}	$1,2,4,8,16 \ldots, 2^{998}, 2^{999}, \ldots$

- $m=11$

$G_{m}(y)$	$\frac{1}{14641}\left(14641 y^{4}-13673 y^{2}+1808\right)$
The elements of the form $2^{k} m$ of \mathcal{A}_{1}	$44,176,1408, \ldots, 2^{997} \cdot 11,2^{998} \cdot 11$,
	$2^{999} \cdot 11, \ldots$
The elements of the form $2^{k} m$ of \mathcal{A}_{2}	$11,22,176,352, \ldots, 2^{998} \cdot 11, \ldots$
The elements of the form $2^{k} m$ of \mathcal{A}_{3}	$44,88,352,704, \ldots, 2^{996} \cdot 11, \ldots$
The elements of the form $2^{k} m$ of \mathcal{A}_{4}	$1,44,88,704,1408, \ldots, 2^{997} \cdot 11$,

- $\quad m=165=3 \cdot 5 \cdot 11$

$G_{m}(y)$	$\frac{1}{741200625}\left(741200625 y^{4}-12305700 y^{2}+28928\right)$
The elements of the form $2^{k} m$ of \mathcal{A}_{1}	$1320,2640,10560, \ldots, 2^{997} \cdot 165,2^{998} \cdot 165, \ldots$
The elements of the form $2^{k} m$ of \mathcal{A}_{2}	$330,1320,2640,5280, \ldots, 2^{997} \cdot 165$,
	$2^{998} \cdot 165,2^{999} \cdot 165, \ldots$
The elements of the form $2^{k} m$ of \mathcal{A}_{3}	$1320,5280, \ldots, 2^{999} \cdot 165, \ldots$
The elements of the form $2^{k} m$ of \mathcal{A}_{4}	$330,660,10560, \ldots, 2^{996} \cdot 165, \ldots$

Acknowledgements

I am pleased to thank J.-L. Nicolas for helpful discussions. I would also like to thank the referee for his valuable remarks.

References

[1] N. Baccar, 'Sets with even partition function and 2-adic integers', Period. Math. Hungar. 55(2) (2007), 177-193.
[2] N. Baccar, 'On the elements of sets with even partition function', Ramanujan J. 38 (2015), 561-577.
[3] N. Baccar and F. Ben Saïd, 'On sets such that the partition function is even from a certain point on', Int. J. Number Theory 5(3) (2009), 1-22.
[4] N. Baccar, F. Ben Saïd and A. Zekraoui, 'On the divisor function of sets with even partition functions', Acta Math. Hungar. 112(1-2) (2006), 25-37.
[5] N. Baccar and A. Zekraoui, 'Sets with even partition function and 2-adic integers II', J. Integer Seq. 13 (2010), Article 10.1.3.
[6] L. E. Dickson, 'Cyclotomy, higher congruences and Waring's problem', Amer. J. Math. 57 (1935), 391-424.
[7] S. A. Katre and A. R. Rajwade, 'Resolution of the sign ambiguity in the determination of the cyclotomic numbers of order 4 and the corresponding Jacobsthal sum', Math. Scand. 60 (1987), 52-62.
[8] E. Lehmer, 'Connection between Gaussian periods and cyclic units', Math. Comp. 50(182) (1988), 535-541.
[9] R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications (Cambridge University Press, New York, 1986).
[10] J.-L. Nicolas, I. Z. Ruzsa and A. Sárközy, 'On the parity of additive representation functions', J. Number Theory 73 (1998), 292-317.
[11] J. Riordan, Introduction to Combinatorial Analysis (Dover, Mineola, NY, 2002).
[12] F. Thaine, 'Properties that characterize Gaussian periods and cyclotomic numbers', Proc. Amer. Math. Soc. 124 (1996), 35-45.
N. BACCAR, Université de Sousse, ISITCOM Hammam Sousse,

Dép. de Math Inf., 5 Bis, Rue 1 Juin 1955, 4011 Hammam Sousse, Tunisie
e-mail: naceurbaccar@yahoo.fr

[^0]: (C) 2016 Australian Mathematical Publishing Association Inc. 1446-7887/2016 \$16.00

