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Abstract

Background. Abnormal reward functioning is central to anhedonia and amotivation symp-
toms of schizophrenia (SCZ). Reward processing encompasses a series of psychological com-
ponents. This systematic review and meta-analysis examined the brain dysfunction related to
reward processing of individuals with SCZ spectrum disorders and risks, covering multiple
reward components.
Methods. After a systematic literature search, 37 neuroimaging studies were identified and
divided into four groups based on their target psychology components (i.e. reward anticipa-
tion, reward consumption, reward learning, effort computation). Whole-brain Seed-based d
Mapping (SDM) meta-analyses were conducted for all included studies and each component.
Results. The meta-analysis for all reward-related studies revealed reduced functional activa-
tion across the SCZ spectrum in the striatum, orbital frontal cortex, cingulate cortex, and cere-
bellar areas. Meanwhile, distinct abnormal patterns were found for reward anticipation
(decreased activation of the cingulate cortex and striatum), reward consumption (decreased
activation of cerebellum IV/V areas, insula and inferior frontal gyri), and reward learning pro-
cessing (decreased activation of the striatum, thalamus, cerebellar Crus I, cingulate cortex,
orbitofrontal cortex, and parietal and occipital areas). Lastly, our qualitative review suggested
that decreased activation of the ventral striatum and anterior cingulate cortex was also
involved in effort computation.
Conclusions. These results provide deep insights on the component-based neuro-psycho-
pathological mechanisms for anhedonia and amotivation symptoms of the SCZ spectrum.

Introduction

Schizophrenia (SCZ) is a severe mental disorder affecting 0.25–0.28% of the population
(McCutcheon, Marques, & Howes, 2020), and it contributes to 1.4–1.7% of the economic
burden of all diseases (Charlson et al., 2018; GBD, 2017 Disease and Injury Incidence and
Prevalence Collaborators, 2018). Among the different psychopathologies in SCZ, the symp-
toms of anhedonia and amotivation have been reported to impair SCZ patients’
social functioning, and increase societal burden of the disease (Nordstroem, Talbot,
Bernasconi, Berardo, & Lalonde, 2017; Provencher & Mueser, 1997). Anhedonia refers to
the diminished ability to experience pleasure (Gard, Kring, Gard, Horan, & Green, 2007);
amotivation refers to the diminished ability to motivate effortful behavior (Fervaha,
Foussias, Agid, & Remington, 2013). The putative neurobiological mechanisms for these
symptoms have remained elusive, hindering developments of effective interventions targeting
at anhedonia and amotivation (Chan, Wang, & Lui, 2022; van Os & Kapur, 2009).

One of the putative neurobiological mechanisms for anhedonia and amotivation symptoms
in SCZ is impaired reward functioning (Chan et al., 2022; Gold, Waltz, Prentice, Morris, &
Heerey, 2008; Strauss, Waltz, & Gold, 2014; Walter, Kammerer, Frasch, Spitzer, & Abler,
2009). Reward processing involves multiple neuropsychological components (Berridge &
Robinson, 2003; Berridge, Robinson, & Aldridge, 2009), which are discrete yet all supporting
an overarching function. Notably, Kring and Barch proposed one of the influential models
(Kring & Barch, 2014), which has ‘compartmentalized’ the impaired reward processing in
SCZ patients into several neuropsychological components, which include (1) reward anticipa-
tion (i.e. the ability to anticipate pleasure supports the formation of ‘incentive salience’ for
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upcoming reward) (Chan et al., 2010; Gard et al., 2007), (2)
reward consumption (i.e. the ability to experience consummatory
pleasure at the receipt of the reward) (Chan et al., 2010; Gard et
al., 2007), (3) reward learning (i.e. the ability to maintain and
update the inner representation of rewards) (Barch & Dowd,
2010; Gold et al., 2008; Kring & Elis, 2013), and (4) effort com-
putation (i.e. the decision-making process of computing the likely
reward and required effort which determines an individual’s levels
of willing for effort expenditure) (Barch, Treadway, & Schoen,
2014; Culbreth, Moran, & Barch, 2018; Treadway, Buckholtz,
Schwartzman, Lambert, & Zald, 2009; Huang et al., 2016).
These four components proposed by Kring and Barch constitute
the ‘positive valence systems domain’ in the Research Domain
Criteria (RDoC) framework (Barch, Pagliaccio, & Luking, 2016;
Cuthbert, 2014; Insel et al., 2010). The positive valence systems
are believed to interact with other SCZ-associated dysfunctions,
such as low pleasure beliefs and memory impairments, and emo-
tion processing problems, resulting in anhedonia and amotivation
(Chan et al., 2022; Strauss & Gold, 2012).

Neuroimaging research could unveil component-specific
neural mechanisms for anhedonia and amotivation. For instance,
an fMRI study based on monetary incentive delay (MID) task
found decreased activation in the anterior cingulate cortex
(ACC), midbrain, thalamus, cerebellum, and striatum during
reward anticipation (Nielsen et al., 2012). Another fMRI study
found consummatory activation to pleasant stimuli was reduced
in the dorsolateral, medial, and ventrolateral prefrontal cortices
(Ursu et al., 2011). One fMRI study found that SCZ patient exhib-
ited abnormal activation in the caudate, posterior cingulate cortex
(PCC), and dorsal medial cortex gyrus during effort computation
(Huang et al., 2016). Regarding reward learning, previous research
reported reduced activation of the medial temporal lobe, hippo-
campus gyrus, striatum, and PCC in SCZ (Reinen et al., 2016).

Despite these fruitful findings, there are knowledge gaps
regarding the putative neural mechanisms contributing to
impaired reward processing in SCZ. Although these four compo-
nents are presumably distinct at the neuropsychological level
(Kring & Barch, 2014), they may share overlapping mechanisms
at the neural level, such as abnormal dopaminergic transmission
(Balleine, 2005; Berridge & Robinson, 1998; Samson, Frank, &
Fellous, 2010). Therefore, it is essential to investigate neural
mechanisms that are specific to each reward component as well
as those that are shared between them to better understand anhe-
donia and amotivation. However, many experimental paradigms
can only tap into a limited number of components, thus posing dif-
ficulty for any direct comparison between neural mechanisms for
different components (Kieslich, Valton, & Roiser, 2022). One way
to address this issue is to tease out components from experimental
paradigms and then employ meta-analysis to synthesize
component-based variables. Following this approach, several previ-
ous studies have adopted neuroimaging meta-analysis on reward
dysfunction in SCZ (Chase, Loriemi, Wensing, Eickhoff, &
Nickl-Jockschat, 2018; Leroy et al., 2020; Radua et al., 2015; Zeng
et al., 2022), but they mainly focused on the components of reward
anticipation and consumption, and largely ignored the component
of reward learning and effort computation.

Another limitation of previous studies is the restricted selec-
tion of regions of interest (ROIs). Reward function is mediated
via the limbic cortico-striatal-thalamic circuit that interdigitates
with the mesolimbic dopamine pathway (Dichter, Damiano, &
Allen, 2012; Haber & Knutson, 2010; Nestler & Carlezon,
2006). However, most existing studies have focused on only a

few regions of the striatal-prefrontal network, such as the striatum
and the orbitofrontal cortex (OFC), which might introduce bias
when determining alterations of brain activation patterns and
neural mechanisms. At the same time, evidence strongly sug-
gested that SCZ is associated with alterations of the whole brain
rather than localized regions (Kambeitz et al., 2015;
Venkataraman, Whitford, Westin, Golland, & Kubicki, 2012).
Therefore, it is necessary to investigate putative neural mechan-
isms for anhedonia and amotivation in SCZ patients from the
‘whole-brain perspective’.

To address the aforementioned knowledge gaps, this study
adopted the ‘whole-brain perspective’ to systematically evaluate
brain functional impairment patterns of SCZ-associated with
reward processing, and to clarify the neural substrates for each
of the component of impaired reward processing. Following the
framework of symptom dimension (Keshavan & Ongur, 2014;
Pacheco et al., 2022) and the psychosis continuum model (van
Os, Linscott, Myin-Germeys, Delespaul, & Krabbendam, 2009),
studies recruiting clinical patients with SCZ spectrum disorders
or subclinical samples at risk of developing SCZ were included
in this meta-analysis, to identify brain functional impairments
for the SCZ spectrum. We hypothesized that brain functional
alterations related to impaired reward processing would be
found mainly in but not limited to the striatal-prefrontal network.
Meanwhile, for dysfunctions related to reward components, given
their overlapping neural basis, certain brain regions may be
responsible for impairments in multiple components, making
them potential targets for interventions aimed at addressing anhe-
donia and amotivation symptoms.

Methods

Study search and selection

Following the PRISMA guidelines (Liberati et al., 2009), a system-
atic literature search was conducted to identify relevant studies
published as of 1 June 2022 on PubMed and Web of Science.
The comprehensive search terms included (‘schizo*’) AND
(reward* OR motivation* OR amotivation* OR pleasant* OR
pleasur* OR hedoni* OR anhedoni*) AND (‘functional magnetic
resonance imaging’ OR ‘fMRI’ OR ‘functional MRI’ OR ‘PET’
OR ‘positron emission tomography’). Additional studies were
included in this meta-analysis based on the reference lists of four
previous review papers (Barch et al., 2016; Strauss et al., 2014;
Treadway & Zald, 2013; Whitton, Treadway, & Pizzagalli, 2015).

All the obtained studies were screened by the Zotero 6.0, which
identified and removed any duplicate study. Next, we manually
identified relevant studies which fulfilled the following criteria
for meta-analysis: (1) an original study published in a peer-
reviewed journal, (2) adopting brain functional imaging task
related to reward processing, (3) having samples of SCZ spectrum
[SCZ or schizoaffective disorder patients diagnosed based on the
Diagnostic and Statistical Manual of Mental Disorders (DSM)
(Frances, First, & Pincus, 1995) or International Statistical
Classification of Diseases and Related Health Problems (ICD)
diagnostic criteria (World Health Organization, 1992), or
high-risk subclinical cases identified by family genetic risk (e.g.
first-degree relatives), mental states (e.g. at risk mental state), or
specific trait (e.g. schizotypy)], (4) comparing brain activation
between SCZ spectrum and HC, (5) employing the whole-brain
analysis. Two authors (WX and ZYH) performed the selection
of studies based on these criteria independently, and then jointly
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to arrive at consensus. The reasons for exclusion can be found in
PRISMA flow chart (see Fig. 1).

Data extraction and coding

For each study included for meta-analysis, the following data were
extracted, including (1) basic information of the article: title,
authors, and publication year; (2) information about subjects:
sample size, mean age, and sex ratio of SCZ spectrum group
and healthy control (HC) group, and clinical stage (e.g. chronic
or first-episode patients, and high-risk conditions), diagnostic
tool, medication, illness duration (for SCZ samples only); (3)
computational settings of fMRI activation analysis, including
the experimental condition of interest (e.g. reward anticipation-
neural anticipation) in first-level analysis, and statistical compari-
son setting (e.g. HC-SCZ or SCZ-HC) in the second-level ana-
lysis; (4) results of whole-brain analysis: the reference space, the
significant threshold, and the coordinates, cluster sizes, statistical
indicators (e.g. t-value or z-value) of the significant clusters.

For analyzing reward components, selected studies were classi-
fied into four groups based on the components investigated,
according to the following criteria: (1) reward anticipation: the
paradigm identified the anticipation or prediction process for
the forthcoming reward; (2) reward consumption: the experiment
focused on the receiving or experiencing process for positive stim-
uli; (3) reward learning: the experiment separated brain activation
related to learning process based on unexpected reward acquisi-
tion or omission; and (4) effort computation: the experiment esti-
mated the willingness to spend effort pursuing rewards. Because
more than one psychological process could be derived from a single
paradigm [e.g. MID task can separate the neuropsychological com-
ponents of reward anticipation and consumption simultaneously
(Knutson, Westdorp, Kaiser, & Hommer, 2000)], an individual
study can be classified into different groups at the same time.

Data were initially extracted by two authors (ZYH and NYZ),
each undertook half of the data extraction work and checked on
the other half. The extracted data were then further checked by
another independent author (WX). The studies included for this
meta-analysis are shown in Table 1 and Supplementary Table S2.

Coordinate-based meta-analysis

Meta-analysis was performed using the Seed-based d Mapping
with Permutation of Subject Images (SDM-PSI version 6.21).
This method estimated the mean maps of random effect though
synthesizing the peak coordinates and effect size (Hedges’ g) of
included studies with subject-based permutation test (Albajes-
Eizagirre et al., 2019). Based on the extracted data, basic informa-
tion of all related studies was entered into the SDM-PSI software
for following analyses, including titles, demographic variables of
SCZ subjects (i.e. diagnostic group, sample size, mean age, sex
ratio, clinical symptoms, and duration), psychological tasks, reward
components, and t-value threshold of statistical significance.

The merged and distinct dysfunctional patterns of the four
reward components were respectively obtained through the ana-
lyses for all included studies and component groups. Both of
them were performed following the SDM-PSI guidelines
(Albajes-Eizagirre et al., 2019): Preprocessing was performed
with default parameters (20 mm full width at half maximum,
gray matter mask) to recreate the bounds of the effect-size. We
then conducted mean analysis to estimate the mean difference
of brain activation between SCZ spectrum and HC. The criteria
of significance were set as uncorrected p < 0.0025 (paired one-
tailed tests, resulting in two-tailed p < 0.005) and cluster wise k
> 10 voxels, since it was found to be optimally balanced between
type I and type II errors (Chavanne & Robinson, 2021; Lieberman
& Cunningham, 2009). We also performed family-wise error
(FWE) corrections based on 5000 permutations. Finally, Egger’s

Fig. 1. PRISMA flow-chart depicting the study inclusion and exclusion process. 1Not homogenous thresholding: levels of statistical significance were inconsist-
ent across regions in whole-brain analyses (e.g. small volume correction). 2Not report activation/deactivation coordinates: no hypo- or hyper-activation of SCZ were
reported, or no coordinate was reported.
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Table 1. Summary of studies included in the meta-analysis

Study Task Domain

SCZ spectrum subjects

Contrast
settings

Coordinate
space

Diagnostic
group

Diagnostic
tool

Sample size
(% Female)

Mean
age

Medication
(Type: Number)

Choi, Lee, Ku, Yoon, and Kim
(2014)

Movie viewing Anticipation Chronic
patients

DSM-IV-TR 15 (33) 29.1 2nd:15 Positive–neutral MNI

Chung and Barch (2016) Response conflict task Anticipation Chronic
patients

DSM-IV-TR 36 (31) 38.96 1st:4 2nd:25 C:7 Positive Talairach

da Silva Alves et al. (2013) MID Anticipation First-episode
patients

DSM-IV 10 (0) 22.7 1st:1 2nd:6 Positive–neutral Talairach

de Leeuw, Kahn, and Vink
(2015)

MID Anticipation High risks – 27 (48) 31.7 – Positive–neutral Talairach

Grimm et al. (2014) MID Anticipation High risks – 54 (57) 33.63 – Positive–neutral MNI

Juckel et al. (2006) MID Anticipation Chronic
patients

ICD-10 and
DSM-IV

10 (20) 31.5 1st:10 2nd:10 Positive–neutral MNI

Kim, Shin, Kyeong, Lee, and
Kim (2018)

Real-life reward mimicking
task

Anticipation Chronic
patients

DSM-IV 20 (55) 34.6 – Positive–neutral MNI

Nielsen et al. (2012) MID Anticipation First-episode
patients

ICD-10 23 (30) 26 – Uncertain–
certain

Talairach

Richter et al. (2015) Desire-reason-dilemma
paradigm

Anticipation Chronic
patients

ICD-10 and
DSM-IV

16 (13) 31.1 2nd:16 Positive MNI

Schlagenhauf et al. (2009) MID Anticipation First-episode
patients

ICD-10 and
DSM-IV

15 (20) 30.1 – Positive–neutral Talairach

Smieskova et al. (2015) Salience attribution task Anticipation High risks CAARMS 34 (24) 24.35 – Adaptive reward MNI

Yang et al. (2021) Positive prospection task Anticipation High risks SPQ 49 (65) 21.8 – Positive–neutral MNI

Dowd and Barch (2012) Pavlovian reward learning Anticipation;
consumption

Chronic
patients

DSM-IV 29 (28) 31.44 1st:6 2nd:23 Positive–neutral Talairach

Yan et al. (2016) MID Anticipation;
consumption

High risks ICD-10 33 (49) 19.3 – Positive–neutral MNI

Walter et al. (2009) MID Anticipation;
consumption; reward
learning

Chronic
patients

DSM-IV 16 (50) 38 2nd:16 Positive–neutral MNI

Gradin et al. (2011) Instrumental reward
learning task

Anticipation; reward
learning

Chronic
patients

DSM-IV 14 (21) 42.5 1st:14 Prediction–
error signals

Talairach

Catalucci et al. (2011) Affective picture viewing Consumption First-episode
patients

DSM-IV 12 (33) 26.93 – Affective–
scramble

Talairach

Crespo-Facorro et al. (2001) Emotion-induction
olfactory task

Consumption Chronic
patients

DSM-IV 18 (11) 30 – Negative–
positive

Talairach

Hooker et al. (2014) Affective facial expression
viewing

Consumption High risks CRSAS 15 (67) 30.27 – Positive–neutral MNI

Social approval task Consumption DSM-IV 15 (27) 33.1 – MNI
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Makowski, Lepage, and
Harvey (2016)

Chronic
patients

Self–others
reward

Paradiso et al. (2003) Affective picture viewing Consumption First-episode
patients

DSM-IV 18 (11) 30 – Positive Talairach

Ursu et al. (2011) Affective picture viewing Consumption Chronic
patients

DSM-IV-TR 23 (26) 29.4 1st:2 2nd:16 C:1 Positive MNI

Walter et al. (2010) MID derivatives Consumption Chronic
patients

– 16 (50) 33 – Positive–neutral MNI

Waltz et al. (2010) MID Consumption Chronic
patients

– 17 (24) 37.8 – Positive–neutral Talairach

Avsar et al. (2013) Delay discounting Effort computation Chronic
patients

DSM-IV 14 (29) 36.5 – Hard–baseline MNI

Huang et al. (2016) EEfRT Effort computation Chronic
patients

DSM-IV 23 (13) 34.48 1st:3 2nd:20 Probability
effects

MNI

Prettyman et al. (2021) Effort discounting task Effort computation Chronic
patients

DSM-IV 21 (43) 36.6 – Hard–easy MNI

Culbreth, Gold, Cools, and
Barch (2016)

Probabilistic
reversal-learning task

Reward learning Chronic
patients

DSM-IV 57 (33) 37 1st:43 2nd:3 C:4 Prediction–
error

Talairach

Dowd, Frank, Collins, Gold,
and Barch (2016)

Probabilistic stimulus
selection task

Reward learning Chronic
patients

DSM-IV 38 (37) 35 1st:38 Q; prediction–
error

Talairach

Gradin et al. (2013) Pavlovian reward learning Reward learning Chronic
patients

DSM-IV 14 (14) 42.71 – Reward–no
reward

Talairach

Koch et al. (2010) Probabilistic trial-error
learning task

Reward learning Chronic
patients

DSM-IV 19 (37) 35.2 1st:19 Prediction–
error

Talairach

Morris et al. (2012) Reward-related
prediction-error task

Reward learning Chronic
patients

DSM-IV 16 (44) 33 1st:16 Reward;
surprise

MNI

Murray et al. (2008) Instrumental reward
learning task

Reward learning First-episode
patients

DSM-IV 13 (31) 26 – Prediction–
error

MNI

Reinen et al. (2016) Probabilistic reward
learning

Reward learning Chronic
patients

DSM-IV 16 (44) 34.3 1st:3 2nd:24 Prediction–
error

MNI

Segarra et al. (2016) Slot-machine game Reward learning Chronic
patients

DSM-IV 21 (14) 32.34 1st:4 2nd:21 Unexpected
reward

MNI

Vanes, Mouchlianitis, Collier,
Averbeck, and Shergill (2018)

Reinforcement learning task Reward learning Chronic
patients

ICD-10 21 (14) 41.5 – Prediction–
error

MNI

Waltz et al. (2018) Reinforcement learning task Reward learning Chronic
patients

– 27 (37) 38.1 2nd:16 Prediction–
error

Talairach

SCZ, schizophrenia; CAARMS, Comprehensive Assessment of At-risk Mental States; CRSAS, Chapmen Revised Social Anhedonia Scale; SPS, Scale of Prodromal Symptoms; SPQ, Schizotypal Personality Questionnaire; ERIraos, Early Recognition Inventory
based on IRAOS; SIPS, psychosis-risk syndrome; 1st, first antipsychotic medication; 2nd, second antipsychotic medicate.
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test was implemented for significant clusters to estimate potential
publication bias (Egger, Davey Smith, Schneider, & Minder,
1997). At the same time, considering the potential heterogeneity
of subclinical groups, the same analyses were performed again
only for studies recruiting clinical patients with SCZ spectrum
disorders (see Supplementary Material for results).

We performed exploratory analyses to determine the common
impaired regions for multiple reward components. The conver-
gences between functional meta-analyses for each two compo-
nents were analyzed through multi-model meta-analyses.
Significance levels were set as corrected p < 0.05 with threshold-
free cluster enhancement correction and cluster size >10.

In order to determine the moderating effects of potential factors,
meta-regression analyses were performed for included studies
between reward-related activations and demographic and clinical
variables, including the mean age, the percentage of males, the dur-
ation of illness, and negative symptom severity (i.e. raw or conver-
sional scores for PANSS negative symptoms rating) (van Erp et al.,
2014). The significance level was set as p < 0.05 and cluster size >10.

Results

Studies included for meta-analyses

Thirty-seven studies met the eligibility criteria for coordinate-
based analysis, comprising 810 SCZ spectrum subjects and 862
HCs. We classified studies based on the reward components of
interest and found 16 studies related to reward anticipation, 11
studies related to reward consumption, 12 studies related to
reward learning, and three studies related to effort computation.
Because the number of studies on effort computation was insuf-
ficient for the coordinate-based meta-analysis, we only provided
a descriptive review rather than quantitative analysis for effort
computation.

Merging analysis for reward components

Coordinate-based meta-analysis for all included studies revealed
merged dysfunction patterns of multiple reward components.
SCZ spectrum subjects showed reduced activation in a wide
range of cortical, subcortical, and cerebellar regions, mainly
including the striatum, medial and lateral orbital frontal cortex,
ACC, thalamus, cerebellar lobule IV/V and Crus I areas, inferior
parietal gyri, and calcarine fissure. Findings in the striatum,
orbital frontal cortex, and ACC remained significant even after
FWE corrections. The Egger’s test results did not suggest any pub-
lication bias for any peak (more details can be found in Table 2
and Fig. 2).

Meta-analysis on reward anticipation

During reward anticipation, subjects of SCZ spectrum showed sig-
nificant deactivation in the cingulate cortex [median part: coord-
inate (4, 4, 36), 443 voxels, z =−4.15, p < 0.001; anterior part:
coordinate (−2, 48, 8), 163 voxels, z = −3.29, p < 0.001], as well
as right putamen [coordinate (28, 10, 0), 31 voxels, z =−3.23, p
< 0.001] and left caudate to ventral striatum areas [coordinate
(−16, 24, 0), 23 voxels, z =−3.79, p < 0.001]. After FWE correc-
tions, findings of cingulate cortex still remained significant
(median part: pFWE = 0.002; anterior part: pFWE = 0.034). No pub-
lication bias was revealed by Egger’s test for any peak (see Fig. 3
and Table S3).

Meta-analysis on reward consumption

Meta-analysis on reward consumption revealed the deactivation
of left cerebellar lobule IV/V area [coordinate (−18, −48, −24),
57 voxels, z =−3.21, p < 0.001], right insula [coordinate (40,
−16, 14), 16 voxels, z =−3.06, p = 0.001], and right inferior
frontal gyri [coordinate (32, 36, −10), 12 voxels, z =−3.37, p <

Table 2. Results of merging analysis for reward components in SCZ spectrum

MNI
coordinates Voxels SDM-Z P

FWE
correction

Egger’s
bias

Egger’s
p Description

30,2,0 2820 −6.70 <0.001 <0.001 0.40 0.75 Right ventral and dorsal striatum

0,12,28 840 −4.57 <0.001 0.005 −1.21 0.32 Left and right anterior cingulate/
paracingulate gyri

0,60,6 548 −5.37 <0.001 0.001 −0.42 0.75 Right and left orbital cortex

−20,4,−10 183 −4.71 <0.001 0.013 −1.06 0.37 Left ventral and dorsal striatum

52,−58,32 292 −3.99 <0.001 N.S −0.18 0.90 Right angular gyrus

−28,−50,−16 152 −3.82 <0.001 N.S. −0.48 0.72 Left fusiform gyrus and cerebellum lobule
IV/V

−42,−56,46 83 −4.75 <0.001 N.S. −0.32 0.80 Left inferior parietal gyri

40,44,−10 83 −3.82 <0.001 N.S. −0.30 0.85 Left orbital cortex

18,−92,2 74 −3.79 <0.001 N.S. 0.48 0.70 Right calcarine fissure

−42,−18,8 73 −3.77 <0.001 N.S. −0.66 0.58 Left Heschl gyrus

−12,−22,8 29 −3.74 <0.001 N.S. −0.77 0.56 Left thalamus

38,−50,44 30 −3.42 <0.001 N.S. 0.37 0.77 Right inferior parietal gyri

−52,−36,42 21 −3.34 <0.001 N.S. −0.83 0.50 Left inferior parietal gyri

−24,−74,−28 14 −3.18 <0.001 N.S. 0.47 0.72 Left cerebellum Crus I

SDM, Seed-based D Mapping; MNI, Montreal Neurological Institute; FWE, family-wise error.
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0.001] of SCZ spectrum subjects when compared with HCs. No
peak survived FWE correction. Egger’s test revealed no publica-
tion bias for any peak (see Fig. 3 and Table S3). There was no
area with increased activation in SCZ spectrum.

Meta-analysis on reward learning

Regarding brain activity induced by reward learning, SCZ spec-
trum subjects showed decreased activation in right putamen
[coordinate (30, −4, −2), 1149 voxels, z =−5.96, p < 0.001], bilat-
eral thalamus [right: coordinate (6, 4, 0), 442 voxels, z =−5.32,
p < 0.001; left: coordinate (−12, −18, 6), 25 voxels, z =−3.14,
p < 0.001], left cerebellar Crus I [coordinate (−22, −80, −32),
389 voxels, z =−4.65, p < 0.001], median part of cingulate cortex
[coordinate (−4, −28, 40), 341 voxels, z =−3.74, p < 0.001], left
superior frontal gyrus [coordinate (0, 60, 6), 108 voxels, z =
−3.49, p < 0.001], bilateral inferior parietal gyri [left: coordinate
(−36, −56, 48), 52 voxels, z =−3.62, p < 0.001; right: coordinate
(40, −50, 40), 12 voxels, z =−3.18, p < 0.001], right angular gyrus
and calcarine fissure [coordinate (−14, −92, 2), 83 voxels, z =
−4.02, p < 0.001]. After FWE corrections, findings of right putamen
( pFWE < 0.001), right thalamus ( pFWE = 0.002), and left cerebellar
Crus I ( pFWE = 0.02) still remained significant. Egger’s test revealed
no publication bias for any peak (see Fig. 3 and Table S3). There was
no area with increased activation in SCZ spectrum.

Qualitative review on effort computation

In all three of the effort-related studies (Avsar et al., 2013; Huang
et al., 2016; Prettyman et al., 2021), whole-brain analyses found
decreased activation of the ventral striatum in SCZ spectrum sub-
jects. In addition, studies of Huang et al. (2016) and Avsar et al.
(2013) both reported deactivation of the caudate nucleus, cingu-
late cortex, prefrontal lobe, and parietal areas. In addition,
Avsar et al. (2013) reported the functional decline of the thalamus
and insula related to this component.

Convergence of neural mechanisms

The multi-model analyses for reward anticipation and reward
learning found common brain functional impairments in the
right PCC [coordinate (6, −40, 30), 42 voxels, z = −3.26, p <
0.001] and putamen [coordinate (28, 10, 0), 31 voxels, z =
−3.23, p < 0.001] (see Supplementary Fig. S1 and Table S4).
There was no convergent finding among other components.

Meta-regression results

Meta-regression revealed that the mean severity of negative symp-
toms (available in 15 studies) was negatively associated with
hypoactivation in the media cingulate cortex [MNI coordinates

Fig. 2. Areas with abnormal activation of SCZ spectrum when reward components were merged. Color bars represent SDM-Z scores (negative number for
hypo-activations of SCZ spectrum: SCZ spectrum < HC in task > baseline). Results were considered significant for p < 0.0025, and cluster extent >10 voxels.
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Fig. 3. Areas with abnormal activation related to reward anticipation (purple), reward consumption (blue), and reward learning (Red) in SCZ spectrum.
Color bars represent SDM-Z scores (negative number for hypo-activations of SCZ spectrum: SCZ spectrum < HC in task > baseline). Results were considered sig-
nificant for p < 0.0025, and cluster extent >10 voxels.
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(0, 10, 40), 366 voxels, z = − 2.15, p = 0.038] in SCZ patients when
compared with HC. The mean age of SCZ spectrum groups
(available in 37 studies) could positively predict the hypoactiva-
tion in the right postcentral gyrus [MNI coordinates (54, −20,
42), 305 voxels, z = 2.80, p = 0.002] and left caudate [MNI coordi-
nates (−14, 20, −2), 67 voxels, z = 2.73, p = 0.003], and negatively
predict that of right amygdala [MNI coordinates (26, 0, −10), 312
voxels, z = −2.67, p = 0.004]. There was no brain area significantly
associated with the percentage of males (available in 37 studies),
and the mean duration of illness (available in 10 studies).

Discussion

This meta-analysis showed abnormal brain activation patterns of
the SCZ spectrum, using a ‘component-based approach’ for
rewarding processing as well as the ‘whole-brain perspective’ for
neural mechanisms. Our findings showed that SCZ spectrum
patients exhibited reduced activation in the striatum, orbital
frontal cortex, cingulate cortex, and cerebellar areas. Distinct pat-
terns of brain alterations were found for different components.
For instance, reward anticipation was associated with decreased
activation of the cingulate cortex and striatum; reward consump-
tion was associated with decreased activation of the cerebellum
IV/V areas, insula and inferior frontal gyri; reward learning
processing was associated with decreased activation of the stri-
atum, thalamus, cerebellar Crus I, cingulate cortex, OFC, and
some parietal and occipital areas. Our convergence findings
suggested that both reward anticipation and reward learning com-
ponents were associated with decreased activation in the dorsal
striatum and PCC in individuals with SCZ spectrum. These
regions could be implicated in impairments of both these two
components.

Dysfunctions of the striatal-prefrontal regions

Altered functioning of the striatum, the core region of the reward
circuit, appears to be putative neural mechanisms for the reward
anticipation and reward learning components in SCZ spectrum
groups. Receiving information input from cortical regions, and
connecting with midbrain regions (Hunnicutt et al., 2016;
Lerner et al., 2015), the striatum is believed to be an integrative
hub between the mesolimbic system and the cortical cognitive
and motor areas. Our findings are consistently with the literature
suggesting that the striatum plays an important role primarily in
reward anticipation and reward learnings processing in non-SCZ
populations. For instance, craving and wanting feelings induced
by incentives have been reported to be correlated with BOLD sig-
nals and dopamine release in the striatum, especially the ventral
region (Delgado, 2007). Secondly, activity of striatal (especially
the dorsal part) dopaminergic neurons has been shown to signify
the discrepancy between expected and actual rewards, i.e. reward
learning (Schultz, Dayan, & Montague, 1997). Thus, reduced stri-
atal activation of SCZ spectrum patients could reflect impaired
ability of reward anticipation and value updating (Gold et al.,
2012; Morris, Quail, Griffiths, Green, & Balleine, 2015).

During the process of reward learning, our findings suggested
that SCZ spectrum exhibited decreased activation in the OFC.
Neuronal firing of the OFC has been found to be correlated with
the value of the stimulus (Padoa-Schioppa & Cai, 2011;
Schoenbaum, Takahashi, Liu, & McDannald, 2011), through asso-
ciating new stimulus with reinforcers (e.g. water, food, money)
(Rolls & Grabenhorst, 2008). As such, reduced activation of the

OFC related to reward learning in SCZ spectrum groups might
reflect stimulus–reinforcer decoupling and impaired value updat-
ing, subsequently leading to reduced motivation to pursue rewards.

Dysfunction of the cingulate cortex

Our findings also supported the involvement of the ACC for
reward anticipation in SCZ spectrum groups, and its potential
role in effort computation. The ACC enables integrating cognition
and emotion processing (Etkin, Egner, & Kalisch, 2011; Kolling et
al., 2016) due to its connections with cortical and subcortical
areas (Du et al., 2020; Neafsey, Terreberry, Hurley, Ruit, &
Frysztak, 1993). During reward processing, it encodes the
decision-making process based on reward prediction and out-
come simulation, which could decide the allocation of cognitive
and effort resources, i.e. effort computation (Chudasama et al.,
2013; Hadland, Rushworth, Gaffan, & Passingham, 2003;
Hayden, Pearson, & Platt, 2009). There are two possible explana-
tions for decreased activation in ACC in SCZ spectrum groups.
On the one hand, dysfunction in the ACC may be an inherently
damaged region in SCZ spectrum (Stark, Uylings, Sanz-Arigita, &
Pakkenberg, 2004), resulting in reduced ability of decision-
making for reward approaching; On the other hand, a decreased
functional recruitment of the ACC in SCZ spectrum might reflect
lower cognitive load during decision-making. Appreciating that
high-effort high-reward conditions suggest that the magnitude
of effort would commensurate with the magnitude of reward, it
is likely to be a cognitive loading process. SCZ patients may
experience limited cognitive demand because they tend to under-
estimate the value of reward (Dolan et al., 1995; Park et al., 2015).

We found the decreased activation of PCC of SCZ spectrum
related to reward anticipation and reward learning. Although
there has been no consensus on the function of the PCC (Leech
& Sharp, 2014), its dysfunction can be explained from two point
of views. First, the PCC is the central node of the brain’s default
mode network (Raichle, 2015), as a coordinator to balance between
internally and externally directed cognition, then to modulate brain
reaction flexibly and properly in changing environment (Leech,
Braga, & Sharp, 2012; Smallwood et al., 2021). Given the disrupted
connection and metabolic changes of the PCC have been widely
demonstrated in SCZ spectrum (Joo et al., 2018; Shimizu et al.,
2007; Wang et al., 2015), decreased activation in the PCC during
reward processing might reflect SCZ spectrum patients’ impair-
ments in these basic cognitive functions (e.g. attention, switching).
Second, the PCC has functional involvement in processing ‘self’-
related information, through representing self-location (Brewer,
Garrison, & Whitfield-Gabrieli, 2013), immersing in experience
(Guterstam, Björnsdotter, Gentile, & Ehrsson, 2015), and retrieval
of autobiographical memories (Leech & Sharp, 2014; Maddock,
Garrett, & Buonocore, 2001; Svoboda, McKinnon, & Levine,
2006). Self-processing impairments may disrupt the unity, whole-
ness, and coherence of one’s understanding and response to the
external world (Borda & Sass, 2015; Sass & Parnas, 2003).
Taking this perspective, reduced activation of the PCC in reward
anticipation and reward learning processing might suggest the
inconsistency of individuals’ reward representation.

Dysfunction of the cerebellum

Interestingly, we found reduced activation of the cerebellum in
patients with SCZ spectrum disorders during reward processing,
especially related to reward learning and consumption. Recent
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evidence supported the extended role of the cerebellum, from
motion to a wide range of cognitive processes (such as learning,
attention, emotion) (Brady et al., 2019; Schmahmann & Caplan,
2006). According to the ‘internal model’ (Ito, 2008; Wolpert,
Miall, & Kawato, 1998), the basic function of cerebellar cortex is
to monitor internal and external signals, construct internal models
to predict potential consequences, and to update such models
based on predictive errors (Raymond, 2020; Schmahmann, 2019).
The cerebellum may be involved in reward processing and learning
in a similar way (Carta, Chen, Schott, Dorizan, & Khodakhah,
2019; Raymond, 2020) via its connection with the basal ganglia
and the prefrontal lobe (Bostan, Dum, & Strick, 2013; Bostan &
Strick, 2018). Our findings as such appear to support this notion.
Furthermore, cerebellar alterations have been widely reported in
SCZ patients (Lungu et al., 2013; O’Neill, Mechelli, &
Bhattacharyya, 2019; Picard, Amado, Mouchet-Mages, Olie, &
Krebs, 2008). Specifically, the cortico-cerebellum-thalamus-cortical
(CCTC) model posits its important role in the neurobiological
mechanisms of SCZ (Andreasen, Paradiso, & O’Leary, 1998;
Andreasen & Pierson, 2008). The disruption of the CCTC circuit
could lead to ‘cognitive dysmetria’, resulting in various symptoms
of SCZ (Andreasen, 1999; Andreasen et al., 1998). Empirical studies
supported that cerebellar abnormalities in SCZ are correlated with
neurological soft signs (Cai et al., 2021), hallucinations (Pinheiro et
al., 2021), negative symptoms (Cao et al., 2021), and impaired cog-
nitive and social functioning (Bernard & Mittal, 2015; Lungu et al.,
2013). Our findings concur with previous findings, and suggest that
cerebellar damages might result in amotivation and anhedonia.

Implications

Taken together, consistent with our hypothesis, the brain func-
tional alteration of SCZ spectrum groups during reward process-
ing could be found not only in striatal and prefrontal areas, but
also in cingulate cortex, cerebellum, and other regions. Different
reward components were associated with specific patterns of
brain impairment, but there was also regional overlap. These find-
ings give us a hint that there might be a common substrate for
multiple brain regions’ functional impairments, which results in
their abnormal manifestations for relevant reward components.
This common substrate might be dopamine dysfunction,
which is an enduring view of the pathogenesis of SCZ (Davis,
Kahn, Ko, & Davidson, 1991; Howes & Kapur, 2009).
Neurotransmitters studies found that patients with SCZ were
associated with excessive dopamine synthesis in mesolimbic
areas (Fusar-Poli & Meyer-Lindenberg, 2013; Kegeles et al.,
2010). The excessive dopamine release could mask adaptive
phasic responses dopaminergic neurons, leading to aberrant sali-
ence on reward stimulus, and contributing to relative behavioral
symptoms (McCutcheon, Abi-Dargham, & Howes, 2019).
Dopamine dysfunction arises not only from genetic susceptibility,
but also from environmental risk factors, such as social isolation
and subordination (Howes & Kapur, 2009; Howes, McCutcheon,
Owen, & Murray, 2017). Therefore, early identification of risk fac-
tors (e.g. social anhedonia) and precise modulation of dopamine
phase responses should be critical for addressing symptoms of
motivational deficits and pleasure deficits. Moreover, other psy-
chiatric conditions, such as major depression disorders and sub-
stance use disorders (Baskin-Sommers & Foti, 2015), are believed
to have altered reward processing. Future research can utilize
transdiagnostic samples to identify shared and distant neural
mechanisms for impaired reward processing.

Limitations

Several limitations of this study should be borne in mind. First, we
did not find enough number of studies on the neural substrate for
effort computation; therefore, we only presented qualitative rather
than meta-analytic findings. Second, although a component-
based approach was used, the studies included in each group
remained heterogeneous regarding several factors, i.e. the types
and the delivery way of reward stimuli, the fMRI data processing
and reporting. Third, in order to minimize the influence of sub-
jective factors, we did not score the quality of included studies.
Lastly, only a small number of studies conducted correlation ana-
lysis between activation and symptoms, and these studies differed
in ROIs selection and computation methods, we did not conduct
the meta-analysis on the effect of correlation. The ‘brain–symp-
tom’ relationship was roughly estimated by meta-regression ana-
lysis, which can only estimate the effects of group differences of
behavioral indicators on group-level brain dysfunctions
(Thompson & Higgins, 2002).

Conclusions

This study comprehensively examined putative brain dysfunction
patterns for different components of impaired reward processing
in people with SCZ spectrum disorders using the whole-brain
perspective. Our findings mainly suggested neural alterations in
the striatum, orbital frontal cortex, cingulate cortex, and cerebellar
areas. We also explored component-specific and shared neural
alterations. Our findings partially support the ‘compartmentaliza-
tion’ of reward processing in the Kring and Barch’s model, and
provided evidence to support putative neural mechanisms for
amotivation and anhedonia symptoms in the SCZ spectrum.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291723000703.
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