
EXTENSION OF COMPLETELY BOUNDED A-B BIMODULE
MAPSt

by PAUL S. MUHLY and QIYUAN NA

(Received 15 September, 1992; revised 14 June, 1993)

0. Abstract. In this paper, we present an "order" characterization of completely
bounded bimodule maps for bimodules over unital operator algebras. We use this result
to prove a bimodule generalization of Wittstock's generalized Hahn-Banach theorem.
Our proofs simplify and unify some of Wittstock's arguments.

1. Introduction. We are concerned with operator spaces that are modules over
operator algebras and module maps between operator modules. Recall that an operator
space is a norm closed subspace of a C*-algebra. Although we will make no use of the
fact here, we point out that by Ruan's theorem [8] such spaces may be characterized
abstractly as matrically normed Banach spaces satisfying the so-called L"-condition.
Similarly, an operator algebra is a (norm closed) subalgebra of a C*-algebra. All our
operator algebras will be unital. By [2], unital operator algebras may be characterized
abstractly as operator spaces in which multiplication is completely contractive. To say that
an operator space A" is a (left) operator module over an operator algebra A is simply to
say that X is a unital (left) A module in the usual sense for which multiplication is
completely contractive as a bilinear map. Using the results of [8] and [2], it is possible to
show that if X is a left operator module over an operator algebra A, then it is possible to
imbed A and A' in a C*-algebra completely isometrically in such a way that the module
multiplication is transferred to the multiplication in the C*-algebra (see [1]). Thus, when
speaking about operator modules that are given as subspaces of a C*-algebra, we always
assume the multiplication and operator space structures are inherited from the C*-
algebra. Right operator modules are defined similarly, as are operator bimodules.

In [11, Theorem 3.1 and 4.1], Wittstock proved two theorems about extending
module maps from submodules to larger modules when the operator algebras concerned
are C*-algebras. The hypotheses in these two theorems are the same except that one,
Theorem 3.1, discusses bimodules over C*-algebras where the algebra is the same on both
sides, while in the other, Theorem 4.1, only left modules are considered. Although both
proofs use the notion of "sublinear set valued functionals" (see Definition 3.1 below),
they are quite different in detail. Both theorems are module-theoretic generalizations of
his earlier extension of the Hahn-Banach theorem [12]. The purpose of this note is first to
provide an "order theoretic characterization of bimodule maps from an operator
bimodule into a C*-algebra (see Theorem 2.1, below) and then to use this characteriza-
tion to prove a bimodule generalization of Wittstock's generalized Hahn-Banach
Theorem (Theorem 3.4, below). Here the bimodules considered can have different
algebras on one side and on the other. Moreover, the "order" characterization of
bimodule maps makes the proof of the module extension theorem more perspicuous, a
more immediate corollary of Wittstock's Hahn-Banach theorem, than do the proofs in
[11].
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We note in passing that Suen [10] has given another proof of Wittstock's Theorem
3.1 that is different from ours. We note, too, that Ruan showed us how to derive our
Theorem 3.4 from Wittstock's Theorem 3.1 using Putnam's technique for generalizing
Fuglede's Theorem to the setting of operators intertwining two normal operators (see
[5]). Thus, while the A-B version of the extension theorem, our Theorem 3.4, is logically
equivalent to the A-A version, Wittstock's Theorem 3.1, our proof does not simplify if
one restricts to A-A bimodules.

2. Order and bimodule maps. In the following theorem we give an "order"
theoretic characterization of completely bounded bimodule maps from an operator
bimodule into a C*-algebra. Although our application of it in this note uses the result
only under the additional hypotheses that the bimodule is one over C*-algebras, the
greater generality requires no additional effort to prove and may be useful elsewhere.

THEOREM 2.1. Suppose that A and B are unital operator subalgebras of an unital
C*-algebra 3), and suppose that X is an A-B operator bimodule. Then a real linear map
<p:X-*22) is a completely bounded A-B bimodule map if and only if there exists a
nonnegative constant c such that (p satisfies

0 <p,,(axb)
o

aa* 0 \
b*b {2A)

for every n e N, a e Mn(A), x e Mn{X) and b e Mn{B). Moreover, the cb-norm \\<p\\ch is
the infimum over all the constants c satisfying (2.1).

Proof. Recall that for any C*-algebra M with unit, an element

a v

in M2{sd) is nonnegative if and only if a^0, 6 > 0 , and for each e >0,
\\{A + e)~mv(b + e)-1/2|| < 1 (see [4]).

Suppose first that (p : X—>3) is a completely bounded A-B bimodule map. Then for
each n e N, a e M,,(A), xe Mn(X), and b e Mn(X),

0 4>,,(axb)
0

0 a\( 0
b* 0)\4>n(x)

0 b

We claim that for any x e Mn(X),

4>n(x) 0

K '

P.3,

Indeed,

o o <t>n(x)*\
) o H -Ux) IWUI*||>0'

because \\(p\\Cb \\x\\n — 0 a nd for each e >0

U \\x\\n + e)-m\\ =U
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From (2.2) and (2.3) we have

147

0 <l>n(axb)
axb)* 0

0 a\*
b* 0/

/aa* 0
""I 0 a*b

for all a e Mn(A), x e Mn(X), b e Mn(B).
Conversely, suppose that (p:X—>3) satisfies (2.1). Letting a = 1 e M,,(A), and

b = 1 e Mn{B), we have

1 00 <pn(x)
<pn(xy o

for all x € Mn(X). It follows that (f> is a completely bounded map and | |$ | | r / , = inf c.
Therefore in (2.1) we may replace c with | |$| | c f t and write

0 <t>n{axb)
<t>n{axb)* 0

for all a e Mn(A), x e Mn(X), and ft e MW(B). Now, let ft = 1 € M,,(fi). Then

( 2 - 4 )

0 4>n(ax
*„(«)• o

for all a e
have

, and JC e Mn(X). In particular, we see that for any a eA, and x e X, we

« ox/* oxy
-l oAo o//

a 0\/x 0\\*

- l o/lo o;

— MVMrft
x 0
0 0

That is

/ o
0

\ o

0 <p(ax) 0\
0 0(-JC) 0

-x)* 0 0
0 0 0/

\

aa*
-a*

0
0

0
1 0

—a
1
0
0

)(o 1
0

0
0
1
0

°\0

0 •

1 /
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Therefore
/ 0 0 4>{ax) 0\ / 1 0\

1 a 0 0 \ | 0 0 <p(-x) Oj/fl* 0
0 0 1 0/\(p(ax)* <p(-x)* 0 o l i o 1

0 0 0 0 / \ 0 0/
aa* -a 0 0\ / I 0\

a 0 0 \ / -a* 1 0 0 W a* 0
0 0 1 0 II 0 1

. 0 0 0 1/ \ 0 0/
That is,

0 (j)(ax) - a(j)(x)\ /0 0̂
- (p(x)*a* 0

Thus for any a eA, and JC e A', we have
0 -(<t>(ax) - acf>(x)))

- ct>(x)*a*) \\<P\U\\x\\ I
Therefore for any e > 0, we have

||(0 + e)-1/2(4>(fljc

It follows that

U(ax) - a
Letting e—>0, we have (j)(ax) = a<p(x) for all a eA, and x eX, proving that 0 is a left
/1-module map.

Similarly, if we let a = 1 in (2.4), we get

Therefore,

/0 1\( 0. 0fl(jcfe)\/O 1\ /0 1\/1 0 \ / 0 1

l o ) W r 0 ill J^^I U I k l l l J J l
That is

for all x e Mn{X), and b e Mn(B). So with n = 2, we have

ox/6 - m -
o/\o o

o o/vo o "
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/ °0
<t>(xb)

\ 0

Therefore,

0
0

<P(-x)
0

4>(xby
4>{-xy

0
0

0
0
0
0
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for all x e X, and b e B. That is

b*b -b* 0 0^
-b 1 0 0
0 0 1 0
0 0 0 1,

(
0 0 <p(xb)* 0\ / I 0\

0 0 0(-JC)* 0

4>{xb) (p(-x) 0 0
0 0 0 0/

( 6*6 -b* 0 0
- 6 1 0 0
0 0 1 0
0 0 0 1

That is,
0 (p{xb)* - b*<t>{x)\ /0 0

<p(xb) - 4>{x)b 0 J - H 0 I U 11*11^ x
for any a e A, and x e X. Thus for any e > 0, we have

||(0 + e)-m{<t>{xby - b*4,{x)*){U\U \\X\\ + e ) - | / 2 | | < 1.

Equivalently,

\\(t>(xb)* - b*<p(xy\\ £ e"2(||tf>|U ||*|| + e)m.
Letting e-*0, we have (f>(xb)* = b*4>{x)*, or, <t>{xb) = 4>(x)b for all * € * , and 6 e £ ,
proving that (p is a right fl-module map as well. This completes the proof.

Since a left A operator module (respectively, right B operator module) may be
regarded as an A-C operator bimodule (respectively, C-B operator bimodule), similar
arguments apply to a module map. Therefore letting 6 = 1 (respectively, a = 1) in
Theorem 2.1, we get an "order" characterization of completely bounded one sided
modules maps. Observe that the following corollary was noted in [11].

COROLLARY 2.2. Suppose that A is a unital operator subalgebra of an unital
C*-algebra 3), and that X is an A-A operator bimodule. If (p:X—>3) is a completely
bounded A-A bimodule map, then

Rect>n(axa*)<\\4>\\ch\\x\\,,aa*

for all a e Ma(A), x e Mn(X), where Re <t>a(axa*) = (l/2)(0n(oxfl*) + (pn{axa*y).
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Proof. By Theorem 2.1, we have

0 )a**a*l

0 <j)n(axa*)\ iaa
4>n(axa*y 0 cWx\\

for all a e Mn(A), and x e M,,(X). By multiplying by (1 1) and I j on left side and right
side, respectively, of this inequality, we get the desired result.

3. A Hahn-Banach theorem for bimodule maps.

DEFINITION 3.1. (see [11]). Given a unital C*-algebra 3), let % denote the hermitian
part of 3). Let K, L be two subsets of 3)h. We write K < L if for every I e L there exists a
k e K with k < /.

Let £ be a K-vector space (K = R or C). A set valued functional 6 : E—* 3),, is called
sublinear if it has the following properties:

(i) (X)±0, for all X e £ ,
(ii) 0(jc,+JC2)<0(jr,) + 0(;t2), for all ; t i , ; t 2 e£ ,

(iii) O<0(O),
(iv) 6(kx) < A0(x), for all JC e £ and A e R+.
A family 6 = (6n)neN of set valued sublinear functionals 6n : £(g)R(M,, ),,-> M,,(3>)h is

called a matrical sublinear functional if in addition
(v) 0m(y**y):<y*0,,(;t)y, for all JC e £ 0 R ( M n ) A , and all n x m matrices y.

DEFINITION 3.2. (see [3], [6]). A C*-algebra 3) is called injective if it has Arveson's
extension property; i.e., it is an injective object in the category of operator systems and
completely positive maps.

Recall Wittstock's generalization of Hahn-Banach Theorem [11] or [12].

LEMMA 3.3. Let E be a K-vector space (K = R or C), 3) a unital C*-algebra, and
6 : E^3)h a matrical sublinear functioinal. Then there exists a K-linear map <p : E —»
%®K such that Re <f>n(x) < 6n(x), for a\\ x e E ®R (M,,)h.

Notice that if £ is a C-vector space, then E®K{M,,)h is the underlying real vector
space of £®CM,, (see [11]). The following theorem combines and generalizes Theorem
3.1 and 4.1 in [11].

THEOREM 3.4. Let 3) be a unital injective C*-algebra, A and B unital C*-subalgebras
of 3). Let Y be an A-B operator bimodule, X be an A-B operator subbimodule of Y, and
let (j> : X—* 3) be a completely bounded A-B bimodule map. Then there exists a completely
bounded A-B bimodule map <p: Y—> 3) that extends (j) with the same cb-norm. In other
words, 3) is an injective operator A-B bimodule.

Proof. Consider the family of real linear maps $„ :Mn(X)—*M2n(3>), where

for all x e Mn(X).
Then H^OOIL ^ \\4>\\ch \\x\U for all x e Mn(X). For each x e Mn(Y), let 6n(x) be the
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set of elements of A/2,,(2)) of the form

y*aa*y 0

corresponding to all possible expressions of x in the form x = y*azby + y, where
z e Mm{Y), y e Mn(X), a e Mm(A), b e Mm(B), and y e M,,,,,.

For each n e N, let Pn be a unitary matrix in M2n such that P,,(ek) = e2k-u

Pn(
en+k) = 2̂*> l^k<n, where e , , e 2 , . . . , e2n are the usual unit basis of C2". Then

x—>PnxP* is the canonical shuffle ^isomorphism from M2{Mn{Q))) onto M,,(M2(3))) (see
[6])-

We claim that the family (Pn6nP*) of set valued functionals

PnOnP*: Y <2) (M,,), -* Mn(M2(3))h)
R

is a matrical sublinear functional P8P*: Y—> M2(3))h. In fact,
(i) foreach*eM,,(y) ,

Therefore 6,,(x)¥=0, and hence P,,dn(x)P* i=0.
(ii) Let Xj = yfajZibjYj + _y,, / = 1, 2, be any two expressions of x, and x2; here

z, e M,,,(y), y, e Mn(X), a, e Mm(A), bf e Mm{B), y, e A/m.,,, / = 1, 2. We may choose the
same w for both x, and x2 by adding zeros if necessary. If min(||2,||, ||z2||) > 0 , let
A,- = 11jzr,11-' min(||z,||, ||z2||), / = 1, 2. In this case set

= (Yi\ _(^iaal 0 \ _(Kmb, 0 \ _lk,z, 0 \
7 \y2r

 Q \ 0 A 2 - " V ' V 0 A 2 - " V ' V 0 A2z2/'

and y = _y, +_y2. Then x, + x2 = y*azby + y, and ||z|| = min(||z,||, ||z2||)- Moreover,

If min(||z,||, ||z2||) = 0, let sign(x) = 0, when x = 0, sign(;t) = 1, when x > 0 , sign(j:) = - 1 ,
when x < 0. In this case set

Y\\ /sign(||z,||)fl| 0
0 sign(||2

0 \ /z, 0

7 W ' fl V 0 sign(||z2||)a2;'

/signdlz.Hfe, 0 \ = / z , ON
V 0 signfllZzlD&J' Z \0 z2/'

and y=yi+y2. Then x}+x2 = y*azby+y, \\z\\ = max(||Z,||, ||z2||), and (3.5) still holds
in this case. Therefore it follows that 6,,(x[+x2)<dn(xl) +d,,(x2). Consequently,
Pndn(x, + x2)P*n < PH8a(Xl)P*n + P,,en{x2)PL

(iii) Let 0 be written as y*azby+y, where zeM,,,(Y), yeM,,(X), aeM,,,(A),
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b e Mm(B), y e Mm „. For each e > 0, let bf = (y*b*by + e)~m e M,,(B),
ae = (y*aa*y + €)~m e M,,(A)- Then ye = aeyb€ e Mn(X), and

^\\aey*a\\\\z\\m\\bybe\\

= \\(y*aa*y + e)-my*aa*y{y*aa*y + e)-' /2 | |

x \\(y*b*by + eymy*b*by{y*b*by + e)-

= \\(y*aa*y + e)-'y*aa*y\\m \\z\\m \\{*b*by

Therefore

and

is an arbitrary element of 0n(O). Since | |0 | | r t ||2||m y*aa*y >0, | |0|U ||z||ray*fc*&ys0,
and for each e > 0, we have

U ||z|L y*aa*y + e r ' ^^KII^ IU l|z|L Y*b*by + e)-"2\\

= \\(\\4>\\c M\mrma€^n(y)be\U\U \\z\L)-U2\\

where e' = (||0||f/, | |z| |m)-'e, the typical element in dn(0) is nonnegative. It follows that
O<0n(O). Hence 0<Pn6n(0)Pt

(iv) For each x = y*azby + y, where z e Mm(Y), y e Mn{X), a e Mm(A), b e Mm(B),
y e Mmn, x e Mn(Y), and each A e R+, we have

= \\o\u UZ\

belongs to 0n(Ajc), and kx = y*a{Xz)by + ky. Therefore d,,(Xx) <X6n{x). Hence
Pn6n(Xx)P*n<XPn6n(x)P*n.

(v) We need to prove that for any x e Mn{Y) and y eMnm we have

Pmdm(y*xy)P*m < y*Pndn(x)P*y.

It is equivalent to prove that

6m(y*xy) < P*my*Pndn(x)P*nyPm. (3.6)

Notice that Pn6n{x)P*n eMn(M2(2)h). Write y = {yi,i) and Pn6n(x)PZ = (Au), Aue
M2(3))h. Then

y*Pn6n(x)P*ny = (y ® l2)*(A,)(y ® 12),
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where 12 is the unit of M2(3)). Therefore (3.6) becomes

6m{y*xy) < P*my*Pn9n(x)P*nYPm

= PUr ® 12)* Pnen{x)P*n(y ® h)P*

= (P*n(r ® i2)PJ*0,,

-r; x :)•
Therefore we need to prove that

In fact, for any x e Mn(Y), each element in dn(x) is of the form

w h e r e x = fj.*azb(i + y , z e Mk(Y), y e Mn(A') , a e M ^ ( / l ) , b e Mk(B), (i e Mkn, n,m e N .
However

l lz l l ,

where y*xy = (ny)*azb(fiy) + (y*xy). Thus (3.6) is fulfilled.
We may now apply the Lemma 3.3, since Y®R(Mn)h = Mn(Y) as real space, and

M2(2>) is an injective C*-algebra (see [10]), to assert that there exists a real linear
map W: K-» M2(9i)h such that ^n(jc) < Pndn{x)P* for all x e Mn(Y). If we write

then we have

for all A: e Mn(Y). It follows tha t for any x e Mn(Y), a e Mn{A), and b e M,,(B), we have

* 0
b*b

If w e mul t ip ly this inequal i ty on t h e left by (1 0 ) , a n d on the right by ( I , we ob ta in

| | jc|Uaa*. (3.9)
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/ 0 \
Similarly, by multiplying (3.8) on the left by (0 1) and on the right by I I , we get

||jc||flft*6, (3.10)

for any xeM,,(Y), aeM,,(A), b e Mn{B). Now in (3.9), let a = 1, b = k\, k e N; and in
(3.10), let& = l , a = Jfcl,*eN. Then

and

for all x e Mn(Y), k e N. This implies that V,.i = ̂ 2.2 = 0. So (3.8) becomes

0 (Vu2Uaxb)\ (aa* 0

(axb) 0

Moreover, the inequality

/WcPlUWxLaa* -(^>l_2)n(axb)\o

implies that (x¥2l)n(axb) = (V, 2),,(axb)*. Applying Theorem 2.1, we conclude that
W, 2 : Y—*3l is a completely bounded A-B bimodule map with HW,_2\\ch <

Now for any x e Mn(X), (3.7) implies that

. V,z)n(x)* 0 /~Un(jc)* 0

It follows that for any e > 0, we have

Equivalently,

\\*«{x)-{VxMx)\\*e

for all JC e Mn{X). Since e > 0 is arbitrary, we have 0,,(JC) = (V,.2),,(JC) for all x e M
Therefore *P, 2 extends <̂> and has same c6-norm ||0||r /,. This completes the proof.
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