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Deep inelastic scattering

In this chapter we present the cornerstones of perturbative QCD: the parton model
of deep inelastic scattering (DIS) and the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
(DGLAP) evolution equations. There exists an extensive literature covering these subjects
using Lorentz-covariant Feynman diagram techniques (see the further reading section at
the end of the chapter). Here we deviate from the traditional treatment and derive both the
parton model and the DGLAP equations using light cone perturbation theory (LCPT). We
argue that the light cone approach provides an intuitively clear space–time picture of the
scattering process, which is universally applicable for high energy scattering. Owing to this
universality, both the LCPT techniques used here and their space–time interpretation will
prove very useful in subsequent chapters.

2.1 Kinematics, cross section, and structure functions

One of the simplest scattering processes that occur at short distances is the reaction

e + p −→ e′ + X, (2.1)

known as deep inelastic electron–proton scattering (DIS). Here e and e′ are the incoming
and outgoing electron (or positron), p is the proton, and X stands for the other produced
particles. The process is illustrated diagrammatically in Fig. 2.1 in the rest frame of the
proton. The electron scatters on the proton through the exchange of a virtual photon
(denoted γ ∗) with a quark in the proton’s wave function. The virtual photon usually breaks
the proton apart, leading to the production of several new hadrons; these are labeled X in
Fig. 2.1. Hence the process is deeply inelastic, which explains its name.

We begin by working in the rest frame of the proton. As shown in Fig. 2.1, the four-
momentum of the proton is P μ = (m, �0), where m is the proton’s mass. The four-momentum
of the incoming electron is pμ = (E, �p), while the outgoing electron has four-momentum
p′μ = (E′, �p′). Out of the three independent four-momenta P μ, pμ, and p′μ one can
construct three Lorentz invariants relevant to the collision dynamics. (Note that P 2 = m2

and p2 = p′2 = m2
e , where me is the electron’s mass; while these masses are indeed Lorentz

scalars they do not carry any information about the scattering.) In terms of the virtual
photon’s four-momentum qμ ≡ pμ − p′μ, the three invariants usually employed to describe
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2.1 Kinematics, cross section, and structure functions 23

e : pμ = ( )

γ∗ : qμ = (E − E − p )

target:Pμ = (m, 0)

e : p μ = (E )

X

λ

λ

σ

Fig. 2.1. Feynman diagram describing deep inelastic electron–proton scattering. The
momentum labels of the lines correspond to the frame in which the target proton is at
rest. The wavy line denotes the virtual photon propagator while the corkscrew lines denote
the gluons inside the proton.

DIS are

Q2 ≡ − q2,

xBj ≡ Q2

2P · q
, (2.2)

y ≡ P · q

P · p
.

The quantity Q2 is called the virtuality of the photon, while xBj is the Bjorken-x variable.
In the rest frame of the proton one can easily show that

Q2 = 4EE′ sin2 θ

2
(2.3)

and

y = E − E′

E
. (2.4)

Here θ is the electron scattering angle, i.e., the angle between �p and �p ′. We therefore
see that q2 ≤ 0 or, equivalently, Q2 ≥ 0, which demonstrates that Q is indeed real. In the
proton’s rest frame the third Lorentz invariant y has a physical interpretation as the fraction
of the electron’s energy transferred to the proton.

Apart from the three independent invariants in Eq. (2.2) one usually defines other
Lorentz-invariant (but not independent) quantities,

ν ≡ P · q

m
= E − E′,

ŝ ≡ (P + q)2 = 2P · q + q2 + m2, (2.5)

s ≡ (P + p)2.
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24 Deep inelastic scattering

We see that in the proton’s rest frame the invariant ν stands for that part of the electron’s
energy that is transferred to the proton; s denotes the center-of-mass energy squared of
the electron scattering on the proton, while ŝ is the center-of-mass energy squared of the
γ ∗ + p reaction. The invariants in Eq. (2.5) are related to those in Eq. (2.2) via

xBj = Q2

ŝ + Q2 − m2
= Q2

2mν
,

(2.6)
Q2 = yxBj (s − m2 − m2

e) ≈ yxBj s.

The fact that DIS experiments are usually performed at very high energy s � m2 � m2
e

justifies the approximation in the last line of Eq. (2.6). We also see from Eq. (2.6) that
xBj ≤ 1 for DIS on a proton.

The DIS experiment allows us to investigate the structure of the hadron at short distances
by observing the recoil electron e′ in Eq. (2.1). As we will see shortly, a DIS experiment can
be thought of as a relativistic electron microscope. We can characterize this “microscope”
by its maximal resolution. We will show below that with this DIS microscope we can
resolve the sizes of the proton’s constituents down to 1/Q. Thus the physical meaning of
the photon virtuality Q2 is that it is related to the resolution of our “microscope”. However,
because our microscope is relavistic, we need to introduce one more variable, namely, the
time duration of the observation. The number of particles is not conserved in a relativistic
system: the number of quarks and gluons inside the proton constantly fluctuates owing
to particle splitting and annihilation. Some fluctuations have longer lifetimes while others
have shorter lifetimes. Therefore, the number of proton constituents can be different when
measured over different observation times. We will show below that the measuring time of
the DIS microscope is proportional to 1/xBj , so that t ∼ 1/(mxBj ). This gives one of the
two physical interpretations of xBj .

Using the covariant gauge for the photon propagator we can write the amplitude for the
DIS process pictured in Fig. 2.1 as

iMσ,λ,λ′ (X) = ie2

q2
ūλ′(p′) γμ uλ(p) 〈X|Jμ(0)|P, σ 〉. (2.7)

Here λ and λ′ are the electron polarizations before and after the interaction and σ is the
polarization of the proton (see Fig. 2.1). The initial state of the proton is denoted |P, σ 〉,
while the final state of the many produced hadrons X in Fig. 2.1 is correspondingly denoted
as |X〉. We define the quark electromagnetic current by

Jμ(x) =
∑
f

Zf q̄f (x) γ μ qf (x), (2.8)

where Zf is the quark’s electric charge in units of the electron charge e, qf (x) is the quark
field operator, and the sum in Eq. (2.8) runs over all quark flavors. (All operators in the
book are in the Heisenberg representation.)

To calculate the total DIS cross section we need to square the amplitude (2.7), integrate or
sum over the final-state quantum numbers, average over the initial-state quantum numbers,
divide by the flux factor, and impose energy–momentum conservation (see e.g. Peskin and
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W μν

Lμν

μ ν

Fig. 2.2. Diagrammatic representation of the DIS cross section calculation as the amplitude
squared. The vertical solid line denotes the final-state cut. The rectangular boxes encompass
the parts of the diagram contributing to the leptonic tensor Lμν and the hadronic tensor
Wμν .

Schroeder (1995)). We get

σ e p =
∫

d3p′

(2π )3 2E 2E′
1

4

∑
σ,λ,λ′

∑
X

|Mσ,λ,λ′(X)|2 (2π )4 δ4(P + q − pX). (2.9)

Here pX denotes the net four-momentum of all the hadrons produced in the scattering
process.

Without giving the details of the calculation, which can be found in standard textbooks
(Halzen and Martin 1984, Peskin and Schroeder 1995, Sterman 1993), we will write down
the following expression for the DIS cross section, which results from substituting Eq. (2.7)
into Eq. (2.9):

dσ

d3p′ = α2
EM

EE′Q4
LμνW

μν. (2.10)

Equation (2.10) is illustrated in Fig. 2.2, which shows the amplitude from Fig. 2.1 squared.
As shown graphically in Fig. 2.2, one can separate the electron and proton contributions to
the DIS cross section into leptonic and hadronic parts. Formally, the leptonic part brings in
a leptonic tensor Lμν , while the hadronic part yields a hadronic tensor Wμν .

From Eqs. (2.7) and (2.9) we can easily see that one defines the leptonic tensor by

Lμν = 1

2

∑
λ=±1

∑
λ′=±1

ūλ′(p′) γμ uλ(p)
[
ūλ′(p′) γν uλ(p)

]∗
. (2.11)

Summing over the initial and final electron polarizations yields

Lμν = 1

2
Tr
[(

p/′ + me

)
γμ (p/ + me) γν

]
= 2
(
pμp′

ν + pνp
′
μ − p · p′gμν + m2

e gμν

)
, (2.12)

where again me is the electron mass.
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26 Deep inelastic scattering

The hadronic tensor Wμν in Eq. (2.10) is given by

Wμν = 1

4πm

1

2

∑
σ=±1

∑
X

〈P, σ | Jμ(0) |X〉 〈X| J ν(0) |P, σ 〉

× (2π )4 δ4(P + q − pX), (2.13)

which can be simplified to

Wμν = 1

4πm

∫
d4x eiq·x 1

2

∑
σ=±1

∑
X

〈P, σ | Jμ(x) |X〉 〈X| J ν(0) |P, σ 〉

= 1

4πm

∫
d4x eiq·x 1

2

∑
σ=±1

〈P, σ | Jμ(x) J ν(0) |P, σ 〉

≡ 1

4πm

∫
d4x eiq·x 〈P | Jμ(x) J ν(0) |P 〉 (2.14)

where the last line defines an abbreviated notation for the spin-averaged proton state and m

is the mass of the proton.
The strong interaction dynamics in DIS (including nonperturbative contributions) is

entirely contained in the hadronic tensor Wμν ; therefore, it is very hard to calculate Wμν

in a “first principles” QCD calculation. However, we can infer more about its structure by
noting that conservation of the electromagnetic current (2.8) requires that

qμWμν = 0, qνW
μν = 0. (2.15)

Imposing the condition (2.15) on Wμν and assuming that the tensor is symmetric one can
show that, without loss of generality, it can be written in the following form (see Exercise
2.1 at the end of the chapter):

Wμν = − W1(xBj ,Q
2)

(
gμν − qμ qν

q2

)

+ W2(xBj ,Q
2)

m2

(
P μ − P · q

q2
qμ

) (
P ν − P · q

q2
qν

)
. (2.16)

Here W1 and W2 are unknown scalar functions of xBj and Q2, called structure functions.
As Wμν describes the interaction of the virtual photon with the proton, there are only two
four-momentum vectors on which it depends: P μ and qμ. As P 2 = m2 one can construct
only two Lorentz invariants from them that describe the scattering process. We will use xBj

and Q2 as the two invariants on which W1 and W2 depend.
Substituting Eq. (2.16) into Eq. (2.10), after some algebra one can show that the cross

section of the reaction e + p → e′ + X in terms of the functions W1 and W2 is (for details
of the derivation see, for example, the book Halzen and Martin (1984), Chapter 8)

dσ ep

dE′ d�
= α2

EM

4 E2 sin4 θ
2

[
W2(xBj ,Q

2) cos2 θ

2
+ 2W1(xBj ,Q

2) sin2 θ

2

]
. (2.17)
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2.2 Parton model and Bjorken scaling 27

In arriving at Eq. (2.17) we have neglected the mass of the electron me, to write

d3p′ = p′2 dp′ d� ≈ E′2 dE′ d�,

where � is the solid scattering angle. We have also used Eq. (2.3) to replace Q2. Equa-
tion (2.17) demonstrates that the structure functions W1 and W2 can be measured experi-
mentally by studying the angular dependence of the DIS cross section.

Note that the structure functions W1 and W2 have the dimension of inverse mass.1 It is
more convenient to define dimensionless structure functions F1 and F2, by

F1(xBj ,Q
2) ≡ mW1(xBj ,Q

2), (2.18a)

F2(xBj ,Q
2) ≡ νW2(xBj ,Q

2) = Q2

2mxBj

W2(xBj ,Q
2). (2.18b)

All the QCD physics in DIS is contained in F1 and F2. We will now attempt to calculate
these structure functions.

2.2 Parton model and Bjorken scaling

To find the structure functions F1 and F2 it is easier to change the frame in which we are
working. Instead of the proton’s rest frame we will now use a frame in which the proton is
ultrarelativistic. Such a frame is usually referred to as the infinite momentum frame (IMF)
or Bjorken frame. The proton is taken to be moving along the z-axis, and its momentum in
this frame is

P μ ≈
(

P + m2

2P
, 0, 0, P

)
(2.19)

in the (P 0, P 1, P 2, P 3) notation. We assume that the proton’s momentum is much larger
than its mass, P � m. The virtual photon in the IMF has q3 = 0, so that

qμ = (q0, q1, q2, 0). (2.20)

The part of the DIS process relevant for the calculation of the structure functions, virtual
photon–proton scattering, is depicted in Fig. 2.3. Note that, unlike Fig. 2.2, we now draw
the proton at the top of the diagram. In fact, in our normal convention a proton at rest (or any
other target) is drawn at the bottom of the diagram, while a proton (or any other projectile)
moving at high energy is shown at the top of the diagram.

2.2.1 Warm-up: DIS on a single free quark

As a warm-up calculation in preparation for the full parton model, let us simply assume that
the proton consists of noninteracting quarks and gluons, which we will refer to as partons.
As we will see below in Sec. 2.3, this is not such a bad approximation as in the IMF the

1 Our single-particle states are normalized such that 〈p|p′〉 = (2π)3 2Ep δ3( �p − �p′), which allows one to see that the
dimension of Wμν in Eq. (2.14) is that of inverse mass.
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γ∗
q

μ ν

P

k, r
k , r

k, r

Fig. 2.3. Virtual photon–proton scattering in the IMF.

γ∗

k, r

q

k , r

Fig. 2.4. Interaction of a virtual photon with one point-like particle (a parton), as the basic
ingredient of the parton model. As usual, the vertical solid line denotes the final-state cut.

typical time scale of the quark and gluon interactions inside the proton is much longer than
the time scale of DIS. Hence for the duration of the virtual photon–proton scattering we
can assume that the quarks and gluons do not interact with each other. Thus the photon
simply interacts with a quark in the proton. To better understand photon–quark scattering
let us assume that we simply have one free quark instead of the proton. The diagram giving
the cross section of the DIS process is shown in Fig. 2.4.

The hadronic tensor Wμν for the interaction of the virtual photon with the point-like
particle (a single quark) has a structure similar to Lμν in Eq. (2.11), namely

W quark
μν = Z2

f

2

∑
r=±1

∑
r ′=±1

ūr ′(k′) γμ ur (k)
[
ūr ′(k′) γν ur (k)

]∗ 1

2mq

δ
(
k′2 − m2

q

)

= Z2
f

2
Tr
[(

k/′ + mq

)
γμ

(
k/ + mq

)
γν

] 1

2mq

δ
(
k′2 − m2

q

)
, (2.21)

where k′ = k + q while r and r ′ are the quark helicities (see Fig. 2.4) and mq is the quark
mass. Equation (2.21) can be obtained from Eq. (2.13) by replacing X in it by a single
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2.2 Parton model and Bjorken scaling 29

particle (a quark), so that

∑
X=one particle

=
∫

d3k′

2k′0 (2π )3

∑
r ′=±1

along with pX → k′ and P → k. It is then easy to show that

1

4πmq

∫
d3k′

2k′0 (2π )3
(2π )4 δ4(k + q − k′) = 1

2mq

δ
(
(k + q)2 − m2

q

)
, (2.22)

justifying the delta function factor in Eq. (2.21).
We can rewrite δ((k + q)2 − m2

q) as follows:

δ
(
(k + q)2 − m2

q

) = δ
(
2k · q − Q2

) = 1

2 k · q
δ

(
1 − Q2

2 k · q

)
, (2.23)

where we have used the fact that the incoming quark is on mass shell.
Calculating the trace in Eq. (2.21), comparing the result with Eq. (2.16), and using

Eqs. (2.18a) and (2.18b) with P replaced by k we obtain for DIS on a point-like particle
(a quark)

F
quark

1

(
xBj ,Q

2) = mqW
quark

1

(
xBj ,Q

2) = Z2
f

2
δ
(
1 − xBj

)
(2.24)

F
quark

2

(
xBj ,Q

2) = Q2

2mqxBj

W
quark

2

(
xBj ,Q

2) = Z2
f δ
(
1 − xBj

)
. (2.25)

We have used the fact that, for DIS on a single quark, xBj = Q2/(2k · q). We see that for
DIS on a point-like particle the structure functions F1 and F2 turn out to depend only on
one variable, xBj . This behavior is known as Bjorken scaling (Bjorken 1969).

2.2.2 Full calculation: DIS on a proton

The idea that the actual interaction in DIS occurs with the point-like constituents of a
hadron (the partons) can be illustrated by studying the full DIS process. Let us consider
DIS on the whole proton, as shown in Fig. 2.3. We want to calculate the diagram in Fig. 2.3
using the rules of light cone perturbation theory (LCPT) outlined in Sec. 1.3 (see also
Sec. 1.4). We first rewrite all four-momenta in the light cone (+,−,⊥) notation. In the
IMF/Bjorken frame the proton has a very large momentum. The proton’s momentum in
Eq. (2.19) becomes, in light cone notation,

P μ ≈ (P +, 0, 0⊥) (2.26)

with very large P + ≈ 2P . Quarks and gluons in such an ultrarelativistic proton also have
very large light cone plus momenta. The quark in Fig. 2.3 has four-momentum kμ =
(k+, (�k2

⊥ + m2
q)/k+, �k⊥); we assume that it has a large k+ component. We define the

Feynman-x variable as the fraction of the light cone momentum of the proton carried by
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30 Deep inelastic scattering

ki⊥, xi

k⊥, x, r, f

Fig. 2.5. Light cone wave function of the proton.

this quark2

x ≡ k+

P + , (2.27)

writing kμ = (xP +, (�k2
⊥ + m2

q)/(xP +), �k⊥).
In LCPT every particle is on mass shell. However, we want to calculate the virtual

photon–proton scattering cross section for the process shown in Fig. 2.3. By the definition
of the problem the incoming photon is virtual, q2 = −Q2. Hence in LCPT we can treat
this virtual photon as having an imaginary mass iQ. The virtual photon momentum (2.20)
becomes, in light cone notation,

qμ =
(

q+,
�q 2
⊥ − Q2

q+ , �q⊥

)
(2.28)

with (q+)2 = �q 2
⊥ − Q2 in the IMF.

In the calculations below we will assume that Q2 is very large. First, for QCD per-
turbation theory to be applicable Q2 has to be much larger than the confinement scale
�QCD: Q2 � �2

QCD . Second, for the parton model (which we are about to present) to
be valid, Q has to be much larger than the transverse momentum of any other particle in
the problem. This applies to the quark line carrying momentum k in Fig. 2.3, for which we
have Q2 � �k2

⊥,m2
q . If, for a particular wave function configuration the upper boxed part

of Fig. 2.3 contains n partons with transverse momenta �ki ⊥ for i = 1, . . . , n, then we will
assume that Q2 � �k2

i ⊥ for any i. Note that �q 2
⊥ = Q2 + (q+)2 > Q2 is also very large.

Now let us assume that these n partons carry light cone momentum components k+
i or,

equivalently, have Feynman-x values given by xi for i = 1, . . . , n. We can then define the
light cone wave function of the (n + 1)-parton Fock state of the proton and denote it by
�

f
n ({xi, ki⊥}; x, k⊥; r). The proton has n “spectator” partons (both quarks and gluons) and

one quark carrying momentum k in Fig. 2.3 that interacts with the photon. This quark has
helicity r and flavor f . The light cone wave function �

f
n ({xi, ki⊥}; x, k⊥; r) is illustrated

in Fig. 2.5. In our discussion and notation we will suppress the polarization indices of the

2 The Feynman-x variable was originally defined as x = 2k3/
√

s in the center-of-mass frame with kμ the momentum
of the produced outgoing particle (Feynman 1969). Our definition here is different, but is also widely used in the
community: it maps back onto the original definition at large x.
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2.2 Parton model and Bjorken scaling 31

proton and the polarization, color, and flavor indices of the spectator partons: averaging
over the proton polarizations and summation over the polarization, color, and flavor of the
partons will always be implicitly assumed to be made after we have multiplied the wave
function �

f
n ({xi, ki⊥}; x, k⊥; r) by its complex conjugate. Note also that k⊥ = |�k⊥| (the

same notation applies to the other transverse momenta).
Let us now calculate the proton’s Wμν using Eq. (2.13). Note that after the interaction

the n spectator partons, along with the quark that interacts with the photon, together
form what is denoted X in Eq. (2.13). Therefore, for n partons we have (see also
Eq. (1.67))

∑
X=n partons

=
∫

dk′+

k′+
d2k′

⊥
2(2π )3

1

Sn

∑
r ′=±1

n∏
i=1

dk+
i

k+
i

d2ki⊥
2(2π )3

=
∫

dk′+

k′+
d2k′

⊥
2(2π )3

1

Sn

∑
r ′=±1

n∏
i=1

dxi

xi

d2ki⊥
2(2π )3

, (2.29)

where for physical particles all integrals over the k+
i and k′+ run from 0 to P +, which

translates into integrals over the xi running from 0 to 1. Here k′+ = k+ + q+, �k′
⊥ = �k⊥ + �q⊥,

and r ′ is the helicity of the k′ quark line (see Fig. 2.3). The symmetry factor Sn is defined
after Eq. (1.67).

Following the definition of the hadronic tensor in Eq. (2.13) and with the help of the
diagram in Fig. 2.3 we can write, using the LCPT rules presented in Secs. 1.3 and 1.4,

Wμν = 1

4πm

∑
n, f

∫
dk′+ d2k′

⊥
2k′+ (2π )3

1

Sn

∑
r,r ′,r ′′

n∏
i=1

dxi

xi

d2ki⊥
2(2π )3

× P +

k+ �f
n ({xi, ki⊥}; x, k⊥; r)

[
P +

k+ �f
n

({xi, ki⊥}; x, k⊥; r ′′)]∗ Z2
f

× ūr ′ (k′) γμ ur (k)
[
ūr ′(k′) γν ur ′′ (k)

]∗
(2π )4 δ4

(
P + q − k′ −

n∑
j=1

kj

)
. (2.30)

The labeling of the quark helicities r, r ′, and r ′′ is defined in Fig. 2.3. Note that, unlike in
the simple case of DIS on a single quark considered above, the helicity of the quark line k

in Fig. 2.3 is different on the left and on the right of the final-state cut. The factors P +/k+

multiplying the wave functions in Eq. (2.30) appear for two reasons. A factor 1/k+, which
has to be included by the rules of LCPT from Sec. 1.3, is due to the internal quark line
carrying momentum k and is not included in our definition of the light cone wave function
outlined in Sec. 1.4. The same definition from Sec. 1.4 dictates that each light cone wave
function contains a factor 1/P + for each incoming line but, as the general LCPT rules in
Sec. 1.3 prescribe no such factor for the full diagram for the scattering process, we need to
remove this factor by multiplying the wave functions by P +.

The delta function in Eq. (2.30) imposes the conservation of the transverse and “+”
components of momenta. However, of particular importance is the conservation of the light
cone energy that is also imposed by this delta function. Using Eq. (2.26) and rewriting the
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32 Deep inelastic scattering

light cone energies of all partons in terms of the transverse and “+” components of their
momenta we obtain

1

k′+ δ

(
P − + q− − k′− −

n∑
j=1

k−
j

)

= 1

k+ + q+ δ

(
q− − (�k⊥ + �q⊥)2

k+ + q+ −
n∑

j=1

k2
j ⊥
k+
j

)
. (2.31)

For simplicity we will now assume that all the partons are massless. This assumption also
applies to the quark that interacts with the photon, for which we now put mq = 0.

Since Q2, �q 2
⊥ � �k2

⊥, k2
i ⊥ for any i we approximate (�k⊥ + �q⊥)2 as �q 2

⊥ and also neglect
all k2

j ⊥/k+
j in the argument of the delta function in Eq. (2.31). This leaves us with

1

k+ + q+ δ

(
q− − (�k⊥ + �q⊥)2

k+ + q+ −
n∑

j=1

k2
j ⊥
k+
j

)
≈ δ
(
(k+ + q+) q− − �q 2

⊥
)

= δ
(
k+ q− − Q2

) = δ
(
x P +q− − Q2

) ≈ δ
(
x 2P · q − Q2

)
, (2.32)

where the last approximation was made using Eq. (2.26). Using the definition of xBj the
last delta function can be rewritten as

δ
(
x 2P · q − Q2) = 1

2P · q
δ(x − xBj ) = xBj

Q2
δ(x − xBj ). (2.33)

We see that Feynman x is identical to Bjorken x. The physical meaning of xBj becomes
clear: it is the fraction of the light cone momentum of the proton carried by the struck
quark!

Since the two quantities are equal, below we will use x and xBj interchangeably, using
the notation with a subscript (xBj ) only in cases when we need to avoid the potential
confusion of x with other quantities.

Using Eq. (2.33) in Eq. (2.30) and summing over the helicities r ′ yields

Wμν = 1

4m

∑
n, f

∫
dk+ d2k⊥

1

Sn

∑
r,r ′′

n∏
i=1

dxi

xi

d2ki⊥
2(2π )3

×�f
n

(
{xi, ki⊥}; k+

P + , k⊥; r

) [
�f

n

(
{xi, ki⊥}; k+

P + , k⊥; r ′′
)]∗

Z2
f

× ūr ′′ (k) γν (k/ + q/) γμ ur (k) δ

(
P + − k+ −

n∑
l=1

k+
l

)
δ2

(
�k⊥ +

n∑
j=1

�kj ⊥

)

×
(

P +

k+

)2
xBj

Q2
δ

(
xBj − k+

P +

)
, (2.34)

where we have switched from integration variables k′+ and �k′
⊥ to k+ and �k⊥.

An important assumption of the parton model is that the integrals in Eq. (2.34) are
convergent even if we impose no integration limit on the transverse momentum integrals.
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2.2 Parton model and Bjorken scaling 33

As will be shown below, this assumption is not true in QCD, where we have to cut off the k⊥-
integral at Q2 in the ultraviolet (UV), which leads to corrections to the naive parton model
presented in this section; the k⊥-integral converges in the UV for a theory in which partons
are scalars. For now we will not address this issue and simply assume that, owing to some
(perturbative or nonperturbative) physics beyond our present formalism, the k⊥-integral is
convergent in the UV.

We can then see that all the integrals in Eq. (2.34) “know” only about one momentum
external to the integration: that momentum is P . Hence writing k/ + q/ from Eq. (2.34) as
(k + q)αγ α we can argue, on the basis of Lorentz transformation properties, that after all
integrations in Eq. (2.34) have been carried out the factor γ α will have been replaced by P α .
From Eq. (2.26) we then see that only the α = + term will contribute to the final answer,
as P + is larger by far than any other component of the momentum P α . We thus can replace
γ α with γ + from the start, substituting (1/2)(k + q)−γ + ≈ (Q2/2k+) γ + in to Eq. (2.34)
in place of k/ + q/. (We have used the fact that �q2

⊥ ≈ Q2 is the largest transverse momentum,
while k+ = xP + � q+.) We obtain

Wμν = 1

4m

∑
n, f

∫
dk+ d2k⊥

1

Sn

∑
r,r ′′

n∏
i=1

dxi

xi

d2ki⊥
2(2π )3

×�f
n

(
{xi, ki⊥}; k+

P + , k⊥; r

) [
�f

n

(
{xi, ki⊥}; k+

P + , k⊥; r ′′
)]∗

Z2
f

× ūr ′′ (k) γνγ
+γμ ur (k) δ

(
P + − k+ −

n∑
l=1

k+
l

)
δ2

(
�k⊥ +

n∑
j=1

�kj ⊥

)

× 1

2xBjk+ δ

(
xBj − k+

P +

)
, (2.35)

where we have also made use of the last delta function in Eq. (2.34) to replace (P +/k+)2

by 1/x2
Bj .

With the help of Table A.1 in appendix section A.1 and employing Eq. (2.35), it is easy
to see that

Wμ+ = W+μ ∝ ūr ′′ (k) γ μγ +γ + ur (k) = 0,

W−− ∝ ūr ′′ (k) γ −γ +γ − ur (k) = ūr ′′ (k) γ − ur (k) = 2δr r ′′k2
⊥

k+ . (2.36)

To find the transverse components of Wμν we note that, from Eq. (2.14), this tensor is
symmetric. Anticipating that the final result of the integrations in Eq. (2.35) yields a
symmetric tensor, we can therefore symmetrize the transverse components to get

Wi j ∝ ūr ′′ (k) γ jγ +γ i ur (k) = ūr ′′ (k) 1
2

(
γ jγ +γ i + γ iγ +γ j

)
ur (k)

= − 1
2 ūr ′′ (k) γ + {γ j , γ i

}
ur (k) = −gi j ūr ′′ (k) γ + ur (k) = −gi j δr r ′′ 2k+ (2.37)

for i, j = 1, 2. As k+ � k⊥ we see that Wi j is much larger than W−− and is, therefore, the
only nonnegligible component of the hadronic tensor Wμν . (Similarly, one can show that
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P

k, r k, r

γ+δ xBj− k+

P+

Fig. 2.6. Cut (Mueller) vertex in DIS, denoted by the solid circle.

W− i = Wi − ∝ ki
⊥, which is much smaller than Wi j and integrates out to zero in Eq. (2.35)

owing to the absence of a preferred transverse direction in the problem.)
From Eqs. (2.37) and (2.35) we see that, in the usual Feynman diagram language, the

quark–photon part of the diagram in Fig. 2.3 can be replaced by a single effective vertex
containing γ +δ(xBj − k+/P +), as shown in Fig. 2.6. This effective vertex is known as a
cut vertex or Mueller vertex (Mueller 1970, 1981).

From the general decomposition of Wμν in Eq. (2.16) and using the fact that, by our
frame choice, �P⊥ = 0 we can write

Wi j = −W1(xBj ,Q
2) gij + qiqj

q2

[
W1(xBj ,Q

2) + W2(xBj ,Q
2)

m2

(P · q)2

q2

]
. (2.38)

Comparing Eq. (2.38) with Eq. (2.37), for which we showed that Wi j ∝ gij , we see that
the hadronic tensor is given by the first term in Eq. (2.38):

Wi j = −W1(xBj ,Q
2) gij . (2.39)

Substituting Eq. (2.37) into Eq. (2.35), summing over r ′′, and comparing the result with
Eq. (2.39) we can read off the structure function W1:

W1(xBj ,Q
2) = 1

4mxBj

∑
n, f

Z2
f

∫
dk+ d2k⊥

1

Sn

∑
r

n∏
i=1

dxi

xi

d2ki⊥
2(2π )3

×
∣∣∣∣�f

n

(
{xi, ki⊥}; k+

P + , k⊥; r

) ∣∣∣∣2 δ

(
P + − k+ −

n∑
l=1

k+
l

)

× δ2

(
�k⊥ +

n∑
j=1

�kj ⊥

)
δ

(
xBj − k+

P +

)
. (2.40)
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Let us now define the quark distribution function by

qf (xBj ) = 1

2xBj

∑
n

∫
dξ d2k⊥

1

Sn

∑
r

n∏
i=1

dxi

xi

d2ki⊥
2(2π )3

×
∣∣∣∣�f

n

(
{xi, ki⊥}; k+

P + , k⊥; r

) ∣∣∣∣2 δ

(
1 − ξ −

n∑
l=1

xl

)

× δ2

(
�k⊥ +

n∑
j=1

�kj ⊥

)
δ
(
xBj − ξ

)
, (2.41)

where ξ = k+/P +. With the help of Eq. (2.41) we can rewrite Eq. (2.40) as

W1(xBj ) = 1

2m

∑
f

Z2
f qf (xBj ). (2.42)

Note that both the quark distribution function and the structure function W1 are functions
of Bjorken x only! Just as in the case of DIS on a single free quark, this is Bjorken
scaling.

To find the remaining structure function, W2, we note that, as we have just shown in
Eq. (2.37), Wi j ∝ gij . Therefore the term in square brackets in Eq. (2.38) must be zero.
Equating it to zero, and recalling the definitions of xBj and ν from Eqs. (2.2) and (2.5), we
write

ν W2(xBj ) = 2mxBj W1(xBj ). (2.43)

Using the definitions in Eqs. (2.18a) and (2.18b) we can rewrite Eq. (2.43) as

F2(xBj ) = 2xBj F1(xBj ). (2.44)

Equation (2.44) is known as the Callan–Gross relation (Callan and Gross 1969). This
relation is characteristic of spin-1/2 partons, such as quarks, and would be different if the
proton had constituents with a different spin interacting with the virtual photon.

Combining Eqs. (2.18a), (2.42), and the Callan–Gross relation we write

F1(xBj ) = 1

2

∑
f

Z2
f qf (xBj ), (2.45)

F2(xBj ) =
∑
f

Z2
f xBj qf (xBj ). (2.46)

We can see that both structure functions are independent of Q2 and are functions of xBj

only. Therefore, if we assume that some nonperturbative QCD effects lead to a natural UV
cutoff on the transverse momenta of the partons then the DIS cross section can be described
by two functions, F1 and F2, that are dependent on only one variable, xBj . This is a more
general form of Bjorken scaling (Bjorken 1969). We have now shown that Bjorken scaling
results from a full parton model calculation.
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Fig. 2.7. Compilation of the world F2 data for DIS on a proton. The proton F2 structure
function is plotted as a function of Q2 for a range of values of x, as indicated next to the
data. It can be seen that, except for very small x, F2 is independent of Q2, a manifestation
of Bjorken scaling. (We thank Kunihiro Nagano for providing us with this figure.) A color
version of this figure is available online at www.cambridge.org/9780521112574.

In Fig. 2.7 we show a summary of the world knowledge of the proton F2 structure
function. This structure function is plotted as a function of Q2 for many different fixed
values of Bjorken-x. One can clearly see that, when x is not too small, F2 is independent of
Q2. This is the experimental manifestation of Bjorken scaling. We see that the theory we
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2.2 Parton model and Bjorken scaling 37

have been presenting here agrees very well with the data, at least at the qualitative level. (The
curves going through the data points result from the solution of the QCD renormalization
group equations in Q2, which are presented below.)

The quark distribution function defined in Eq. (2.41) counts the number of quarks with
longitudinal momentum fraction xBj . While this may not be obvious from Eq. (2.41), we
may check this statement for DIS on a single quark. Comparing Eq. (2.45) for a single
flavor with Eq. (2.24) yields

q
f
one-quark(xBj ) = δ(1 − xBj ) (2.47)

meaning that our target “proton” indeed consists of a single quark which carries all the
“proton” momentum, i.e., the quark is at xBj = 1. Equation (2.47) can also be obtained
from Eq. (2.41) directly by setting n = 0 in the latter equation and also using |�f

0 |2
= 1.

As one can see from Eqs. (2.45) and (2.46), the functions F1 and F2 have a very
simple physical meaning: namely, F1 gives the number of partons in the hadron with
longitudinal momentum fraction xBj (weighted by Z2

f /2) while F2 gives the average
longitudinal momentum fraction of the partons in the hadron (weighted by Z2

f ) times
the number of partons.

Using Eqs. (2.45) and (2.46) we can understand the physics behind the parton model.
The proton arrives with partons in its wave function, which, for the duration of the DIS
interaction, can be thought of as free particles. To be specific, let us concentrate on the
F2 structure function. The interaction of each quark with the virtual photon yields a factor
Z2

f xBj , as seen in Eq. (2.46). The full expression for the proton structure function F2 in
Eq. (2.46) can be interpreted as the product of the number of quarks in the proton (qf (xBj ))
and the amplitude for the interaction of each quark with the photon (Z2

f xBj ). We thus
have a clear physical picture of a proton with noninteracting partons in its wave function
scattering on a virtual photon in such a way that each parton interacts with the photon
independently of the other partons. We can therefore write (for the details see Sterman
(1993))

F2(xBj ) =
∑
f

1∫
0

dξ qf (ξ ) C
f
2

(
xBj

ξ

)
. (2.48)

The distribution function qf gives the number of quarks in the proton’s wave function,
while the coefficient function C

f
2 expresses the interaction between a quark with flavor f

and the virtual photon. At the lowest order, considered here, Cf
2 = Z2

f δ(xBj/ξ − 1). When
used in Eq. (2.48) it leads to Eq. (2.46).

One can easily express the structure functions in terms of the photon–proton cross section
σγ ∗p for transverse and longitudinal polarizations of the virtual photon. In particular one
obtains (see Halzen and Martin (1984) along with the derivation in Sec. 4.1 below)

F2(xBj ,Q
2) = Q2

4π2αEM

σ
γ ∗p
tot , (2.49)
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where σ
γ ∗p
tot is the total γ ∗p cross section summed over all photon polarizations. With the

help of Eq. (2.49), Eq. (2.48) can be rewritten directly for the cross section as

σ
γ ∗p
tot (xBj ,Q

2) =
∑
f

∫
dξ

ξ
ξ qf (ξ ) σ̂ γ ∗+partonf

(
xBj

ξ
,Q2

)

=
∑
f

∫
dy ′ Nf

(
y ′) σ̂ γ ∗+partonf

(
e−(y−y ′),Q2

)
, (2.50)

where Nf (y = ln 1/xBj ) = xBj qf (xBj ) is the number of partons (quarks) inside the hadron
having flavor f per unit rapidity y = ln(P +/k+) = ln 1/xBj . The factor σ̂ γ ∗+partonf(x,Q2)
is the cross section for parton–virtual photon scattering. In Eq. (2.50) we have y = ln 1/xBj

and y ′ = ln 1/ξ . One can see from Eq. (2.25) that in the “naive” parton model considered
here one has

σ̂ γ ∗+ partonf
(
xBj ,Q

2
) = 4π2 αEM

Q2
Z2

f xBj δ(1 − xBj ) = 4π2αEM

Q2
Z2

f δ(y). (2.51)

Using Eq. (2.51) in Eq. (2.50) reduces the latter to Eq. (2.46).
Equations (2.48) and (2.50) show that, in the framework of the parton approach, finding

cross sections is reduced to two separate problems: finding the light cone wave function
of the hadron, which does not depend on the probe, and calculating the cross section
for scattering of the parton on the probe, γ ∗ in the case of electron DIS. The process is
illustrated in Fig. 2.10. This simple parton model with an additional obvious assumption
that the partons are quarks, anti-quarks, and gluons is able to describe a striking amount
of experimental data. See Feynman (1972), as well as our main textbooks Peskin and
Schroeder (1995) and Halzen and Martin (1984), for more detailed comparisons of the
parton model with the data.

2.3 Space–time structure of DIS processes

Equation (2.48) is very simple and intuitively sound. It would be useful to visualize it in
terms of the space–time dynamics of partons. For this purpose we will rewrite Eq. (2.14)
for the cross section of the virtual photon interaction as the imaginary part of the Compton
scattering amplitude at zero angle. In the space–time representation it looks as follows:

Wμν

(
xBj ,Q

2
) = 1

2πm
Im

{
i

∫
d4x eiq·x 〈P |T [Jμ (x) Jν (0)]|P 〉

}
, (2.52)

where as usual |P 〉 denotes the state of the target (the proton) and T denotes time-ordering.
The right-hand side of Eq. (2.52) is simply the imaginary part of the forward scattering
amplitude for the photon–proton interaction. The coordinate four-vector xμ in the forward
amplitude describes the space–time separation between absorption and re-emission of the
virtual photon by a quark inside the proton.

Let us first work in the rest frame of the proton. Just as in Sec. 2.1 we have P μ = (m, �0).
However, now we are interested in the photon–proton interaction: we can forget about the
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electron in Sec. 2.1 that gave rise to the photon and choose our coordinate axis in such a way
that the photon’s four-momentum is qμ = (q0, �0⊥, q3). We then have 2P · q = 2 q0 m =
Q2/xBj , so that

q0 = Q2

2mxBj

� Q (2.53)

since Q � m and xBj ≤ 1. By the definition of Q2 we have 0 ≤ Q2 = −q2 = (q3)2 −
(q0)2. Hence q3 ≥ q0 � Q. Therefore q0 ≈ q3 � Q. We can then write

q+ = q0 + q3 ≈ 2q0,

q− = q0 − q3 = q+ q−

q+ ≈ − Q2

2q0
= −mxBj . (2.54)

Writing q · x in the exponent in Eq. (2.52) as 1
2 (q+x− + q−x+), we argue that the typical

x− range is given by 2/q+, while the typical x+ range is given by 2/q−. Therefore

x− ≈ 2

q+ ≈ 2mxBj

Q2
� 1

μ
,

(2.55)

x+ ≈ 2

|q−| ≈ 2

mxBj

≥ 1

μ
,

where μ ∼ �QCD ∼ m is the scale of the nonperturbative (soft) QCD interactions, which
gives the average transverse momenta of the partons in the parton model. From Eq. (2.55) we
see that, for large Q, one has x− = t − z ≈ 0 and x+ = t + z ≈ 2t ≈ 2/(mxBj ). Therefore
the light cone time of observation is given by

x+ ≈ 2

mxBj

. (2.56)

This time is known as the Ioffe time (Ioffe 1969, Gribov, Ioffe, and Pomeranchuk 1966).
It can be interpreted as the typical longitudinal distance of the interaction (the coherence
length). We see that this longitudinal range in DIS increases with decreasing Bjorken x.3

We can also determine the transverse coordinate resolution of the virtual photon in DIS.
Imposing the causality of the interactions in the forward scattering amplitude (2.52), i.e.,
x2 = x+x− − x2

⊥ > 0, and using Eq. (2.55) we get

x2
⊥ < x+x− ∝ 4

Q2
� 1

μ2
. (2.57)

We see that the typical transverse resolution of the virtual photon is of order 1/Q. Therefore
the photon can resolve very short distances, deep inside the proton: this enables it to “pick
out” a quark with which to interact independently of the other “spectator” partons. This

3 The careful reader will notice that for small enough xBj the light cone time, i.e., the coherence length, in Eq. (2.56)
becomes larger than the size of the target proton. Therefore at least one of the electromagnetic currents Jμ in Eq. (2.52)
has to be located outside the proton. How can an interaction with the proton happen outside the proton? We will explain
this phenomenon in more detail later, in Chapter 4, but here we briefly note that at very small xBj the incoming current
can decay into a quark–antiquark pair outside the proton, the qq̄ pair subsequently interacting with the proton.
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Proton

quarks

and

gluons

x  = 1/QΔ

Fig. 2.8. A depiction of a proton during DIS in the transverse plane. The blobs represent
partons (quarks and gluons), while the dashed circle denotes the virtual photon. A color
version of this figure is available online at www.cambridge.org/9780521112574.

conclusion is illustrated in Fig. 2.8, where we show a proton in the transverse plane with the
quarks and gluons in its wave function denoted by blobs with random shapes. The virtual
photon is represented by a dashed circle whose size is of order 1/Q, in agreement with
Eq. (2.57). One can see explicitly now that the DIS experiment works as a microscope:
varying Q2 changes the transverse size of the photon and so changes the “resolution” of the
DIS experiment, allowing the virtual photon to interact with partons of different transverse
extent.

Now, let us consider DIS process in the IMF or Bjorken frame. There the proton
momentum is given by Eq. (2.19) (or, equivalently, Eq. (2.26)), while the virtual photon
momentum is given by Eq. (2.20) (Eq. (2.28)). We see that 2P · q ≈ 2Pq0 = Q2/xBj ,
giving

q0 ≈ Q2

2xBjP
. (2.58)

We conclude that the interaction time in the IMF is

tDIS ≈ 1

q0
≈ 2xBjP

Q2
. (2.59)

This time needs to be compared with the typical time scale with which partons interact
inside the proton. In the rest frame of the proton, the interparton interaction time is nonper-
turbatively long, of order 1/μ. In the IMF or Bjorken frame the time is dilated by the boost
factor P/m, giving

tpartons ≈ 1

μ

P

m
. (2.60)

Comparing Eqs. (2.59) and (2.60) one can see clearly that since xBjμm ≤ μm � Q2 we
have

tDIS � tpartons . (2.61)
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γ∗
q

P

Fig. 2.9. An example of a higher-twist correction.

Therefore we have justified a main assumption in Sec. 2.2, that the typical time scale of
interpartonic interactions is much longer than the typical time scale of DIS. One does not
have to worry about partons interacting with each other during DIS.

The time-scale argument presented here can be supported by explicit diagrammatic
calculations showing that diagrams in which the quark struck by the photon exchanges
gluons with other partons, such as the graph shown in Fig. 2.9, are suppressed by powers
of μ2/Q2 and m2/Q2. Such corrections are known as higher-twist terms. The twist of
an operator is defined as its mass dimension minus its spin (Peskin and Schroeder 1995,
Sterman 1993). In the operator product expansion (OPE) for the hadronic tensor Wμν in
Eq. (2.14) the contribution of higher-twist operators enters with an extra 1/Q2 suppression
compared with the leading large-Q2 term that we found above. In the language of LCPT the
higher-twist operators correspond to a proton light cone wave function in which we tag on
(i.e., detect) more than one particle. The reader particularly interested in twist expansions
is referred to Sterman (1993) or Peskin and Schroeder (1995).

The transverse space dynamics is particularly simple in the IMF/Bjorken frame: from
Eq. (2.58) we see that q0 � Q, so that Q2 = q2

⊥ − (q0)2 ≈ q2
⊥. Hence the transverse

resolution of the virtual photon is

x⊥ ≈ 1

q⊥
≈ 1

Q
, (2.62)

just as in the proton’s rest frame.
Equation (2.55) also has a very clear meaning in another frame, the Breit frame, where

the photon momentum is equal to

qμ = (q0 = 0, �0⊥, q3 = −Q) (2.63)

and the proton’s momentum is given by Eq. (2.26), as it is in the IMF. In this frame
q+ = −q− = −Q; thus x− ∝ 1/Q and x+ ∝ 1/Q, leading to x2

⊥ < 1/Q2 by a causality
argument just as in the proton’s rest frame. All space and time intervals between photon
absorption and re-emission are short, of order 1/Q. The photon interacts with the target
during a very short time interval. The interparton interaction time in the Breit frame is the
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time

tpartons tDIS

σ(γ∗ + parton)

Fig. 2.10. The space–time structure of DIS in the IMF/Bjorken and Breit frames. For this
illustration, it is sufficient that all partons (both quarks and gluons) are denoted by straight
solid lines, for simplicity.

same as in the IMF/Bjorken frame and is given by Eq. (2.60). Then one can easily see that,
with tDIS = 1/Q in the Breit frame and since P Q � μm, we still have tpartons � tDIS in
this frame.

Having these estimates in mind we can view the deep inelastic scattering process in
either the Breit or the IMF/Bjorken frame, as shown in Fig. 2.10. The fast-moving par-
ticle (the proton), long before the interaction, “produces” a system of point-like particles
(partons) which can be described by a light cone wave function. At the moment of inter-
action, the parton with the lowest energy (the “wee” parton) interacts with the virtual
photon. The virtual photon in the Breit frame is a standing wave that interacts only with
partons that have the same wavelength; in other words, it interacts with the parton whose
momentum is equal to Q/2. The last statement follows from momentum conservation for
the wee parton, whose momentum is k before and k′ after its interaction with photon,
namely,

k0 = k′0 , k3 − k′3 = Q, �k⊥ = �k′
⊥. (2.64)

(To obtain Eq. (2.64) note that k′ = k + q and use Eq. (2.63).) From Eq. (2.64), and
assuming that the incoming parton is on mass shell, one can show that k3 = −k′3 = Q/2.
Assuming also that Q � k⊥ and neglecting the quark mass we get k0 ≈ k3 = Q/2, leading
to k+ ≈ Q. The fraction of the proton’s light cone momentum P + carried by the struck
quark is equal to x = k+/P + ≈ Q/P + = Q2/(P +q−) = xBj , just as in Eq. (2.33).

Therefore the DIS process happens in two stages. The first stage is the creation of many
point-like partons and can be described by the light cone wave function of the fast-moving
hadron. The second stage is the interaction of the slowest (wee) parton with the virtual
photon, which occurs at low energies. It should be stressed that in this section we have not
used the fact that the transverse momenta of partons are restricted in the UV, though we did
in the previous section. This fact gives us hope that the whole structure, consisting of the
wave function of the fast-moving hadron and the interaction of the parton with the photon,
will remain correct in a more general approach. However, the wee parton interaction could
be more complicated than in the naive parton model.
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2.4 Violation of Bjorken scaling;
the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi evolution equation

2.4.1 Parton distributions

Let us study the QCD corrections to the naive parton model presented above. First we rewrite
the quark distribution function qf (x,Q2) for a quark of flavor f from Eq. (2.41) as follows:

qf (x,Q2) =
∑

n

1

x

∫
d2k⊥

2(2π )3

1

Sn

∑
σ=±1

n∏
i=1

dxi

xi

d2ki⊥
2(2π )3

× |�f
n ({xi, ki⊥}; x, k⊥; σ ) |2 (2π )3

× δ2

(
�k⊥ +

n∑
j=1

�kj ⊥

)
δ

(
1 − x −

n∑
l=1

xl

)
. (2.65)

The quark carries a fraction x of the longitudinal momentum of the proton; x is identical
to the Bjorken-x variable defined in Eq. (2.2). Unlike in the naive parton model the quark
distribution function now depends on the momentum scale Q2, which enters Eq. (2.65) as
the renormalization scale. Roughly, this implies that the integral over the quark’s transverse
momentum k⊥ is bounded from above by Q, so that k⊥ ≤ Q. The same applies to the
other transverse momentum integrals in (2.65) along with the virtual loop integrals within
the wave function �n. (In the naive parton model, we assumed that the k⊥-integrals were
sufficiently convergent that one could simply replace Q in the upper limit of integration
by infinity without changing the value of the integral; this is, strictly speaking, only true
for super-renormalizable theories and so is not true for QCD.) The goal of this subsection
is to understand this Q-dependence in more detail.

The light cone wave function �
f
n ({xi, ki⊥}; x, k⊥; σ ) describes a Fock state in the proton

containing the quark we are measuring along with n “spectator” partons with transverse
momenta ki⊥ and longitudinal momentum fractions xi . The sum over n runs from some
small number, determined by the nonperturbative physics defining the proton, up to ∞.
(If we were studying the wave function of a single quark under the assumption that it is
completely perturbative, then n would run from 0 to ∞.) Note that the quark helicity, which
was labeled r in Sec. 2.2 to avoid confusion with the proton polarization, will be labeled
from now on by σ , since here the proton helicity does not enter our calculations explicitly.

The quark distribution function (2.65) is illustrated by the diagram in Fig. 2.11. The
definition (2.65) is the LCPT analogue of the standard operator definition in the light cone
gauge A+ = 0 (see for instance Sterman (1993)).

In analogy with (2.65) we can define the gluon distribution function:

G(x,Q2) =
∑

n

1

x

∫
d2k⊥

2(2π )3

1

Sn

∑
λ=±1

n∏
i=1

dxi

xi

d2ki⊥
2(2π )3

× |�n ({xi, ki⊥}; x, k⊥; λ) |2

× (2π )3δ2

(
�k⊥ +

n∑
j=1

�kj ⊥

)
δ

(
1 − x −

n∑
l=1

xl

)
. (2.66)
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xBj, k⊥

ff

Fig. 2.11. A diagrammatic representation of the quark distribution function. The vertical
solid line separates the light cone wave function from its complex conjugate.

xBj, k⊥

Fig. 2.12. A diagrammatic representation of the gluon distribution function.

Here �n ({xi, ki⊥}; x, k⊥; λ) is the proton light cone wave function containing n “specta-
tors” along with a measured gluon having longitudinal momentum fraction x, transverse
momentum k⊥, and polarization λ. Again Q2 enters (2.66) as the renormalization scale. The
definition of the gluon distribution function given by Eq. (2.66) is the LCPT analogue of
the operator definition in terms of gluon operators in the light cone gauge A+ = 0 (Sterman
1993). It is illustrated in Fig. 2.12.

The k⊥-integral in the definition of qf (x,Q2) given in Eq. (2.65) is effectively cut off
by Q, making the quark distribution function Q-dependent in general. The essential idea
of Bjorken scaling is that for very large Q we can simply set the upper cutoff of the k⊥-
integral to infinity. In the naive parton model it is assumed that the k⊥-integral is convergent
in the UV, owing to some (presumed nonperturbative) universal cutoff. The resulting quark
distribution becomes a function of x only, qf (x,Q2 → ∞) ≈ qf (x). This leads to the
Bjorken scaling seen in Eqs. (2.45) and (2.46).

In reality the k⊥-integral in Eq. (2.65) (and that in Eq. (2.66)) is not convergent in the
UV and so needs this Q2 cutoff: hence a Q2-dependence remains in the quark and gluon
distributions even at very high Q2. To determine the Q2-dependence of the distribution
functions one needs to understand exactly how the proton’s light cone wave function �n
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xBj, k⊥

BA C

Fig. 2.13. Lowest-order QCD corrections to the quark distribution function. The virtual
diagrams should be understood as including instantaneous terms.

depends on k⊥. To do so we have to assume that at least part of the distribution function is
perturbative. In terms of diagrams this perturbative dynamics takes place in the part of the
diagram adjacent to the parton that we are describing by the distribution function. This will
be justified later by the large transverse momentum of the parton. We thus need to calculate
the QCD corrections to the parton distribution functions of the naive parton model pictured
in Figs. 2.11 and 2.12.

2.4.2 Evolution for quark distribution

Let us start with the quark distribution function qf (x,Q2) shown in Fig. 2.11. The lowest-
order QCD corrections to |�f

n ({xi, ki⊥}; x, k⊥; σ ) |2 are shown in Fig. 2.13. They consist of
the “real” emission diagram A and the “virtual” diagrams B and C. (The virtual corrections
in LCPT should include graphs with instantaneous terms; these are not shown explicitly.)
Diagrams in which the gluon line attaches to other partons in the wave function denoted by
the oval (i.e., diagrams with the gluon going into the oval) are suppressed. To see why this is
so, one has to identify the resummation parameter of the calculation to be performed shortly.
Indeed each diagram in Fig. 2.13 has an extra factor equal to the coupling αs as compared
with the naive parton model quark distribution in Fig. 2.11. However, we will not calculate
the rest of the diagram exactly: instead we will extract the leading contribution at large Q2.
These leading contributions, after integration over k⊥, will turn out to be proportional to
ln(Q2/�2

QCD). Hence the diagrams in Fig. 2.13 will each give us an expression proportional
to αs ln(Q2/�2

QCD). This will be the resummation parameter of our approximation: for each
power of αs we will pick up one power of ln(Q2/�2

QCD). Owing to asymptotic freedom
at large Q2 we have αs(Q2) � 1 while ln(Q2/�2

QCD) � 1. Our resummation parameter is
thus the product of a small quantity (the coupling) and a large quantity (the logarithm), and
therefore

αs ln
Q2

�2
QCD

∼ 1. (2.67)

The resummation of the parameter in Eq. (2.67) is called the leading logarithmic approxi-
mation (LLA).
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k, σ

k , σ
k − k, λ

a

1 2

Fig. 2.14. Lowest-order correction to the proton light cone wave function contributing to
the quark distribution. The vertical dotted lines denote intermediate states.

As one can show explicitly using the techniques we will develop below, the diagrams
with an extra gluon connecting to the oval are, in fact, outside the leading logarithmic
approximation. That is, they would generate powers of the coupling αs not enhanced
by powers of the logarithm of Q2. This is why such diagrams are neglected in our
analysis.

We will begin by calculating the diagram in Fig. 2.13A. Instead of calculating the
diagram for the wave function squared it is better to start by calculating corrections to
the wave function itself. The correction to the light cone wave function corresponding to
Fig. 2.13A is shown in Fig. 2.14. There the intermediate states are denoted by the dotted
vertical lines and are labeled 1 and 2.

Denoting by �
f
n−1({xi, ki⊥}; x ′, k′

⊥; σ ′) the wave function for a proton with n − 1
spectator partons (i.e., without the gluon emitted in Fig. 2.14), we note that the energy
denominator corresponding to intermediate state 1 (denoted by the left-hand vertical dotted
line) is already included in �n−1. Using the rules of LCPT outlined in Sec. 1.3 and their
modification for the calculation of wave functions in Sec. 1.4, we can write down the
contribution to the proton’s wave function from the diagram in Fig. 2.14 as

�f
n

({k+
i , ki⊥}; x, k⊥; σ

) = gta θ (k+) θ (k′+ − k+)

(k′ − k)− + k− +
n−1∑
j=1

k−
j − P −

× ūσ (k) γ · ε∗
λ(k′ − k) uσ ′(k′)
k′+ �

f
n−1

({k+
i , ki⊥}; x ′, k′

⊥; σ ′) . (2.68)

Here g is the QCD coupling, ta is the color matrix (the gluon carries color a), and x ′ =
k′+/P +. The quark line carrying momentum k′ is internal and therefore contributes a factor
1/k′+ which is not included in the definition of the light cone wave function �

f
n−1 and so

has to be included explicitly in Eq. (2.68). The intermediate state 2 from Fig. 2.14 gives the
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light cone energy denominator in Eq. (2.68):

1

(k′ − k)− + k− +
n−1∑
j=1

k−
j − P −

≡ 1

(�k′
⊥ − �k⊥)2

k′+ − k+ +
�k2
⊥

k+ +
n−1∑
j=1

�k2
j

k+
j

− P −
. (2.69)

Here P − is the light cone energy of the incoming proton state. It is negligibly small, as it is
inversely proportional to the large light cone plus momentum of the proton, P − ∼ 1/P +,
not enhanced by a large transverse momentum. (Indeed, for a “proton” consisting of a
single valence quark of mass mq one has P − = ( �P 2

⊥ + m2
q)/P + with �P⊥ the transverse

momentum of the “proton”.)
We are working in the A+ = 0 light cone gauge. The gluon polarization vector is

ε
μ
λ (k′ − k) =

(
0,

2�ε λ
⊥ · k′+ − k+

�k′
⊥ − �k⊥

, �ε λ
⊥

)

in the (+,−,⊥) notation with �ε λ
⊥ = −(1/

√
2)(λ, i). One can thus write

ūσ (k) γ · ε∗
λ(k′ − k) uσ ′(k′) = ūσ (k) γ + uσ ′(k′)

�ε λ ∗
⊥ · (�k′

⊥ − �k⊥)

k′+ − k+

− ūσ (k) �γ⊥ uσ ′(k′) · �ε λ ∗
⊥ . (2.70)

Using the tables for Dirac matrix elements from appendix section A.1 one obtains after
some algebra

ūσ (k) γ · ε∗
λ(k′ − k) uσ ′(k′) = − δσσ ′√

z (1 − z)
�ε λ ∗
⊥ · (�k⊥ − z �k′

⊥)

× [1 + z + σλ(1 − z)] , (2.71)

where z = k+/k′+ and we have assumed that the quarks are massless for simplicity. In
arriving at Eq. (2.71) we have used �ε λ ∗

⊥ × �k⊥ = iλ �ε λ ∗
⊥ · �k⊥, which is valid in two dimen-

sions.
We will be working in the approximation where all transverse momenta are ordered:

Q2 � k2
⊥ � k

′ 2
⊥ � k2

n−1,⊥ � · · · � k2
1,⊥ ∼ �2

QCD. (2.72)

Such a regime corresponds to the LLA discussed above. One also assumes that all relevant
large transverse momentum scales are much larger than the quark masses, which justifies
the massless quark approximation we have just used. In the regime defined by Eq. (2.72)
the light cone energy denominator becomes (see Eq. (2.69))

1

(k′ − k)− + k− +
n−1∑
j=1

k−
j − P −

≈ k′+z(1 − z)
�k2
⊥

. (2.73)
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Substituting Eqs. (2.71) and (2.73) into Eq. (2.68) and assuming that k2
⊥ � k

′ 2
⊥ yields

�f
n ({xi, ki⊥}; x, k⊥; σ ) = −gta θ (z) θ (1 − z) δσσ ′

√
z

�ε λ ∗
⊥ · �k⊥

k2
⊥

× [1 + z + σλ(1 − z)] �
f
n−1

({xi, ki⊥}; x ′, k′
⊥; σ ′) . (2.74)

Multiplying the wave function (2.74) by its complex conjugate and summing over the quark
and gluon polarizations and colors we get

∑
σ,σ ′,λ,a

|�f
n ({xi, ki⊥}; x, k⊥; σ )|2 = 8παs CF θ (z) θ (1 − z) z(1 + z2)

1

k2
⊥

×
∑

σ ′=±1

|�f
n−1

({xi, ki⊥}; x ′, k′
⊥; σ ′) |2; (2.75)

in arriving at Eq. (2.75) we have used the fact that �ε λ
⊥ = −(1/

√
2)(λ, i) and

∑N2
c −1

a=1 ta ta =
CF , where

CF = N2
c − 1

2Nc

(2.76)

is the Casimir operator in the fundamental representation of SU(Nc).
Substituting Eq. (2.75) into the definition of the quark distribution function (2.65) yields

the contribution of the diagram in Fig. 2.13A:

q
f
A (x,Q2) =

∑
n

1

x

∫ n−1∏
i=1

dxi

xi

d2ki⊥
2(2π )3

d2k⊥
2(2π )3

d(k′+ − k+)

k′+ − k+
d2(�k′

⊥ − �k⊥)

2(2π )3

× 8παsCF θ (z) θ (1 − z)
z(1 + z2)

k2
⊥

∑
σ ′=±1

|�f
n−1

({xi, ki⊥}; x ′, k′
⊥; σ ′) |2

× (2π )3 δ2

(
�k′
⊥ +

n−1∑
j=1

�kj ⊥

)
δ

(
1 − x ′ −

n−1∑
l=1

xl

)
. (2.77)

Note that the symmetry factor Sn from Eq. (2.65) is eliminated by the momentum ordering
(2.72), which makes the particles in the wave function distinct. Since we are keeping k+

fixed, the integral over k′+ − k+ can be rewritten as follows:

P +−k+∫
0

d(k′+ − k+)

k′+ − k+ =
P +∫

k+

dk′+

k′+ − k+ =
1∫

x

dz

z(1 − z)
. (2.78)
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Then we can rewrite Eq. (2.77):

q
f
A (x,Q2) = αs CF

2π

1

x

Q2∫
dk2

⊥
k2
⊥

1∫
x

dz
1 + z2

1 − z

×
∑

n

∫ n−1∏
i=1

dxi

xi

d2ki⊥
2(2π )3

d2k′
⊥

2(2π )3

∑
σ ′=±1

|�f
n−1

({xi, ki⊥}; x ′, k′
⊥; σ ′) |2

× (2π )3 δ2

(
�k′
⊥ +

n−1∑
j=1

�kj ⊥

)
δ

(
1 − x ′ −

n−1∑
l=1

xl

)
, (2.79)

where the integral over k′
⊥ is cut off by k⊥ from above owing to our momentum ordering

Q2 � k2
⊥ � k

′ 2
⊥ � �2

QCD .
Comparing with Eq. (2.65) we recognize the last two lines of Eq. (2.79) as x ′qf (x ′, k2

⊥).
Equation (2.79) thus gives

q
f
A (x,Q2) = αs CF

2π

1

x

Q2∫
dk2

⊥
k2
⊥

1∫
x

dz
1 + z2

1 − z
x ′qf (x ′, k2

⊥). (2.80)

Remembering that z = k+/k′+ = x/x ′, we write

q
f
A (x,Q2) = αs CF

2π

Q2∫
dk2

⊥
k2
⊥

1∫
x

dz

z

1 + z2

1 − z
qf

(
x

z
, k2

⊥

)
. (2.81)

This is the contribution of diagram A in Fig. 2.13 to the quark distribution function. As
promised above, it contains the coupling αs as a factor and a logarithmic integral dk2

⊥/k2
⊥

cut off by Q2 in the UV and by some nonperturbative scale ∼ �2
QCD in the infrared (IR).

We have thus shown that the leading large-Q2 contribution of diagram A in Fig. 2.13 to the
quark distribution function is proportional to αs ln Q2/�2

QCD .
Now imagine that we slowly increase Q2. As Q2 gets larger, the phase space for

the emitted gluons increases, generating larger and larger ln(Q2/�2
QCD) values and thus

increasing the probability of gluon emission. The modification δq
f
A (x,Q2) of the quark

distribution with increasing Q2 due to the gluon emission in Fig. 2.13A can be obtained by
differentiating Eq. (2.81) with respect to Q2:

Q2 ∂q
f
A (x,Q2)

∂Q2
= αs CF

2π

1∫
x

dz

z

1 + z2

1 − z
qf

(
x

z
,Q2

)
. (2.82)

An example of a diagram that does not give a leading logarithmic contribution is shown
in Fig. 2.15, where the oval of Fig. 2.13 is reduced to a gluon line for simplicity. The
dotted vertical lines in Fig. 2.15 represent the intermediate states contributing light cone
energy denominators. The diagram is of order α2

s . Let us show that it does not give an
LLA contribution, by using the results obtained above. We will work in the transverse
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k

1 2 43

k
p

p− k

Fig. 2.15. An example of a diagram outside the leading-logarithmic approximation.

momentum ordering approximation of Eq. (2.72): k2
⊥ � k′2

⊥ in terms of the momentum
labeling in Fig. 2.15. Keeping track of the transverse momenta we see that the energy
denominators of the intermediate states 1 through 4 in Fig. 2.15 each give 1/k2

⊥, since they
are dominated by the large light cone energy of the k-quark line (cf. Eq. (2.73)). In the
same large-k⊥ approximation each quark–gluon splitting gives a factor �k⊥ in the amplitude
(cf. Eq. (2.71)) for the net contribution of k2

⊥. Assuming that gluon–gluon splitting gives
a similar factor k2

⊥ (this will be demonstrated explicitly in Sec. 2.4.4 below), we conclude
that the contribution of the graph in Fig. 2.15 is proportional to (1/k2

⊥)4(k2
⊥)2 = 1/k4

⊥.
Performing the integrals over k2

⊥ and k
′ 2
⊥ with the k2

⊥ � k′2
⊥ � �2

QCD ordering, we find that
the diagram in Fig. 2.15 is proportional to

α2
s

Q2∫
�2

QCD

dk2
⊥

k2
⊥∫

�2
QCD

dk′2
⊥

k4
⊥

≈ α2
s

Q2∫
�2

QCD

dk2
⊥

k2
⊥

= α2
s ln

Q2

�2
QCD

. (2.83)

We observe that this diagram is certainly beyond the LLA, as it brings in two powers of αs

with only one power of ln(Q2/�2
QCD), whereas an LLA diagram at the same order in αs

would bring in two powers of ln(Q2/�2
QCD). Therefore, it (and other graphs not included

in Fig. 2.13) is subleading and can be neglected in the LLA.
The contributions of diagrams B and C in Fig. 2.13 to the change in the quark distribution

can be calculated directly, similarly to that of diagram A. However, instead of embarking
upon another possibly tedious calculation we will derive these contributions using a unitarity
argument.

Unitarity argument Let us start with a proton state |�〉, normalized for simplicity to 1,
〈�|�〉 = 1. Single-gluon corrections of the diagrams in Fig. 2.13 modify the state |�〉 as
follows:

|�〉 → |� ′〉 = |�〉 + R|�〉 + V |�〉. (2.84)

Here the new state |� ′〉 consists of a sum of the following terms: (i) the “old” state |�〉
corresponding to no gluon corrections at all; (ii) the “real” emission shown in Fig. 2.13A,
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k , σ

k, σ

k − k , λ

a

k, σ

Fig. 2.16. Virtual correction to the quark–quark splitting function.

which turns |�〉 into R|�〉 where R denotes the factor relating �n and �n−1 in Eq. (2.74);
(iii) the “virtual” emission shown in Figs. 2.13B, C, where the gluon is reabsorbed back into
the wave function from which it was emitted, thus leaving the number of partons unchanged
and generating a contribution V |�〉.

Requiring unitarity, i.e., probability conservation 〈� ′|� ′〉 = 〈�|�〉 = 1, in Eq. (2.84)
leads to

R†R + V + V ∗ = 0 (2.85)

to order g2. Therefore, the sum of the contributions of diagrams B and C in Fig. 2.13 is

V + V ∗ = −R†R. (2.86)

We see that instead of calculating diagrams B and C in Fig. 2.13 we can simply multiply
the contribution of diagram A by its conjugate, integrate over the phase space, and sum
over the quantum numbers of the produced and measured partons, multiplying the result
by −1.

Using the unitarity prescription of Eq. (2.86) along with Eq. (2.77) for the contribution
of diagram A, we write the contribution of diagrams B and C from Fig. 2.13 (along with
instantaneous terms) as

q
f
B+C(x,Q2) = −

∑
n

∫ n∏
i=1

dxi

xi

d2ki⊥
2(2π )3

1

x ′
d2k′

⊥
2(2π )3

d(k+ − k′+)

k+ − k′+
d2k⊥

2(2π )3

× 8παs CF θ (z) θ (1 − z)
z(1 + z2)

k′2
⊥

∑
σ=±1

|�f
n ({xi, ki⊥}; x, k⊥; σ ) |2

× (2π )3 δ2

(
�k⊥ +

n∑
j=1

�kj ⊥

)
δ

(
1 − x −

n∑
l

xl

)
. (2.87)

Equation (2.87) is illustrated in Fig. 2.16. In arriving at Eq. (2.87) we have swapped k and k′

as compared with the real emission diagram shown in Fig. 2.14. After emitting a gluon, the
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quark now carries momentum k′; the fraction of the light cone momentum of the incoming
quark k+ carried by the quark in the loop is z = k′+/k+. As above,

P +∫
0

d(k+ − k′+)

k+ − k′+
1

x ′ =
k+∫

0

dk′+P +

k′+(k+ − k′+)
= 1

x

1∫
0

dz

z(1 − z)
. (2.88)

Note that the lower limit of the z-integration in Eq. (2.88) is different from that in Eq. (2.78):
this is due to the virtual nature of the diagram in Fig. 2.16. It is also important to remember
that now the large transverse momentum is k′

⊥, so that k′2
⊥ � k2

⊥, which accounts for the
factor k

′ 2
⊥ in the denominator in Eq. (2.87).

With the help of Eq. (2.88) and the quark distribution definition (2.65) we can rewrite
Eq. (2.87) as

q
f
B+C(x,Q2) = −αsCF

2π

Q2∫
dk′2

⊥
k′2
⊥

1∫
0

dz
1 + z2

1 − z
qf (x, k′2

⊥), (2.89)

where, owing to the constraint k′2
⊥ � k2

⊥, we may cut off the k⊥-integral in Eq. (2.87) by
k′2
⊥ in the UV. The result is that k′2

⊥ is the scale of the quark distribution function on the
right-hand side of Eq. (2.89). Note that the k′

⊥-integral is a loop integral and is, in general,
divergent: it has to be regularized, and so a graph with a counterterm should be added to the
diagram in Fig. 2.16. Since Q is the renormalization scale, to leading-logarithmic accuracy
we simply cut off the k′2

⊥-integral in Eq. (2.89) by Q2 in the UV.
Equation (2.89) is the contribution of the virtual diagrams B and C in Fig. 2.13. Just as

for the real diagram A, we now imagine that we slowly increase Q2: the contribution of
graphs B and C to the variation in the quark distribution function is

Q2 ∂q
f
B+C(x,Q2)

∂Q2
= −αs CF

2π

1∫
0

dz
1 + z2

1 − z
qf (x,Q2). (2.90)

The total modification of the quark distribution, δqf (x,Q2) = δq
f
A (x,Q2) +

δq
f
B+C(x,Q2), is obtained by summing Eqs. (2.82) and (2.90). This yields

Q2 ∂qf (x,Q2)

∂Q2
= αs CF

2π

⎡
⎣ 1∫

x

dz

z

1 + z2

1 − z
qf

(
x

z
,Q2

)

−
1∫

0

dz
1 + z2

1 − z
qf (x,Q2)

⎤
⎦ . (2.91)

To write Eq. (2.91) in the standard notation, we define the quark–quark splitting function
Pqq (z) by

Pqq (z) ≡ CF

[
1 + z2

(1 − z)+
+ 3

2
δ(1 − z)

]
(2.92)
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with the “plus” notation defined in Sterman (1993),

1∫
x

dz
1

(1 − z)+
f (z) =

1∫
x

dz
1

1 − z
[f (z) − f (1)] + f (1) ln(1 − x), (2.93)

for an arbitrary function f (z) defined for 0 ≤ x ≤ 1. With the help of Pqq (z) we rewrite
Eq. (2.91) in the more compact form

Q2 ∂qf (x,Q2)

∂Q2
= αs

2π

1∫
x

dz

z
Pqq (z) qf

(
x

z
,Q2

)
. (2.94)

We have thus obtained a differential equation for the quark distribution function. The
initial condition for this equation is usually given by the quark distribution qf (x,Q2

0) at
some initial virtuality Q2

0. At low Q2
0 such an initial condition is likely to be due to some

nonperturbative (large-αs) physics: it cannot be calculated using perturbative techniques
and is usually inferred from the data. Given the initial condition qf (x,Q2

0), Eq. (2.94)
allows one to uniquely construct the quark distribution function at all Q2 > Q2

0 (with
leading-logarithmic accuracy). Therefore Eq. (2.94) evolves the quark distribution function
in Q2 from some initial value at Q2

0 to its value at another scale Q2: equations like (2.94)
are usually referred to as evolution equations. The variation of a distribution function with
Q2 is known as the Q2-evolution of the distribution function.

The physical meaning of the splitting function Pqq (z) is clear from our derivation of
Eq. (2.94): Pqq (z) is proportional to the probability of finding one quark in another quark’s
wave function, with the “measured” quark carrying a fraction z of the original quark’s light
cone momentum.

Another important question concerns the scale of the coupling constant αs in Eq. (2.94).
Without going into details of the calculation of the running coupling corrections, we simply
note that, up to a z-dependent factor, the scale is simply Q2, so that αs = αs(Q2). Thus
the coupling runs with the perturbative (hard) scale of the problem, justifying the use of
perturbation theory.

2.4.3 The DGLAP evolution equations

Equation (2.94) is not complete yet: so far we have ignored gluons. Indeed, a quark in the
proton’s wave function may also result from the splitting of a gluon into a qq̄ pair! Thus the
gluon distribution G(x,Q2) also contributes to the modification of the quark distribution.
Conversely, the gluon distribution also gets modified owing to the splitting of gluons into
gluon pairs, or the emission of gluons from quarks as in Fig. 2.13A.

Including the gluon contribution requires additional calculations, similar to those carried
out above. Before outlining these calculations let us first present the result.

We define the flavor nonsinglet distribution function by

�f f̄ (x,Q2) = qf (x,Q2) − qf̄ (x,Q2), (2.95)
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where f̄ denotes the antiquark of flavor f . Since the splitting of a gluon into qq̄ pairs
contributes equally to the creation of quarks and anti-quarks in the proton’s wave func-
tion, it should not contribute to the nonsinglet distribution �f f̄ (x,Q2). Hence the evo-
lution of �f f̄ (x,Q2) is driven only by the quark evolution from Eq. (2.94). We thus
write

Q2 ∂�f f̄ (x,Q2)

∂Q2
= αs(Q2)

2π

1∫
x

dz

z
Pqq (z) �f f̄

(
x

z
,Q2

)
. (2.96)

To take the gluon contribution into account we define the flavor singlet distribution
function

�(x,Q2) =
∑
f

[
qf (x,Q2) + qf̄ (x,Q2)

]
. (2.97)

The evolution equations for �(x,Q2) and G(x,Q2) read

Q2 ∂

∂Q2

(
�(x,Q2)
G(x,Q2)

)
= αs(Q2)

2π

1∫
x

dz

z

(
Pqq (z) PqG(z)
PGq(z) PGG(z)

)

×
(

�
(
x/z,Q2

)
G
(
x/z,Q2

)) . (2.98)

Equations (2.96) and (2.98) are known as the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
(DGLAP) evolution equations. The QED version of these equations (involving electrons and
photons) in (x,Q2)-space was originally derived by Gribov and Lipatov (1972), while the
QCD version was obtained independently by Altarelli and Parisi (1977) and by Dokshitzer
(1977). In the Mellin moment space (to be defined shortly) the QED equations were derived
by Christ, Hasslacher, and Mueller (1972) and the QCD equations were derived by Georgi
and Politzer (1974) and by Gross and Wilczek (1974).

Equations (2.96) and (2.98) contain the splitting function, Pqq (z) from Eq. (2.92), along
with three other splitting functions, PqG(z), PGq(z), and PGG(z). For reference purposes,
let us first list all the splitting functions, even though we have already found Pqq (z) above.
They are

Pqq (z) = CF

[
1 + z2

(1 − z)+
+ 3

2
δ(1 − z)

]
, (2.99a)

PGq(z) = CF

1 + (1 − z)2

z
, (2.99b)

PqG(z) = Nf

[
z2 + (1 − z)2

]
, (2.99c)

PGG(z) = 2Nc

[
z

(1 − z)+
+ 1 − z

z
+ z (1 − z)

]
+ 11Nc − 2Nf

6
δ(1 − z).

(2.99d)
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Fig. 2.17. The diagram contributing to the splitting function PGq (z).

z

1 − z

Fig. 2.18. The diagram contributing to the splitting function PqG(z).

The “plus” notation is defined above in Eq. (2.93).
The splitting function PGq(z) is easy to find knowing Pqq (z): PGq(z) represents the

probability of finding a gluon in a quark’s light cone wave function. Its contribution consists
of one diagram, pictured in Fig. 2.17. One can see that the calculation of PGq(z) would be
similar to that of diagram A in Fig. 2.13. The main difference would be in the fact that now
it is the gluon that one wants to “measure”, and therefore it is the gluon line that carries
the longitudinal momentum fraction z of the quark. Since in the calculation of Fig. 2.13A
the gluon line carried the momentum fraction 1 − z, all we have to do to find PGq(z) is to
replace z by 1 − z in the contribution of graph A. To single out the contribution of diagram
A we need to remove the contributions of the virtual diagrams B and C in Fig. 2.13 from
Eq. (2.99a), which is easily accomplished by removing the plus sign in the subscript on the
right-hand side and dropping the delta function term, yielding

P real
qq (z) = CF

1 + z2

1 − z
. (2.100)

Replacing z by 1 − z in P real
qq (z) yields PGq(z), Eq. (2.99b), which is the correct result for

the gluon–quark splitting function.
Finding the quark–gluon splitting function PqG(z) is a little more subtle. The only

diagram contributing to the splitting function PqG(z) is shown in Fig. 2.18. (One also
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D E F

Fig. 2.19. The diagrams contributing to the splitting function PGG(z). The complex conju-
gates of the last two diagrams (E and F) have to be included in the calculation, along with
the instantaneous terms in the quark and gluon propagators in the loops.

has to add in a diagram where we “measure” the antiquark instead of the quark, but the
contribution of this diagram is equal to that of the graph in Fig. 2.18.) Comparing this with
Fig. 2.14 we see that there are three differences between PqG(z) and the real part of Pqq (z):
(i) the incoming quark line in Fig. 2.14 becomes an outgoing antiquark line in Fig. 2.18 and
the outgoing gluon line in Fig. 2.14 becomes an incoming gluon line in Fig. 2.18; (ii) the
color factors are different in the two diagrams; (iii) one has to sum over all quark flavors
f and over both quarks and anti-quarks to obtain PqG(z) from Fig. 2.18. Differences (ii)
and (iii) are easily addressed. The color factor in Fig. 2.18 is 1/2, which replaces CF in
Eq. (2.99a). The sum over quarks and anti-quarks and over their flavors trivially gives 2Nf .
Hence in the end one has to replace CF in Eq. (2.99a) by (1/2) × 2Nf = Nf . Difference
(i) can be taken into account by applying the crossing symmetry. In the end the prescription
is

PqG(z) = Nf

CF

z P real
qq

(
1 − 1

z

)
, (2.101)

which, with the help of P real
qq (z) = CF (1 + z2)/(1 − z), gives Eq. (2.99c). Indeed, the

heuristic derivation of PqG(z) given here needs to be verified by explicit diagrammatic
calculations. We leave the explicit calculation of PqG(z) using the diagram in Fig. 2.18 as
an exercise for the reader; see Exercise 2.2 at the end of the chapter.

Finding the remaining splitting function PGG(z) requires some explicit diagrammatic
calculations as well. We will present them in the next (special-topic) chapter.

2.4.4 Gluon–gluon splitting function∗

Our goal here is to derive the gluon–gluon splitting function PGG(z). To calculate PGG(z)
one has to sum the graphs shown in Fig. 2.19. There we show only half the diagrams with
virtual corrections; the complex conjugates of graphs E and F need to be calculated too.
As in the case of the quark–quark splitting function Pqq (z), we will calculate only the
real emission diagram D in Fig. 2.19 and derive the contributions of the remaining virtual
diagrams E and F (and their conjugates) by using unitarity.
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k, λ

k , λ
k − k, λ

c

1 2

a

b

Fig. 2.20. A gluon splitting into two gluons in the proton light cone wave function. As
usual, the vertical dotted lines denote intermediate states.

Just as in Sec. 2.4.2, to calculate the graph in Fig. 2.19D for the light cone wave function
squared we first need to find the wave function itself. To that end we start with the diagram
pictured in Fig. 2.20. Again, the intermediate state 1 is included in the wave function �n−1

at the previous step of the evolution. Using the rules of LCPT outlined in Secs. 1.3 and 1.4,
we can write the contribution of the graph in Fig. 2.20 as follows:

�n ({xi, ki⊥}; x, k⊥; λ) = igf abcθ (k+)θ (k′+ − k+)

(k′ − k)− + k− +∑n−1
j=1 k−

j − P −
1

k′+

× [(k′ + k) · ε∗
λ′′(k′ − k) ε∗

λ(k) · ελ′(k′) + (k − 2k′) · ε∗
λ(k)

× ελ′(k′) · ε∗
λ′′(k′ − k) + (k′ − 2k) · ελ′(k′) ε∗

λ′′(k′ − k) · ε∗
λ(k)
]

×�n−1
({xi, ki⊥}; x ′, k′

⊥; λ′) , (2.102)

where now �n ({xi, ki⊥}; x, k⊥; λ) is the light cone wave function of the proton containing
n “spectator” partons and the gluon being tagged. As usual x = k+/P + and x ′ = k′+/P +

are the fractions of the proton’s light cone momentum P + carried by the gluons.
Using the gluon polarizations in the A+ = 0 light cone gauge,

ελ
μ(k) =

(
0,

2�ελ
⊥ · �k⊥
k+ , �ελ

⊥

)
, (2.103a)

ελ′
μ (k′) =

(
0,

2�ελ′
⊥ · �k′

⊥
k′+ , �ελ′

⊥

)
, (2.103b)

ελ′′
μ (k′ − k) =

(
0,

2�ελ′′
⊥ · (�k′

⊥ − �k⊥)

k′+ − k+ , �ελ′′
⊥

)
(2.103c)

with �ελ
⊥ = −(1/

√
2)(λ, i) (and similar expressions involving λ′ and λ′′), and imposing the

transverse momentum ordering |�k⊥| � |�k′
⊥| (and, therefore, simply neglecting all terms
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containing �k′
⊥), after some straightforward algebra we get

(k′ + k) · ε∗
λ′′(k′ − k) ε∗

λ(k) · ελ′(k′) + (k − 2k′) · ε∗
λ(k) ελ′(k′) · ε∗

λ′′(k′ − k)

+ (k′ − 2k) · ελ′(k′) ε∗
λ′′(k′ − k) · ε∗

λ(k)

≈ 2

1 − z
�k⊥ · �ελ′′∗

⊥ �ελ∗
⊥ · �ελ′

⊥ + 2

z
�k⊥ · �ελ∗

⊥ �ελ′
⊥ · �ελ′′∗

⊥ − 2�k⊥ · �ελ′
⊥ �ελ∗

⊥ · �ελ′′∗
⊥ . (2.104)

Here, as usual, z = k+/k′+. Using Eqs. (2.104) and (2.73) we can write Eq. (2.102) as

�n ({xi, ki⊥}; x, k⊥; λ)

= igf abcθ (z)θ (1 − z)
z(1 − z)

�k2
⊥

×
(

2

1 − z
�k⊥ · �ελ′′∗

⊥ �ελ∗
⊥ · �ελ′

⊥ + 2

z
�k⊥ · �ελ∗

⊥ �ελ′
⊥ · �ελ′′∗

⊥ − 2�k⊥ · �ελ′
⊥ �ελ∗

⊥ · �ελ′′∗
⊥

)
×�n−1

({xi, ki⊥}; x ′, k′
⊥; λ′) . (2.105)

(We can use Eq. (2.73) since the approximations used in calculating the splitting func-
tion Pqq (z) are the same as those that we are assuming here for the splitting function
PGG(z).)

Multiplying the wave function in Eq. (2.105) by its complex conjugate and summing
over polarizations and colors yields

∑
λ,λ′,λ′′,a,b,b′,c

|�n ({xi, ki⊥}; x, k⊥; λ) |2

= 16παsNcθ (z)θ (1 − z)
1
�k2
⊥

× [z2 + (1 − z)2 + z2(1 − z)2
]∑

λ′,b

|�n−1
({xi, ki⊥}; x ′, k′

⊥; λ′) |2.
(2.106)

Note that the definition of the gluon distribution corresponding to Fig. 2.12 implies a
summation over the colors of the two gluon lines. The color of the gluon line to the left
of the cut is equal to the color of the gluon line to the right of the cut. We have made this
color summation explicit in Eq. (2.106) to facilitate the calculation of the color factor: the
color of the internal gluon line, which is labeled b in Fig. 2.20, is denoted b′ in the complex
conjugate wave function. In arriving at Eq. (2.106) we have used f abcf ab′c = Ncδ

bb′
and

|�k⊥ · �ελ′
⊥ |2 = �k2

⊥/2.
Following the steps outlined in Sec. 2.4.2 for the quark distribution function, which led

to Eq. (2.80), we infer from Eq. (2.106) that the contribution of diagram D in Fig. 2.19 to
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the gluon distribution function is

GD(x,Q2) = αsNc

π

1

x

Q2∫
dk2

⊥
k2
⊥

1∫
x

dz

z(1 − z)

[
z2 + (1 − z)2 + z2(1 − z)2]

× x ′G(x ′, k2
⊥), (2.107)

with z = x/x ′. Again assuming that we are varying Q2, Eq. (2.107) can be trivially rewritten
as

Q2 ∂GD(x,Q2)

∂Q2
= αsNc

π

1∫
x

dz

z

[
z

1 − z
+ 1 − z

z
+ z(1 − z)

]
G

(
x

z
,Q2

)
. (2.108)

Using the unitarity argument of Sec. 2.4.2 we can calculate the contribution of diagram
E in Fig. 2.19 along with its complex conjugate and all the virtual gluon graphs with
instantaneous terms (cf. Eq. (2.90)), obtaining

Q2 ∂GE(x,Q2)

∂Q2
= −αsNc

π

1

2

1∫
0

dz

[
z

1 − z
+ 1 − z

z
+ z(1 − z)

]
G(x,Q2). (2.109)

The factor 1/2 in Eq. (2.109) is simply a symmetry factor, as the two propagators in the loop
of graph E are identical gluons. The z-integration in Eq. (2.109) has two singularities: one
at z = 1 and the other at z = 0. The singularities correspond to either one or the other gluon
in the loop of diagram E having a small longitudinal momentum. The two singularities have
therefore identical physical origins. We rewrite them as one singularity at z = 1:

1∫
0

dz

[
z

1 − z
+ 1 − z

z
+ z(1 − z)

]
=

1∫
0

dz

[
−1 + 1

1 − z
+ 1

z
− 1 + z(1 − z)

]

=
1∫

0

dz

[
2

1 − z
− 2 + z(1 − z)

]
=

1∫
0

dz
2

1 − z
− 11

6
. (2.110)

With the help of this rearrangement the sum of diagrams D and E is (cf. Eq. (2.91))

Q2 ∂GD+E(x,Q2)

∂Q2
= αsNc

π

{ 1∫
x

dz

z

[
z

1 − z
+ 1 − z

z
+ z(1 − z)

]
G

(
x

z
,Q2

)

−
1∫

0

dz
1

1 − z
G(x,Q2) + 11

12
G(x,Q2)

}
. (2.111)

Here we are not going to calculate the contribution of diagram F in Fig. 2.19 explicitly.
Instead we will use the splitting function PqG(z) illustrated in Fig. 2.18 and given in

https://doi.org/10.1017/9781009291446.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291446.003


60 Deep inelastic scattering

Eq. (2.99c). As one can see from Figs. 2.18 and 2.19, the contribution of graph F in the
latter is simply a virtual correction to the diagram in Fig. 2.18. With the help of PqG(z) from
Eq. (2.99c) and the unitarity argument of Sec. 2.4.2 we obtain the contribution of diagram
F:

Q2 ∂GF(x,Q2)

∂Q2
= −αsNf

2π

1

2

1∫
0

dz
[
z2 + (1 − z)2]G(x,Q2). (2.112)

The factor 1/2 is inserted to remove the double-counting associated with tagging on both
the quark and the antiquark in the calculation of PqG(z). Equation (2.112) trivially gives

Q2 ∂GF(x,Q2)

∂Q2
= − αs

2π

Nf

3
G(x,Q2). (2.113)

Combining Eqs. (2.111) and (2.113) we arrive at the contribution of all three diagrams
in Fig. 2.19:

Q2 ∂G(x,Q2)

∂Q2
= αs

2π

{
2Nc

1∫
x

dz

z

[
z

1 − z
+ 1 − z

z
+ z(1 − z)

]
G

(
x

z
,Q2

)

− 2Nc

1∫
0

dz
1

1 − z
G(x,Q2) + 11Nc − 2Nf

6
G(x,Q2)

}
.

(2.114)

(Even though Eq. (2.114) looks like a closed integro-differential equation, one has to
remember that the quark distribution’s contribution is not included in its right-hand side
and that the full DGLAP evolution for the gluon distribution is given in Eq. (2.98).)
Rewriting Eq. (2.114) in the compact form

Q2 ∂G(x,Q2)

∂Q2
= αs

2π

1∫
x

dz

z
PGG(z) G

(
x

z
,Q2

)
, (2.115)

we immediately see that

PGG(z) = 2Nc

[
z

(1 − z)+
+ 1 − z

z
+ z(1 − z)

]
+ 11Nc − 2Nf

6
δ(1 − z),

which is exactly Eq. (2.99d)! We have thus derived the gluon–gluon splitting function.

2.4.5 General solution of the DGLAP equations

To solve the DGLAP equations (2.96) and (2.98), one usually writes them first in moment
space. The moment fω(Q2) of a distribution function f (x,Q2) is defined by the Mellin
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transform

fω(Q2) ≡
1∫

0

dx xωf (x,Q2), (2.116)

where f = �f f̄ or � for the nonsinglet or singlet quark distribution functions respectively
and f = G for the gluon distribution. Inverting Eq. (2.116), we write the distribution
function as

f (x,Q2) =
a+i∞∫

a−i∞

dω

2πi
x−ω−1fω(Q2), (2.117)

where the integral in ω-space runs along a contour parallel to the imaginary axis and to the
right of all the singularities of the moment fω(Q2) (which can be chosen by adjusting the
arbitrary real number a).

As one can show (see Exercise 2.5), in the moment space the DGLAP equations (2.96)
and (2.98) become

Q2 ∂�
f f̄
ω (Q2)

∂Q2
= αs(Q2)

2π
γqq (ω)�f f̄

ω (Q2) (2.118)

and

Q2 ∂

∂Q2

(
�ω(Q2)
Gω(Q2)

)
= αs(Q2)

2π

(
γqq (ω) γqG(ω)
γGq(ω) γGG(ω)

)(
�ω(Q2)
Gω(Q2)

)
. (2.119)

In arriving at Eqs. (2.118) and (2.119) we have defined anomalous dimensions γij (ω) by

γij (ω) =
1∫

0

dz zωPij (z), (2.120)

where i, j can each be equal to either q or G. With the help of Eqs. (2.99) and (2.120) one
can show that the DGLAP anomalous dimensions are (Georgi and Politzer 1974, Gross and
Wilczek 1974)

γqq (ω) = CF

[
3

2
+ 1

(1 + ω)(2 + ω)
− 2ψ(ω + 2) + 2ψ(1)

]
, (2.121a)

γGq(ω) = CF

[
1

2 + ω
+ 2

ω(1 + ω)

]
, (2.121b)

γqG(ω) = Nf

[
1

1 + ω
− 2

(2 + ω)(3 + ω)

]
, (2.121c)

γGG(ω) = 11Nc − 2Nf

6

+ 2Nc

[
1

ω(1 + ω)
+ 1

(2 + ω)(3 + ω)
− ψ(ω + 2) + ψ(1)

]
, (2.121d)
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Q Q
Q
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distribution function

here

DGLAP will give

its value here

Fig. 2.21. The DGLAP equations in the (ln 1/x, Q2)-plane.

where ψ(w) = �′(w)/�(w) is the digamma function. Note that ψ(1) = −γE , with γE

Euler’s constant. We leave the derivation of the anomalous dimensions (2.121) as an
exercise; see Exercise 2.5.

Equations (2.118) and (2.119) are easy to solve. Suppose that the (usually nonperturba-
tive) initial conditions for the equations are given at some initial scale Q2

0. That is, we know
�f f̄ (x,Q2

0), �(x,Q2
0), and G(x,Q2

0). Using Eq. (2.116) we can find the initial conditions

for the moments, obtaining �
f f̄
ω (Q2

0), �ω(Q2
0), and Gω(Q2

0). Solving Eqs. (2.118) and
(2.119) we can now find the moments of the distribution functions at all Q2:

�f f̄
ω (Q2) = exp

⎧⎪⎨
⎪⎩

Q2∫
Q2

0

dQ′2

Q′2
αs(Q′2)

2π
γqq (ω)

⎫⎪⎬
⎪⎭�f f̄

ω (Q2
0), (2.122)

(
�ω(Q2)
Gω(Q2)

)
= exp

⎧⎪⎨
⎪⎩

Q2∫
Q2

0

dQ′2

Q′2
αs(Q′2)

2π

(
γqq (ω) γqG(ω)
γGq(ω) γGG(ω)

)⎫⎪⎬
⎪⎭
(

�ω(Q2
0)

Gω(Q2
0)

)
.

(2.123)

Equations (2.122) and (2.123) allow one to find the distribution functions in moment
space. With the help of Eq. (2.117) one then can transform the moments of the distribution
functions back into x-space, thus obtaining the distribution functions solving the DGLAP
equations at all Q2.

The way in which the DGLAP equations work is depicted in Fig. 2.21 in the (ln 1/x,
Q2)-plane, which we will often use to demonstrate our results. The initial values of the
distribution functions for DGLAP evolution are set at some initial scale Q2

0 for all the
relevant values of x: thus the initial conditions are given along the vertical line on the left
in Fig. 2.21. Given the initial conditions, the DGLAP equations then give the distribution
functions at other values of Q2. For instance, using the DGLAP equations one may obtain
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distribution functions along the vertical line on the right in Fig. 2.21. Thus the DGLAP
equations evolve the distribution functions in Q2 from some initial conditions at Q2

0 to their
values at some other Q2, as indicated by the arrows in Fig. 2.21. Note that the curves shown
in Fig. 2.7 resulted from using the DGLAP equations, having adjusted the initial conditions
to fit the DIS data.

Indeed the DGLAP equations (2.98) and (2.96) presented above are valid only at the
leading-logarithmic level. They are often referred to as the leading-order (LO) DGLAP
equations, since the integral kernel on the right-hand side is given at the lowest order in
αs (i.e., at order αs). Higher-order corrections to the splitting functions would generate
terms with higher powers of αs on the right-hand sides of Eqs. (2.98) and (2.96). For
instance Eqs. (2.98) and (2.96), with right-hand sides calculated up to O(α2

s ), are referred
to as next-to-leading-order DGLAP or simply NLO DGLAP. The next order after that
is called next-to-next-to-leading-order DGLAP (NNLO DGLAP), etc. Note that at such
higher orders the naive factorization relations (2.45) and (2.46) (see also Eq. (2.48)) between
the structure functions and the quark distribution function would be modified. Even the
LO DGLAP evolution of Eqs. (2.98) and (2.96) obviously violates Bjorken scaling. It also
generates corrections to the Callan–Gross relation (2.44).

2.4.6 Double logarithmic approximation

Let us now study structure functions and parton distributions at small Bjorken x using the
DGLAP equations. This limit is interesting and important for our discussion, since small
x corresponds to high energy ŝ of virtual photon–proton scattering, as one can see from
Eqs. (2.6). A brief inspection of Fig. 2.7 shows that the structure function F2 clearly rises
at small x. The question that we would like to address is whether DGLAP evolution can
provide a theoretical explanation for such a rise.

To answer this question we need to analyze Eqs. (2.96) and (2.98) at small x. At small x

the z-integral in Eqs. (2.96) and (2.98) may get extra enhancement from the small-z region.
To see this let us study the small-z asymptotics of the splitting functions. Using Eqs. (2.99)
one can show that only two of the splitting functions are singular at small z:

PGq(z)

∣∣∣∣
z�1

≈ 2CF

z
, PGG(z)

∣∣∣∣
z�1

≈ 2Nc

z
. (2.124)

Thus, in Eqs. (2.96) and (2.98) only the second line of Eq. (2.98) is enhanced at small x.
We conclude that the evolution of the gluon distribution G(x,Q2) runs much faster than
that of the quark distributions (both singlet and nonsinglet), at small x. Therefore we can
neglect the evolution of the quark distribution functions compared with that of the gluon.
Also, the quark contribution to the gluon evolution, which enters via PGq(z) into Eq. (2.98),
is negligible as well: as �(x,Q2) is small owing to the lack of small-x enhancement to its
own evolution, it would not contribute much to the gluon evolution.

Neglecting the quark distribution in the DGLAP equation (2.98) and using the approx-
imation for the gluon–gluon splitting function from Eq. (2.124), we can write down an
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evolution equation for the gluon distribution only,

Q2 ∂G(x,Q2)

∂Q2
= αs(Q2)

2π

1∫
x

dz

z

2Nc

z
G

(
x

z
,Q2

)
, (2.125)

which of course is valid only at small x.
Before we solve Eq. (2.125), let us clarify the approximation that we have made in

arriving at this equation. To see this more clearly, let us redefine z as x/x ′ and write
Eq. (2.125) as

Q2 ∂xG(x,Q2)

∂Q2
= αs(Q2)Nc

π

1∫
x

dx ′

x ′ x ′G(x ′,Q2). (2.126)

Differentiating Eq. (2.126) with respect to ln(1/x), we can write it as

∂2xG(x,Q2)

∂ ln(1/x)∂ ln(Q2/Q2
0)

= αs(Q2)Nc

π
xG(x,Q2) (2.127)

with Q0 a constant initial-virtuality scale.
For simplicity let us imagine that the coupling constant is fixed, αs(Q2) = αs . We can

then see clearly from Eq. (2.127) that its solution iterates powers of αs multiplied not
just by one logarithm, ln(Q2/Q2

0), as in the DGLAP equations, but by two logarithms,
ln(1/x) ln(Q2/Q2

0). Thus the resummation parameter of Eq. (2.127) is

αs ln
1

x
ln

Q2

Q2
0

. (2.128)

Thus at small coupling αs � 1, large Q2 � Q2
0, and small x such that ln(1/x) � 1, we

see that the small coupling αs is multiplied by two large logarithms, which makes the
resummation parameter (2.128) large and important to resum. Resummation of a series in
powers of the parameter (2.128) is called the double logarithmic approximation (DLA).

With the DLA parameter (2.128) the approximations we made in obtaining Eq. (2.125)
become clear. The absence of 1/z singularities in Pqq (z) and PqG(z) insures that no ln(1/x)
factor is generated in each step of the DGLAP evolution for the singlet and nonsinglet quark
structure functions. Hence the evolution of �(x,Q2

0) and of �f f̄ (x,Q2
0) is subleading in

the DLA parameter (2.128) and can be neglected in the approximation that resums only
powers of the logarithms of both Q2 and 1/x in Eq. (2.128).

Now let us solve Eq. (2.125). Substituting the approximate gluon–gluon splitting func-
tion from Eq. (2.124) into Eq. (2.120) we obtain

γGG(ω) ≈ 2Nc

ω
. (2.129)

One can see that the small-z singularity in PGG(z) translates into a singularity at ω = 0 in
γGG(ω). This is an important result, which we will use below.

With the help of Eq. (2.129) we can write Eq. (2.125) in moment space:

Q2 ∂Gω(Q2)

∂Q2
= αs(Q2)Nc

π

1

ω
Gω(Q2). (2.130)
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From Eqs. (2.121) one can see that only γGG(ω) and γGq(ω) have singularities at ω = 0:
using this observation we could have derived the DLA DGLAP evolution equation in
moment space (2.130) directly from Eq. (2.119).

The solution of Eq. (2.130) is easily found and reads

Gω(Q2) = exp

⎧⎪⎨
⎪⎩

Q2∫
Q2

0

dQ′2

Q′2
αs(Q′2)Nc

πω

⎫⎪⎬
⎪⎭Gω(Q2

0). (2.131)

Inverting the Mellin transform (2.116) with the help of Eq. (2.117), we obtain the gluon
distribution function in the DLA:

xG(x,Q2) =
a+i∞∫

a−i∞

dω

2πi
exp

⎧⎪⎨
⎪⎩ω ln

1

x
+

Q2∫
Q2

0

dQ′2

Q′2
αs(Q′2)Nc

πω

⎫⎪⎬
⎪⎭Gω(Q2

0). (2.132)

The Q′2-integral is easy to carry out. Taking the one-loop running coupling constant

αs(Q
2) = 1

β2 ln(Q2/�2
QCD)

and assuming that Q2
0 > �2

QCD , we can write Eq. (2.132) as

xG(x,Q2) =
a+i∞∫

a−i∞

dω

2πi
exp

{
ω ln

1

x
+ Nc

πβ2ω
ln

ln(Q2/�2
QCD)

ln(Q2
0/�

2
QCD)

}
Gω(Q2

0). (2.133)

Note that, with the inclusion of the running coupling corrections, the transverse logarithm
ln(Q2/Q2

0) in Eq. (2.128) turns into the logarithm of the ratio of logarithms seen in the
exponent of Eq. (2.133).

The integral in Eq. (2.133) cannot be calculated exactly without explicit knowledge of
the initial conditions, which give Gω(Q2

0). However, it can be evaluated approximately for
very small x and very large Q2 using the saddle point (steepest descent) approximation. To
do so we rewrite Eq. (2.133) as

xG(x,Q2) =
a+i∞∫

a−i∞

dω

2πi
eP (ω)Gω(Q2

0) (2.134)

with all the x- and Q2-dependent terms assembled in the exponent:

P (ω) = ω ln
1

x
+ Nc

πβ2ω
ρ(Q2), (2.135)

where we have defined an abbreviated notation

ρ(Q2) ≡ ln
ln(Q2/�2

QCD)

ln(Q2
0/�

2
QCD)

= ln
αs(Q2

0)

αs(Q2)
. (2.136)

Indeed, P (ω) is also a function of x and Q2: we have suppressed these arguments for
brevity.

https://doi.org/10.1017/9781009291446.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291446.003


66 Deep inelastic scattering

First we need to find the saddle points of the exponent P (ω), which are defined by the
condition

P ′(ω = ωsp) = 0, (2.137)

where the prime denotes a (partial) derivative with respect to ω. For P (ω) from Eq. (2.135)
we get the saddle points

ωsp = ±
√

Nc

πβ2

ρ(Q2)

ln(1/x)
. (2.138)

One can easily argue that at small x the saddle point with the plus sign in Eq. (2.138)
dominates. From here on we will label by ωsp the expression in Eq. (2.138) with the plus
sign.

Our next step is to approximate the exponent P (ω) by its Taylor expansion around the
saddle point up to the quadratic term:

P (ω) ≈ P (ωsp) + 1
2P ′′(ωsp)(ω − ωsp)2, (2.139)

where the term linear in ω − ωsp is zero owing to the condition (2.137). Since P ′′(ωsp) is
real and positive, distorting the integration contour in Eq. (2.134) so that it goes through ωsp

when crossing the real axis in the complex ω-plane (i.e., setting a = ωsp), we can define a
new integration variable w by

ω − ωsp ≡ iw. (2.140)

Note that w is real along the new integration contour.
With this contour distortion and variable redefinition, Eq. (2.134) becomes

xG(x,Q2) ≈ eP (ωsp)Gωsp
(Q2

0)

∞∫
−∞

dw

2π
e−P ′′(ωsp)w2/2, (2.141)

where we also assume that Gω is a slowly varying function of ω such that, owing to saddle
point dominance, Gω(Q2

0) ≈ Gωsp
(Q2

0). Performing w-integration yields

xG(x,Q2) ≈ Gωsp
(Q2

0)√
2πP ′′(ωsp)

eP (ωsp). (2.142)

With the help of Eqs. (2.138) (with the plus sign), (2.135), and (4.176) we obtain the DLA
gluon distribution function in the saddle point approximation,

xG(x,Q2) ≈ Gωsp
(Q2

0)√
4π

{
Nc

πβ2
ln

ln(Q2/�2
QCD)

ln(Q2
0/�

2
QCD)

}1/4 (
ln

1

x

)−3/4

× exp

⎧⎨
⎩2

√√√√ Nc

πβ2
ln

ln(Q2/�2
QCD)

ln(Q2
0/�

2
QCD)

ln
1

x

⎫⎬
⎭ . (2.143)
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To justify the expansion (2.139) that led ultimately to Eq. (2.143) we need to estimate
the next (cubic) term in the expansion, which previously we neglected:

P ′′′(ωsp)(ω − ωsp)3. (2.144)

Since in the integral in Eq. (2.141) the typical width is

ω − ωsp ∼ 1√
P ′′(ωsp)

, (2.145)

we see that

P ′′′(ωsp)(ω − ωsp)3 ∼ P ′′′(ωsp)[P ′′(ωsp)]−3/2. (2.146)

Using Eqs. (2.138) and (2.135) one can readily show that

P ′′′(ωsp)(ω − ωsp)3 ∼ [ρ(Q2)
]−1/4

(
ln

1

x

)−1/4

, (2.147)

which is negligibly small at small x and large Q2, justifying our approximation.
Our main result from Eq. (2.143) is that

xG(x,Q2) ∼ exp

⎧⎨
⎩2

√√√√ Nc

πβ2
ln

ln(Q2/�2
QCD)

ln(Q2
0/�

2
QCD)

ln
1

x

⎫⎬
⎭ . (2.148)

That is, xG(x,Q2) increases as x decreases and/or Q2 increases. The rise in xG(x,Q2)
with decreasing x is therefore a prediction of the DGLAP evolution. As we can see from
Eq. (2.148), the DGLAP equation predicts a rise in xG(x,Q2) with decreasing x that
is faster than any power of ln(1/x) but is slower than a power of 1/x. A rising gluon
distribution would translate into a rising (but smaller) quark distribution; both would lead
to an increase in the structure function F2(x,Q2) at small x, which is in (at least) qualitative
agreement with the data in Fig. 2.7. A detailed analysis of the DIS data shows that DGLAP-
based fits are able to describe most data (after a suitable choice of initial conditions is
made), as demonstrated by the curves in Fig. 2.7.

A physical picture of DGLAP evolution is shown in Fig. 2.22 using the transverse plane
representation of the proton from Fig. 2.8. On the left of Fig. 2.22 we show a proton
with partons in it, as seen by a virtual photon with virtuality Q0 corresponding to the
resolution scale 1/Q0 in the transverse plane. On the right we show what happens when
the same proton is probed by a virtual photon with higher virtuality, Q > Q0, which is able
to resolve shorter transverse distances 1/Q. When probing the partons (quarks) at shorter
distances the photon is able to distinguish that each quark may fluctuate into itself along
with, say, several gluons and/or quark–antiquark pairs, as we see from the DGLAP splitting
functions. The net number of partons at the higher scale Q is thus larger than at the scale
Q0, in agreement with the prediction from Eq. (2.148). To illustrate how the DGLAP
equation works in practice, we will present some distribution functions extracted from DIS
experiments on protons. One usually distinguishes contributions to the quark distribution
function coming from the valence quarks (the two u quarks and the d quark in the proton)
and from the sea quarks (all the other quarks in the proton).
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Δ x  = 1/QΔ0x  = 1/Q

Fig. 2.22. A graphical illustration of the DGLAP evolution equations. The blobs indi-
cate partons (quarks and gluons). A color version of this figure is available online at
www.cambridge.org/9780521112574.
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Fig. 2.23. Valence and sea quark distributions in the proton, plotted along with the gluon
distribution, as functions of Bjorken x for fixed Q2 = 10 GeV2. (Reprinted with kind
permission from Springer Science +Business Media: H1 and ZEUS collaboration (2010).)
A color version of this figure is available online at www.cambridge.org/9780521112574.

Figure 2.23 shows the valence quark distributions xuv(x,Q2) and xdv(x,Q2), along with
the sea quark distribution xS and the gluon distribution xg. All distributions are plotted as
functions of x for fixed Q2 = 10 GeV2. The curves in Fig. 2.23 are the result of a combined
NLO DGLAP-based fit of the data from the H1 and ZEUS collaborations at DESY (H1
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Fig. 2.24. Gluon and sea quark distributions in the proton plotted as functions of Bjorken
x for six different values of Q2. (Reprinted with permission from ZEUS collaboration
(2003). Copyright 2003 by the American Physical Society.) A color version of this figure
is available online at www.cambridge.org/9780521112574.

and ZEUS collaboration 2010). Note that the sea quark and gluon distributions were scaled
down by a factor 0.05 to fit into the same plot as the valence quark distributions. One can
see clearly that the gluon and sea quark distributions dominate at small x, in qualitative
agreement with the DLA DGLAP predictions.

In Fig. 2.24 we give the sea quark and gluon distributions as functions of x for six
different values of Q2. The curves in Fig. 2.24 are the results of an NLO DGLAP-based
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Fig. 2.25. An example of a ladder diagram contributing to DLA DGLAP evolution for the
gluon distribution function. The momenta of the gluons in the rungs of the ladder are labeled
on the right. The incoming proton has light cone momentum P +, and the last t-channel
gluon in the ladder has light cone momentum k+.

fit to the DIS data performed by the ZEUS collaboration at HERA (ZEUS collaboration
2003). The initial condition for DGLAP evolution was set at Q2

0 = 1 GeV2. Again one can
see that at small x the gluon distribution dominates the quark distributions. In agreement
with the DGLAP-based prediction, we see that the gluons play the most important role at
small x.

In closing the chapter we will rederive Eq. (2.148) using a more diagram-based approach.
Let us construct the solution for the DLA DGLAP evolution equation for the gluon distri-
bution (2.125) by summing diagrams that iterate the kernel of the evolution equation given
by the real part of the gluon–gluon splitting function in Fig. 2.19D. (Note that the parts of
the splitting functions that are singular at small z, given by Eq. (2.124), are entirely due to
the real emission diagrams). Diagrams iterating the gluon emission kernel have a “ladder”
structure, as shown in Fig. 2.25. There the transverse momenta of the gluons in the rungs
of the ladder, when ordered as

k2
⊥n � k2

⊥n−1 � · · · � k2
⊥2 � k2

⊥1 (2.149)
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give the transverse logarithms of DGLAP evolution. As we are interested in the DLA limit,
the longitudinal momenta of the gluons in Fig. 2.25 can be ordered too, as

k+
1 � k+

2 � · · · � k+
n−1 � k+

n � k+, (2.150)

to generate the logarithms of x. Each rung of the ladder generates a logarithmic integral over
longitudinal momenta dk+/k+, a logarithmic integral over transverse momenta dk2

⊥/k2
⊥,

and a power of the coupling constant αs(k2
⊥). Each rung also brings in a color factor Nc

and a factor 1/π coming from more careful diagram evaluation, which we will not perform
here. Ordering all the integrations, we get

xG(x,Q2) ∼
∞∑

n=0

Q2∫
Q2

0

dk2
⊥n

k2
⊥n

ᾱs(k
2
⊥n)

k2
⊥n∫

Q2
0

dk2
⊥n−1

k2
⊥n−1

ᾱs(k
2
⊥n−1) · · ·

×
k2
⊥2∫

Q2
0

dk2
⊥1

k2
⊥1

ᾱs(k
2
⊥1)

P +∫
k+

dk+
1

k+
1

k+
1∫

k+

dk+
2

k+
2

· · ·
k+
n−1∫

k+

dk+
n

k+
n

, (2.151)

where

ᾱs(Q
2) ≡ αs(Q2)Nc

π
. (2.152)

Performing the integrals yields (as x = k+/P +)

xG(x,Q2) ∼
∞∑

n=0

1

(n!)2

⎡
⎢⎣

Q2∫
Q2

0

dk2
⊥

k2
⊥

ᾱs(k
2
⊥) ln

1

x

⎤
⎥⎦

n

(2.153)

or, equivalently,

xG(x,Q2) ∼
∞∑

n=0

1

(n!)2

[
Nc

πβ2
ρ(Q2) ln

1

x

]n
, (2.154)

which after summation gives a modified Bessel function:

xG(x,Q2) ∼ I0

(
2

√
Nc

πβ2
ρ(Q2) ln

1

x

)
. (2.155)

The exact index of the modified Bessel function depends on the initial conditions for the
evolution and is not always 0 (Gorshkov et al. 1968). Using the large-argument asymptotics
of the modified Bessel function, Iν(z) ∼ ez, we obtain Eq. (2.148). The prefactor in front
of the exponent, shown in Eq. (2.143), can be obtained similarly, by keeping the prefactor
in the asymptotics of the modified Bessel function and matching the initial conditions to
those used in obtaining Eq. (2.143).

The derivation we have presented shows the diagrammatic origin of the result (2.148).
Diagrams also allow one to understand the space–time structure of the parton emissions.
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Consider the proton in Fig. 2.25, which, as throughout this chapter, is moving in the light
cone plus direction. The light cone times of gluon emissions, which we label x+

i for the
ith gluon shown in the ladder in Fig. 2.25, owing to the uncertainty principle are given
by x+

i ≈ 1/k−
i . As the gluons in the rungs of the ladder are on mass shell, k−

i = k2
⊥i/k+

i

and x+
i ≈ k+

i /k2
⊥i . The DGLAP ordering of transverse momenta (2.149) of itself insures

that

x+
1 � x+

2 � · · · � x+
n . (2.156)

The ordering of longitudinal momenta (2.150) merely reinforces the ordering of gluon
lifetimes (2.156). We see that the gluons with the lowest transverse momentum and/or largest
longitudinal momentum are emitted earliest and have the longest lifetimes. Conversely the
gluons with the largest transverse momenta and/or smallest longitudinal momenta are
emitted last and exist over the shortest lifetimes. This time-ordering of gluon emissions is
not only important for our understanding of DGLAP evolution, but will be useful when we
start talking about the small-x evolution equations, as it applies there too.

Further reading

A detailed pedagogical discussion of DIS and the DGLAP evolution equations covering
topics omitted in this chapter can be found in Halzen and Martin (1984), Sterman (1993),
Peskin and Schroeder (1995), Ellis, Stirling, and Webber (1996), and Weinberg (1996).

The reader can find NLO splitting functions for DGLAP evolution in Ellis, Stirling, and
Webber (1996). For further discussion of the running coupling scale in DGLAP evolution
we refer the reader to Dokshitzer and Shirkov (1995).

Exercises

2.1 Show that, in general, the hadronic tensor Wμν(p, q) can be written in the form
(2.16). Do this by observing that it is a function of two four-vectors pμ and qμ

only, demanding that Wμν is symmetric (Wμν = Wνμ), and imposing the conditions
(2.15).

2.2∗ Calculate the splitting function PqG(z) in light cone perturbation theory using the
diagram in Fig. 2.18. You should get Eq. (2.99c).

2.3 Show that the DGLAP equations conserve the longitudinal momentum of the partons.
Starting from Eq. (2.98), and using Eqs. (2.99), show that

1∫
0

dx x
[
�(x,Q2) + G(x,Q2)

]
(2.157)

is independent of Q2. With the help of Eq. (2.119) argue that this momentum conserva-
tion requires that all the anomalous dimensions are zero at ω = 1, i.e., γij (ω = 1) = 0.
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2.4 Show that the DGLAP equations conserve baryon number. Starting from Eq. (2.96),
and using Eq. (2.99a), show that

1∫
0

dx�f f̄ (x,Q2) (2.158)

is independent of Q2.

2.5 (a) Starting from Eqs. (2.96) and (2.98), and with the help of Eq. (2.116), derive the
DGLAP equations in moment space, obtaining Eqs. (2.118) and (2.119) with the
anomalous dimensions defined in Eq. (2.120).

(b) Explicitly derive the DGLAP anomalous dimensions shown above in
Eqs. (2.121): that is, use Eq. (2.120) to integrate the splitting functions given
by Eqs. (2.99).

2.6 Using the methods in Sec. 2.4.6, solve the DGLAP equation for the gluon distribution,

Q2 ∂

∂Q2
G(x,Q2) = αs

2π

∫ 1

x

dz

z
PGG(z) G

(
x

z
,Q2

)
,

with

PGG(z) = 2Nc

z

in the small-x asymptotics but now with fixed coupling constant αs (i.e., for αs

independent of Q2). In particular show that, in the saddle point approximation, the
small-x asymptotics for the gluon distribution is given by

xG(x,Q2) ∼ exp

(
2

√
αsNc

π
ln

1

x
ln

Q2

Q2
0

)
. (2.159)
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