If $f(t)$ is continuous, take the subdivisions so fine that $M_{s}-m_{s}<\epsilon$. Then

$$
\begin{gathered}
|D|<\epsilon\left(b^{l+m+n}-a^{l+m+n}\right) /(l+m+n), \\
\rightarrow 0 \text { as } \epsilon \rightarrow 0 .
\end{gathered}
$$

If $f(t)$ is monotone or of bounded variation, take the subdivisions so fine that $t_{s}^{l+m+n}-t_{s-1}^{l+m+n}<\epsilon$. Then

$$
\begin{aligned}
(l+m+n)|D| & <\epsilon \sum_{s=1}^{r}\left(M_{s}-m_{s}\right) \\
& <\epsilon|f(b-0)-f(a+0)|, \text { or } \in K, \text { say }
\end{aligned}
$$

according as $f(t)$ is monotone or of bounded variation,

$$
\rightarrow 0 \text { as } \in \rightarrow 0
$$

Hence the theorem is proved. The result clearly also holds for the limiting cases $a=0$ or $b=\infty$ when $f(t)$ is not bounded in $a \leqq t \leqq b$ if I, J then exist as improper or infinite integrals, and $f(t)$ satisfies (1) or (2) in every closed sub-interval of $0<t<\infty$.

The University,
 Manchester.

On Desargues Theorem

By J. H. M. Wedderburn.
The usual proofs of Desargues Theorem employ either metrical or analytical methods of projection from a point outside the plane; and if it is attempted to translate the analytical proof by the von Stuadt-Reye methods, the result is very long and there is trouble with coincidences. It is the object of this note to give a short geometrical proof which, in addition to the usual axioms of incidence and extension, uses only the assumption that a projectivity which leaves three points on a line unchanged also leaves all points on it unchanged. Degenerate cases are excluded as having no interest.

Lemma 1. If the triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$ are in perspective from O, and if B lies on $A^{\prime} C^{\prime}, B^{\prime}$ on $A C$, then the triangles are coaxial.

Let $X=\left(B C, B^{\prime} C^{\prime}\right), Y=\left(A C B^{\prime}, A^{\prime} C^{\prime} B\right), Z=\left(A B, A^{\prime} B^{\prime}\right), D=$ $\left(B^{\prime} C^{\prime}, O A A^{\prime}\right), F=\left(Y Z, O B B^{\prime}\right), E=(Y Z, B C), E^{\prime}=\left(Y Z, B^{\prime} C^{\prime} D\right)$; then $Y Z F E$ projects from B into $Y A B^{\prime} C$, which projects into
$A Y C B^{\prime}$, which in turn projects from C^{\prime} into $A A^{\prime} O D$, which projects from B^{\prime} into $Y Z F E^{\prime}$, and hence $E=E^{\prime}$ so that $X Y Z$ are collinear.

Lemma 2. If the triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$ are in perspective from O, and B^{\prime} lies on $A C$ and C^{\prime} on $A B$ but A^{\prime} is not on $B C$, then the triangles are coaxial.

In view of Lemma 1 we assume that B is not on $A^{\prime} C^{\prime}$. Let $X=\left(B C, B^{\prime} C^{\prime}\right), Y=\left(A C, A^{\prime} C^{\prime}\right), Z=\left(A B, A^{\prime} B^{\prime}\right), C^{\prime \prime}=\left(A^{\prime} B, O C\right)$, $X^{\prime \prime}=\left(B C, B^{\prime} C^{\prime \prime}\right), Y^{\prime \prime}=\left(A C, A^{\prime} C^{\prime \prime}\right)$, where $C^{\prime \prime}$ is distinct from C and C^{\prime}; hence, by Lemma 1 applied to the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime \prime}$, the points $X^{\prime \prime} Y^{\prime \prime} Z$ are collinear. Also $A Y^{\prime \prime} Y C$ projects from A^{\prime} into $O C^{\prime \prime} C^{\prime} C$, which projects from B^{\prime} into $B X^{\prime \prime} X C$, so that $A B$ and $Y^{\prime \prime} \mathrm{X}^{\prime \prime}$ meet in Z; hence $X Y Z$ are collinear.

Lemma 3. If the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are in perspective from O, and A^{\prime} lies on $B C, B^{\prime}$ on $A C$, and C^{\prime} on $A B$, then the triangles are coaxial.

- Let $\mathrm{X}=\left(B C, \quad B^{\prime} C^{\prime}\right), \quad Y=\left(C A, \quad C^{\prime} A^{\prime}\right), \quad Z=\left(A B, \quad A^{\prime} B^{\prime}\right), \quad C^{\prime \prime}$ $=\left(A^{\prime} B^{\prime}, O C^{\prime}\right), A^{\prime \prime}=\left(B^{\prime} C^{\prime}, O A\right), B^{\prime \prime}=\left(C^{\prime} A^{\prime}, O B\right)$; then $C^{\prime \prime}$ is distinct from O, C, C^{\prime}. Since $O C C^{\prime} C^{\prime \prime}$ projects from B^{\prime} into $O A A^{\prime \prime} A^{\prime}$ which projects from C^{\prime} into $O B B^{\prime} B^{\prime \prime}$, it follows that $B C, B^{\prime} C^{\prime}, B^{\prime \prime} C^{\prime \prime}$ meet in X; and similarly $C A, C^{\prime} A^{\prime}, C^{\prime \prime} A^{\prime \prime}$ meet in Y, and $A B, A^{\prime} B^{\prime}, A^{\prime \prime} B^{\prime \prime}$ in Z. Let $A^{\prime \prime} B^{\prime \prime}$ meet $A C B^{\prime}$ in P, and let $B^{\prime \prime} C^{\prime \prime}$ meet the same line in $Q ; P$ and Q are then distinct. Since $B^{\prime \prime} Z P A^{\prime \prime}$ projects from B^{\prime} into $O A^{\prime} A A^{\prime \prime}$; and this projects from Y into $O C^{\prime} C C^{\prime \prime}$, which projects from B^{\prime} into $B^{\prime \prime} X Q C^{\prime \prime}$; it follows that $Z X, P Q=A C$, and $A^{\prime \prime} C^{\prime \prime}$ meet in Y and so $X Y Z$ are collinear.

Lemma 4. If the triangles $A B C$, and $A^{\prime} B^{\prime} C^{\prime}$ are in perspective from O and B^{\prime} lies on $A C$, then the triangles are coaxial.

Let $X=\left(B C, \quad B^{\prime} C^{\prime}\right), \quad Y=\left(A C, A^{\prime} C^{\prime}\right), \quad Z=\left(A B, A^{\prime} B^{\prime}\right), \quad C^{\prime \prime}=$ $(A B, O C), A^{\prime \prime}=\left(C^{\prime \prime} Y, O A\right)$. We may suppose that $A^{\prime \prime}, C^{\prime \prime}$ are distinct from $A^{\prime}, C^{\prime \prime}$, as otherwise one of the previous Lemmas applies. By Lemma 2 or 3 the triangles $A B C$ and $A^{\prime \prime} B^{\prime} C^{\prime \prime}$ are coaxial and so $X^{\prime \prime}=\left(B C, B^{\prime} C^{\prime \prime}\right), Y=\left(A C, A^{\prime \prime} C^{\prime \prime}\right), Z^{\prime \prime}=\left(A B, A^{\prime \prime} B^{\prime}\right)$ are collinear. Also $Z A Z^{\prime \prime} B$ projects from B^{\prime} into $A^{\prime} A A^{\prime \prime} O$; and this projects from Y into $C^{\prime} C C^{\prime \prime} O$, which projects from B^{\prime} into $X C X^{\prime \prime} B$; hence $Z X, A C, Z^{\prime \prime} X^{\prime \prime}$ are concurrent in Y, that is, $X Y Z$ are collinear.

Theorem. If the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are in perspective from O, they are coaxial.

Let $\mathrm{X}=\left(B C^{\prime}, B^{\prime} C^{\prime}\right), \quad Y=\left(A C, A^{\prime} C^{\prime}\right), \quad \mathrm{Z}=\left(A B, A^{\prime} B^{\prime}\right), \quad B^{\prime \prime}$ $=\left(A C, O B^{\prime}\right), X^{\prime \prime}=\left(B C, B^{\prime \prime} C^{\prime}\right), Z^{\prime \prime}=\left(A B, A^{\prime} B^{\prime \prime}\right)$; then, by Lemma 4 applied to the triangles $A B C$ and $A^{\prime} B^{\prime \prime} C^{\prime}$, the points $X^{\prime \prime} Y Z^{\prime \prime}$ are collinear. Also $Z A B Z^{\prime \prime}$ projects from A^{\prime} into $B^{\prime} O B B^{\prime \prime}$, which projects from $C^{\prime \prime}$ into $X C B X^{\prime \prime}$, and hence $Z X, A C, Z^{\prime \prime} X^{\prime \prime}$ are concurrent in Y, that is, $X Y Z$ are collinear.

Princeton, New Jersey.

On a Chain of Circle Theorems.

By L. M. Brown.
If $P_{1}, P_{2}, P_{3}, P_{4}$ are four points on a circle C, and P_{234} is the orthocentre of triangle $P_{2} P_{3} P_{4}, P_{134}$ the orthocentre of triangle $P_{1} P_{3} P_{4}$ and so on, then the quadrilateral $P_{234} P_{134} P_{124} P_{123}$ is congruent to the quadrilateral $P_{1} P_{2} P_{3} P_{4}$. This theorem seems to be due to Steiner (Ges. Werke, 1, p. 128; see H. F. Baker, Introduction to Plane Geometry, 1943, p. 332) and has appeared frequently since in collections of riders on the elementary circle theorems.

It is clear that $P_{234} P_{134} P_{124} P_{123}$ lie on a circle C_{1234} equal to the original circle C. But also angle $P_{3} P_{134} P_{4}=P_{4} P_{1} P_{3}=P_{4} P_{2} P_{3}=$ $P_{3} P_{234} P_{4}$ (with angles directed and equations modulo π), and hence $P_{3} P_{4} P_{134} P_{234}$ lie on a circle C_{34} equal to C, and which is in fact the mirror image of C in $P_{3} P_{4}$. Similarly we obtain circles C_{12}, C_{13}, C_{14}, C_{23}, C_{24}, so that we have in all eight circles with four points on each. If any one of these be taken as the original circle, the same system of eight circles is obtained; if, e.g., we begin with $P_{3} P_{4} P_{134} P_{234}$ on the circle C_{34}, the four orthocentres are $P_{1}, P_{2}, P_{123}, P_{124}$ lying on C_{12} and the remaining circles are the images of C_{34} in the six sides of the quadrangle $P_{3} P_{4} P_{134} P_{234}$. Call this configuration K_{4}.

Let us now take a fifth point P_{5} on C. Then any four of $P_{1} P_{2} P_{3} P_{4} P_{5}$ give a K_{4}. We have in fact five points $P_{1} \ldots P_{5}$, ten points $P_{123} \ldots P_{345}$, a circle C, ten circles $C_{12} \ldots C_{45}$ and five circles $C_{1234} \ldots . C_{2345}$. Then the circles $C_{1234} C_{1235} C_{1245} C_{1345} C_{2345}$ all pass through a point P_{12345}, completing a system of 16 points and 16 circles, five points on each circle and five circles through each point. We may show this by taking the circle C_{12}, e.g., on which lie the five points $P_{1} P_{2} P_{123} P_{124} P_{125}$ and build up the K_{4} 's obtained by taking these four at a time. Use a parallel notation and write $Q_{1}=P_{1}, Q_{2}=P_{2}$,

