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Laminar miscible displacement flows in narrow, vertical, eccentric annuli show a wide
range of interesting physical phenomena, e.g. static layers and channels, dispersive
spikes/fronts and various instabilities. These are of relevance to the primary cementing
of wells, where gas leakage and greenhouse gas emissions can result from ineffective
cementing. The current popular way to model this process is via a Hele-Shaw approach,
reducing the Navier–Stokes equations via scaling arguments and then averaging across
the annular gap: the two-dimensional (2-D) gap averaged (2DGA) model. This leads to a
reduced model that is computationally efficient and represents some important features
of cementing flows, but is also deficient in capturing the effects of dispersion. While
three-dimensional (3-D) simulations are able to capture dispersion and most other physical
phenomena, they suffer from excessive computational times due to the extreme aspect
ratios of cementing geometries and non-Newtonian properties of the fluids. Here we
extend the 2DGA approach by modelling the high Péclet number limit of miscible duct
displacement flows, to take into account the leading-order effects of dispersion. Our
modified dispersive 2DGA model is well able to approximate dispersive effects that are
observed by gap-averaging the results of 3-D computations, including geometric effects
of eccentricity and instabilities. This represents a marked improvement over the 2DGA
approach, while keeping the computational advantages of a 2-D model.
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1. Introduction

There are many millions of oil and gas wells worldwide, both producing and
decommissioned. A key operation in the construction of these wells, as well as deep
water wells, geothermal wells, waste storage wells, etc., is primary cementing. Primary
cementing is the process of placing cement in the annular space between the steel casing
and the newly exposed geological formations. A complete and durable layer of cement
that seals hydraulically, is the foremost goal of the cement job. Failure to seal the well
allows gas to migrate through the cemented layer to surface, called surface casing vent
flow or annular casing pressure, or to migrate away from the well (gas migration), see
figure 1. The gas may come from the target reservoir or an intermediate zone. There is
acute current interest in such leakage due to greenhouse gas emission implications, both
environmentally and politically. Gas leakage is typically CH4, but sometimes also H2S,
which has additional health consequences. The CO2 storage reservoirs are also accessed
via wells that must not to leak. Groundwater contamination and damage to subsurface
ecology are two other concerns, also present when the leakage involves oil seepage to the
surface. Such occurrences motivate better understanding of all cementing processes.

Trudel et al. (2019) find that 28.5 % of wells, drilled from 2010 to 2018 in British
Columbia, Canada, report SCVF. Baillie et al. (2019) report 28 %–32 % of sites in
Southeastern Saskatchewan, Canada, emitting gas. Estimates of mean leakage rates per day
vary from 0.5–59 m3 CH4 day−1, per site. These include well-site measurements (bubble
tests) and truck-based mobile surveys. Undoubtedly, similar incidence and leakage rates
exist in other parts of the world, but regulations are different as is access to well data.

Defects in well integrity are generally either caused during primary cementing or occur
in the months/years afterwards. The latter include shrinkage and other chemical effects
of prolonged hydration reactions, geomechanically induced cracking (or worse), brine
penetration and eventually casing corrosion. The former causes are generally related to
the fluid mechanics of the cementing operation, in which the in situ drilling mud is
displaced by pumping a sequence of fluids around the well: down inside the casing and
back upwards in the annulus. There is very little downhole measurement and evaluation
during cementing. Consequently modelling, simulation and lab-scale experiments have
become important tools.

Studies have appeared in both technical publications/conferences and in the fluid
mechanics literature. In the 1960s–1990s, computational modelling was largely limited
to simple hydraulics-style calculations. Thus, one-dimensional (1-D) analyses and the
development of hydraulics-based estimates and rule-based design systems evolved
(McLean, Manry & Whitaker 1967; Smith 1986; Couturier et al. 1990; Ryan, Kellingray &
Lockyear 1992). These recommendations were largely sensible for vertical well cementing,
e.g. maintaining density and frictional pressure hierarchies between successive fluids
pumped, but were also often conservative. From the early 1990s, model-based 1-D
simulators were used with increasing regularity in cementing designs and industry case
studies.

A two-dimensional (2-D) model for laminar fluid–fluid displacement flows, based on
a Hele-Shaw approach, was introduced first by Bittleston, Ferguson & Frigaard (2002).
The key assumption of the model is that the annular gap is much narrower compared with
the mean circumference as well as the axial length scale. Thus, the velocity and fluid
concentration profiles in the radial direction were radially averaged, which reduces the
problem to a 2-D one. This 2-D gap-averaged (2DGA) model was analysed theoretically
and numerically by Pelipenko & Frigaard (2004a,b). An iterative augmented Lagrangian
algorithm coupled with numerical solution of the concentration equation was applied
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Figure 1. Well cementing: (a) schematic of fluid sequence and flow path; (b) gas invasion, hazards and
common leakage pathways for surface casing vent flow (SCVF) or annular casing pressure (ACP) and gas
migration (GM).

to produce 2-D simulations. The importance of this transition to the 2DGA framework
cannot be overstated. It was now possible to simulate and visualise steady-state annular
displacement flows, as well unsteady and unstable flows. The computational methods of
Pelipenko & Frigaard (2004b) definitively computed static channels of mud on the narrow
side of eccentric annuli, as postulated many years earlier (McLean et al. 1967). The links
between the 2DGA and earlier hydraulics-based models were analysed, showing their
conservative nature (Pelipenko & Frigaard 2004c).

Using the same framework, the 2DGA model has been used to study horizontal annuli
displacement flows (Carrasco-Teja et al. 2008), displacement flows with a moving inner
cylinder (Carrasco-Teja & Frigaard 2009, 2010; Tardy & Bittleston 2015)), turbulent and
mixed regime displacement flows (Maleki & Frigaard 2017, 2018, 2019). In the past decade
these simulations have become an industry standard, often matching/predicting defects
measured later in field case studies, and are coded into proprietary software of a number
of companies. Although the 2DGA models have proven very successful industrially, two
issues have arisen.

Firstly, there have been criticisms due to the simplifications inherent in the derivation.
Strictly speaking, the model is a narrow-gap Hele-Shaw model, in which curvature is partly
neglected. Some modified versions of the modelling approach include such terms (Tardy
& Bittleston 2015). While this will produce slightly different results, it is not an approach
that we follow. Curvature effects are only one of many effects neglected in reduced models
of this nature. Selecting only some terms of equal order is mathematically inconsistent and
not guaranteed to improve overall model accuracy.

A more valid concern is that the approach adopted by Bittleston et al. (2002)
over-simplifies the averaging process, where transport of fluid concentrations is concerned.
Essentially, it is assumed that the average of the product (of velocity and fluid
concentration), is equal to the product of the averages. For turbulent flows this is
reasonable. However, for laminar flows, cementing displacements are high Péclet number
and far from the Taylor dispersion limit. Instead, advective dispersion dominates and is
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not accounted for in these models. In Renteria & Frigaard (2020), comparisons were
made with displacement experiments in horizontal eccentric annuli. While the 2DGA
models were able to predict qualitative behaviours quite well, dispersive and inertial
effects were beyond the ability of the 2DGA model to predict. Zhang & Frigaard (2021)
have made preliminary comparisons of three-dimensional (3-D) simulations with 2DGA
model results. Although the results were consistent with each other regarding aspects such
as predicting interface behaviour (steady versus unsteady), there were many interesting
phenomena, e.g. static layers, dispersive spikes and instabilities, that were predicted to a
lesser degree or not at all.

The second concern is that while 20 years ago it was unfeasible to conduct 3-D
simulations of non-Newtonian displacement flows, this is no longer the case. Many
interesting and practically relevant phenomena occur on the scale of the annular gap,
e.g. wall layers, instabilities, washouts. Others are connected with azimuthal secondary
flows, and lastly, we have effects that vary along the annulus over tens of metres, (well
inclination, eccentricity, geology). Capturing the small scales while simulating a full
wellbore of thousands of metres is still not feasible (in the context of performing repeated
calculations for design purposes), but simulating 10–50 m is feasible with modest parallel
machines.

A number of recent studies have looked at fully 3-D flows in the cementing context
(Kragset & Skadsem 2018; Etrati & Frigaard 2019; Skadsem et al. 2019a; Skadsem,
Kragset & Sørbø 2019b), and in particular for studying local irregularity effects. These
occur when, for example, the surrounding formation is poorly consolidated and/or the
drilling operation has anomalies, leading to washouts, i.e. localised cavities. These features
are less effectively studied using 2DGA models, where the length scale assumptions fail.
More recently, 2DGA models were used to study systematic large-scale irregularities,
for example, slow axial variations in ellipticity and eccentricity (Renteria et al. 2022),
while 3-D models were used to capture small scale irregularities (Sarmadi et al. 2022).
Returning to the question of dispersion, Sarmadi, Renteria & Frigaard (2021) found very
good agreement between 3-D simulation results and the earlier experiments of horizontal
annulus displacement flows (Renteria & Frigaard 2020). Simulations also reveal a complex
flow structure that is simply not visible in the experiments.

Thus, the concern is how to reconcile 3-D simulations that convincingly represent
complex physical phenomena, but are not economical due to the large aspect ratio of
the computations, with the need for better engineering designs of cementing flows.
The numerical methods also require a high level of knowledge/expertise to ensure
good computational performance, are run on parallel clusters, require large meshes and
consequently generate large data sets for each run. These are not yet suitable for frequent
iterative usage in process design, i.e. run quickly on desktop machines. On the other
hand, the 2DGA models are clearly missing phenomena of interest: dispersion and inertial
effects. While the neglect of inertia is inherent in Hele-Shaw-style models, we believe that
dispersion can be better accounted for. This is the goal of our paper.

An outline is as follows. We firstly introduce an overview of the models used and the
scope of the study in § 2. Mass conservation properties are validated and compared for
both models in § 2.4. In § 3, we give representative examples of different displacement flow
regimes in a vertical eccentric annulus, computed by 2DGA and 3-D models, respectively.
These cases show both the successes and failures of the Hele-Shaw approach. Then,
we rederive the 2DGA model in § 4, starting from the reduced shear flow equations.
A dispersive 2DGA model (D2DGA) is obtained by applying a different assumption
regarding the distribution of fluids across the gap. Finally, detailed comparisons between
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the D2DGA and 3-D model are given in § 5. We find significant improvement of the
D2DGA model in capturing the gap-scale dispersion. The paper ends with conclusions
and future work (§ 6).

In an eccentric annular displacement flow there are at least 12 dimensionless parameters.
The main contribution of the paper is in the derivation of the D2DGA model and
demonstration of its effectiveness in capturing gap-scale dispersion. This success rests on
the multilayer approach in describing the velocity field variations across the annular gap,
and should be equally effective for velocity fields that arise from the usual non-Newtonian
models (that account for many of the dimensionless parameters). Thus, our model
derivation is kept as general as possible. However, for simplicity in illustrating the results,
we only present results for two Newtonian fluids in a vertical annulus in all our examples.

2. Methodology

As discussed in § 1 the main objectives of this work are to expose deficiencies in 2-D
gap-averaged displacement models of primary cementing and to seek a viable way to
improve them. As always in practical fluid mechanics, the choice of model is a balance
between accuracy and computational cost. Here we introduce the different models used in
our study.

2.1. The 2DGA model
We outline here the current 2DGA model for annular displacement flows, with more detail
later in § 4.1, where we improve the model. We adopt the formulation of Maleki & Frigaard
(2017), where the model is more comprehensive than that earlier (Bittleston et al. 2002).
The geometry of the narrow eccentric annulus is mapped and unwrapped into a Hele-Shaw
cell, see figure 2. The key assumption of the model is that the mean annular gap (2d̂) is
much narrower compared with both the mean circumference (2πr̂∗

a), and to the length
scale of any axial geometric variations. The narrow gap approximation is that d̂/(πr̂∗

a) =
δ/π � 1. The velocity and fluid concentration profiles are then averaged in the radial
direction, which reduces the problem to a 2-D one. The length scale assumptions also
allow us to assume the flow is locally a shear flow. With the additional assumption that
the gap-averaged quantities describe the fluid present, we are able to solve the 1-D shear
flow in the direction of the modified pressure gradient locally. This provides the closure
expressions that are employed in the 2DGA model. The model consists of a nonlinear
elliptic equation for the stream function and a sequence of advection equations for the
fluid concentrations.

All dimensional variables are with the ‘hat’ accent, e.g. ŵ0, and dimensionless variables
without. The governing dimensionless equations are listed as follows in (2.1)–(2.3), we
discuss only laminar flow regimes in this paper:

∂

∂t
[Hrac̄k] + ∂

∂φ
[Hv̄c̄k] + ∂

∂ξ
[raHw̄c̄k] = 0, k = 1, 2, . . . , K, (2.1)

∇a · (2raHv̄, 2raHw̄) = 0, ⇒ ∂Ψ

∂φ
= 2Hraw̄,

∂Ψ

∂ξ
= −2Hv̄, (2.2)

∇a · [S + b] = 0. (2.3)

Equation (2.1) is a transport equation for the fluid concentrations c̄k for k = 1, 2, . . . , K,
which are advected with the gap-averaged velocity (v̄, w̄). The scaled half-gap-width is
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Figure 2. Geometry of the narrow eccentric annulus mapped to the Hele-Shaw cell, for the 2DGA model.

H(φ, ξ) and the mean radius at depth ξ is ra(ξ). In laminar miscible flows the effects
of molecular diffusion are minimal on the time scales and length scales of relevance.
Thus, diffusive effects are absent on the right-hand side of (2.1), but not for turbulent
regimes, where Taylor dispersion dominates (Maleki & Frigaard 2017). In deriving (2.1),
azimuthal and axial lengths have been scaled with a representative (half-)circumference of
the annulus πr̂∗

a . Velocities have been scaled with a mean pumping velocity ŵ0, and times
with πr̂∗

a/ŵ0. The mean radius r̂∗
a is defined by averaging along the annular flow path. The

gap averaged velocity field is incompressible, allowing it to be expressed in terms of a
stream function Ψ , i.e. (2.2). The operator ∇a is a radial divergence operator, i.e.

∇a =
(

1
ra

∂

∂φ
,

∂

∂ξ

)
, (2.4)

with ∇a is the corresponding gradient operator.
The stream function satisfies the elliptic equation (2.3), where

S =
[

raτw(|∇aΨ |)
H |∇aΨ |

]
∇aΨ, b = ra(ρ − 1)

F2 (cos β, sin πφ sin β). (2.5a,b)

The function S represents a modified pressure gradient, which we see has magnitude
raτw(|∇aΨ |)/H. Here τw is the wall shear stress. These quantities have been made
dimensionless using a stress scale τ̂0. In the definition of b, ρ is the density (scaled with
the density of the first fluid), and F is the Froude number,

F =
√

τ̂0

ρ̂1ĝδ0r̂∗
a
. (2.6)

For clarity, here we fix τ̂0 = μ̂1ŵ0/d̂, i.e. based on a viscous stress in the displaced fluid.
However, more generally τ̂0 could be chosen to represent any relevant stress (Maleki &
Frigaard 2017), depending on the dominant flow regime and rheology. Thus, we see that b
represents the effects of buoyancy in this model; together with the imposed flow, buoyancy
gradients strongly influence the flow.

The dependency of τw on the local flow rate (mean velocity), on the fluid concentrations
and on the rheological parameters will depend on the specific fluid properties, i.e. the
model is completed with a closure expression for τw. Generally speaking, in laminar
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flow regimes cementing involves shear thinning, yield-stress fluids. The yield stress
of these fluids τY plays an important role industrially, defining a limiting pressure
gradient raτY/H, that must be exceeded locally in order for the fluids to flow; otherwise
|∇aΨ | = 0 and the fluids are stuck. The 2-D model was first analysed by Pelipenko
& Frigaard (2004a,b) and there are a large number of works that use this underlying
framework.

Numerically, we follow the procedures described in Maleki & Frigaard (2017). The
equations are discretised on a regular rectangular mesh, with staggered mesh for the stream
function versus concentration. We see that the flow evolves in time only via (2.1), which
is time-advanced explicitly using a flux corrected transport scheme. At each time step the
nonlinear elliptic stream function equation (2.3), is solved using an iterative augmented
Lagrangian algorithm. The velocities are constructed from Ψ via (2.2) and used for the
fluid concentrations in (2.1).

2.2. The 3-D model
The 3-D numerical simulations are computed using a finite volume method within the open
source computational fluid dynamics toolbox OpenFOAM (http://www.openfoam.com).
The code used here is an updated version of that used in Etrati & Frigaard (2018) for
studying miscible displacement flows in pipe flows, wherein the results were successfully
compared with experiments. More recently, the code has been used by Sarmadi et al.
(2021), comparing with the experimental results of Renteria & Frigaard (2020). Briefly,
the full Navier–Stokes equations are solved, coupled to an advection equation for the
concentration of fluid 2, which is the displacing fluid. The volume of fluid method is used
to capture the interface between the fluids. The momentum, continuity and concentration
equations are

ρ̂

(
∂û
∂ t̂

+ û · ∇̂û
)

= −∇̂p̂ + ∇̂ · τ̂ + ρ̂ĝ, (2.7)

∇̂ · û = 0, (2.8)

∂c
∂ t̂

+ û · ∇̂c = 0. (2.9)

Here, û and p̂ are the velocity and pressure; τ̂ = μ̂ ˆ̇γ (û) is the deviatoric stress tensor,
with ˆ̇γ the rate of strain tensor. In this paper we only consider two Newtonian fluids. The
concentration c ∈ [0, 1] enters via the fluid properties: ρ̂ and μ̂ are the mixture density
and viscosity, defined by

ρ̂ = (1 − c)ρ̂1 + cρ̂2, (2.10)

μ̂ = μ̂1 exp
[

c log
(

μ̂2

μ̂1

)]
. (2.11)

The subscript ‘1’ represents the displaced fluid and ‘2’ represents the displacing fluid. We
have also used linear interpolation for the viscosity closure, with only mild differences.

A uniform velocity is imposed at the inlet, no-slip is applied at the annulus
walls and an outflow condition set at the outlet. The pressure is fixed at the outlet.
The PIMPLE algorithm is used to solve the momentum equation, and the implicit
second-order Crank–Nicolson method is employed for the time discretisation. Mesh
sensitivity/convergence results are given in Sarmadi et al. (2021). Figure 3 illustrates
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Figure 3. Mesh resolution in (a) axial (vertical) direction and (b) the cross-section for an eccentric case
with e = 0.4.

the computational mesh used for one of our cases with eccentricity e = 0.4, with
20 × 100 × 400 cells in the radial, azimuthal and axial directions. Figure 3(a) shows half
of the annulus, taken from the midplane (x = 0), and figure 3(b) shows a middle slice
surface. The mesh is refined close to the wall to capture residual wall layers, as common
in displacement flows. The computations are carried out in parallel on a multiprocessor
machine, generally using 24 cores.

2.3. Scope of the study
The aim is to study and improve the 2DGA model, making use of the 3-D computations.
We also later wish to use these same models for the purposes of experimental comparison.
Thus, we set the annulus dimensions and other parameters of our study based on the
experimental set-up of Renteria & Frigaard (2020), which we have also used for our
experimental study. The total length of the annulus is 4.8 m, the outer and inner radii
are 22.23 mm and 17.46 mm, respectively. This gives a scaled length Z ≈ 62 for the
2DGA model, i.e. the length is ≈ 62× the mean circumferential length scale πr̂∗

a , (and
is > 1000× the mean annular gap width). The eccentricity can be adjusted from 0 to 1.
Unlike Renteria & Frigaard (2020) and Sarmadi et al. (2021), here we study vertical annuli.

For two Newtonian fluids the flow depends on at least seven dimensionless parameters,
and more if the fluids are non-Newtonian. Having adopted τ̂0 = μ̂1ŵ0/d̂, as our (viscous)
stress scale, the key dimensionless parameters can be taken as the Reynolds number,
Re = ρ̂1ŵ0d̂/μ̂1, the viscosity ratio, m = μ̂1/μ̂2, the buoyancy number, b = (ρ̂2 −
ρ̂1)ĝd̂2/(μ̂1ŵ0), a density ratio (or Atwood number), the pipe inclination and eccentricity.
We see that b represents the size of the buoyancy vector b in the 2DGA model. Rather than
explore all parameters systematically, we instead study a selection of 10 cases that expose
key features of vertical displacement. The cases and corresponding parameters are listed
in tables 1 and 2. For simplicity, all fluid pairs are Newtonian and the annulus is vertical.
Each simulation case is run for a time equivalent to two annular volumes of pumped fluid,
using both styles of model.
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Cases ŵ0 (m s−1) Q̂0 (m3 s−1) ρ̂1 (kg m−3) μ̂1 (Pa s) ρ̂2 (kg m−3) μ̂2 (Pa s)

1 0.032 1.90 × 10−5 1000 0.004 885.31 0.02
2 0.032 1.90 × 10−5 1000 0.004 1229.38 0.02
3 0.032 1.90 × 10−5 1000 0.004 1022.94 0.02
4 0.008 4.76 × 10−6 1000 0.001 1143.37 0.005
5 0.032 1.90 × 10−5 1000 0.004 1229.38 0.02
6 0.04 2.38 × 10−5 1000 0.005 1358.41 0.001
7 0.032 1.90 × 10−5 1000 0.004 1022.94 0.008
8 0.08 4.76 × 10−5 1000 0.010 1143.37 0.005
9 0.04 2.38 × 10−4 1000 0.001 1071.68 0.005
10 0.4 2.38 × 10−4 1000 0.001 1716.83 0.005

Table 1. Fluid properties for the designed simulation cases.

Cases e Re m b

1 0.8 20 0.2 −50
2 0.8 20 0.2 100
3 0.6 20 0.2 10
4 0.6 20 0.2 1000
5 0.4 20 0.2 100
6 0.4 20 5.0 100
7 0.2 20 0.5 10
8 0.2 20 2.0 10
9 0.1 100 0.2 100
10 0.1 1000 0.2 100

Table 2. Corresponding dimensionless parameters for the designed simulation cases.

2.4. Mass conservation properties
To verify that both models are correctly programmed and solved, we select cases 2, 4, 6 and
8, each of which has different flow rates. We integrate the equations forward and compute
the total volume of the displacing fluid in the annulus (V̂2) at successive time steps. This
is plotted in figure 4, in which we compare the two computations with the theoretical
volume (from the inflow rate). Stopping the simulations at any particular time and dividing
by the annulus volume, gives a fraction of the annulus displaced, i.e. the displacement
efficiency. We see that in each case, the 2DGA and 3-D models compute near-identical
volumes up until the breakthrough time, i.e. that time at which the displacing fluid first
exits the annulus. The breakthrough time is generally earlier for the 3-D simulation, due to
dispersion ahead of the main front. We also observe earlier breakthrough for cases 6 and
8, for both of which the displacing fluid is less viscous than the displaced fluid (m > 1).
The same verification is made for the other cases, with similar agreement; not shown for
reasons of brevity.

3. Successes and failures of the Hele-Shaw approach

Now we explore some of these cases in more detail, here and in the Appendix. We
start with case 4, which is representative of a successful displacement flow, (commonly
found if e is modest and b is large). Figure 5 shows the comparison of 2-D gap-averaged
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Figure 4. Verification of volume conservation for the 2DGA and 3-D models: (a) cases 2 and 4; (b) cases
6 and 8. The black lines represent the total annulus volume. The solid lines with other colours represent the
theoretical value based on the constant flow rate. The 2DGA and 3-D results are marked by different symbols,
as indicated.
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Figure 5. Gap-averaged concentration colour maps of case 4 (parameters: e = 0.6; Re = 20; m = 0.2;
b = 1000) computed by (a) 2DGA model; (b) 3-D model.

concentration of case 4 at successive times as indicated. The variable φ ∈ [0, 1] measures
the azimuthal angle from the wide side (indicated by W in the figure), to the narrow
side (indicated by N in the figure). The variable ξ̂ measures distance along the axis
of the well. The thin dashed white line represents the interface between the two fluids,
(with averaged concentration c̄ = 0.5). Whereas the 2DGA model computes only the
gap-averaged quantities only, the 3-D model computes variables across the annular gap. In
order to compare with 2DGA results we post-process by averaging the solution variables
from the 3-D model across the annular gap in the radial direction.

From the comparison, both computations show a flat interface that evolves steadily along
the annulus. Although there is a significant eccentricity the large buoyancy number leads to
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Figure 6. Spatiotemporal colour maps of cross-section-averaged concentration C̄(ξ̂, t̂) of case 4 computed by
(a) 2DGA model; (b) 3-D model.

a steady displacement. In terms of predicting the overall behaviour of the (gap-averaged)
3-D code, the 2DGA is clearly effective. The main difference is in the intensity of the
(red coloured) concentration close to the interface. The concentration is significantly
less dispersed for the 2DGA model. Accordingly, the front of the displacing fluid of
the 3-D model is slightly more advanced than that in figure 5(a). To the eye, it may
appear that the right-hand sides of the snapshots of figure 5(b) have concentration that
is significantly lower than figure 5(a), making the previous volumetric comparison in
figure 4(a) appear doubtful. However, note that the differences in the colour maps are
largest on the narrow side of the annulus, where the volume is smallest. Equally, there
is a small amount of dispersion ahead of the c̄ = 0.5 contour which is not easily seen. To
quantify this dispersive aspect in an averaged way we plot a spatiotemporal map in figure 6.
Concentrations from both models are averaged over the cross-section at fixed heights ξ̂ , to
give C̄(ξ̂, t̂). The linear advance of the front is evident and very slightly faster in the 3-D
case. Most of the dispersion is found just behind the front in the 3-D case.

If figure 5 were typical of all displacement flows, there would be little motivation for
improving the 2DGA model. However, we shall see in other examples that although the
2DGA model captures the qualitative features of the 3-D flow, the quantitative differences
can be significant. To understand the origin of these differences, we must first ask where
the dispersion comes from, and secondly better understand the 2DGA model limitations.
Considering the underlying assumptions of the 2DGA model, there are three principal
simplifications: (i) neglect of inertial effects in the momentum balance; (ii) elimination of
gradients of the viscous stress tensor, simplifying to a shear flow; (iii) simplification of the
advective mass transport terms in (2.1). It is the last of these that has a clear dispersive
effect.

Regarding the actual dispersion, note that in both models we have no diffusive terms in
the concentration equations. For the ranges of typical parameters in these displacement
flows, the Péclet numbers would typically be in the range 107–109, which motivates
the neglect of diffusion terms, although they can also be included (Maleki & Frigaard
2017). The numerical methods used here do in fact have well-controlled numerical
diffusion, limiting significant smearing of the interface to a few mesh cells. However,
intermediate concentrations that are computed at the interface are advected away strongly
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Figure 7. Gap-averaged concentration colour maps of case 7 (parameters: e = 0.2; Re = 20; m = 0.5;
b = 10) computed by (a) 2DGA model; (b) 3-D model.

by secondary flows, regardless of diffusion. In order to effectively represent very small
physical diffusivities would require a very fine mesh close to the interface, which is not
practically feasible for general studies. Even with minimal diffusion, we would observe
dispersion in gap-averaging the 3-D velocity profiles, which are Poiseuille-like.

Although the flow of figure 5(a) has a very sharp interface, illustrating the efficacy of
the 2-D numerical scheme in limiting numerical diffusion, there is in fact considerable
dispersion even here. To see this, note that with e = 0.6, the far-field flow is significantly
faster on the wide side of the annulus than the narrow side, but yet the displacement front
advances steadily. As a rough guide, the ratio of wide to narrow side mean velocities
in the far-field is ≈ (1 + e)2/(1 − e)2 for Newtonian fluids. The steadily propagating
front therefore requires a significant secondary azimuthal flow, moving fluid from wide
to narrow (and vice versa). This secondary flow is localised close to the advancing
front. Thus, considering figure 5(a,b), both models have secondary flows and consequent
dispersion, but the effects are different.

Now we consider case 7, which has smaller eccentricity and buoyancy number. Figure 7
shows the gap-averaged concentration colour maps computed by both models. As the
light blue colour ahead of the interface is not very clear to see, we plot yellow contour
lines which represent c̄ = 0.01. There are distinct differences between models. The 2DGA
displacement is steady and piston-like at the front. For the 3-D model the interface
(c̄ = 0.5) is near-horizontal on the wide side, but begins to lag behind on the narrow
side. Obvious dispersion is seen in the 3-D result. This is again primarily behind the
displacement front, but we do see a region extending ahead of the front on the wide side.
The dispersion is amplified by the small buoyancy number. Note that here e = 0.2, but
the effects of dispersion along the narrow side are far more significant than in case 4.
There is no residual layer in the narrow side of the annulus, as the displacing fluids keep
moving. There are also mild instabilities that start close to the interface in the narrow side,
as the colour map shows at 85 s and 120 s, which do not apparently originate in the 2DGA
physics, even though they are reminiscent of fingering-type instabilities.

To have a better understanding of the 3-D flow, figure 8 shows snapshots of the
isosurface c = 0.2, at different times for case 7, exploring the annulus section from 2.4 m
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Displacement and dispersion in narrow eccentric annuli

to 3.6 m, i.e. concentrations of 20 % and above are enclosed within the isosurfaces shown.
The colour map on the equally spaced cross-sections represents the dimensional axial
velocity. We can clearly see the dispersion, along the centreline of each annular gap
and faster on wide side. The dispersive velocity reached two times the imposed mean
velocity. The gap-averaged velocity of the narrow side is smaller than that of the wide
side, which results in the interface shown in figure 7(b), beginning to extend downstream.
In addition, we show an annulus cross-section at ξ̂ = 3 m (the middle of the annular
sections of figure 8), to illustrate the azimuthal flow, see figure 9. The colour map shows
the concentration distribution and black lines represent streamlines. We see a symmetric
flow from narrow side to wide side before the main current passes (figure 9a,b), and
the azimuthal flow is not that severe. Then, as the front displaces the secondary flow
becomes stronger (figure 9c,d), and appears to lose its symmetry. The flow is mostly from
wide side to narrow side, which appears to cause the instabilities observed in figure 7(b).
As we gap-averaged the velocity field, the 2DGA model cannot represent the complex
asymmetric patterns seen in figure 9(c,d), at least in its current form. The question
is, whether such instabilities and asymmetries are caused by inertial or by gap-scale
dispersive effects, which are not in the 2DGA model.

Further examples of the 2DGA model output and its comparison with 3-D simulations
are given in the Appendix. As well as dispersion, these also show significant instabilities
(more than those of figure 7), that are not captured by the 2DGA model. Together with
the results above, these provide motivation for improving the 2DGA model, so as to
better represent cementing displacements. The obvious missing ingredient is to account
for dispersion due to the velocity profiles across the annular gap.

4. Accounting for gap-scale dispersion

To account for the gap-scale dispersion in the 2DGA we have two main options. First,
we might resolve the flow on the scale of the gap using a simplified 3-D approach. For
example, we might follow Tardy et al. (2017) and Tardy (2018) and discretise in the radial
direction, while keeping the scaling arguments that lead to a shear flow at leading order.
Evaluating the radial variation then allows us to advance the concentration using a velocity
field that is 3-D and hence resolve the products of c and the velocity directly. This leads
to a model that is somewhere between 2-D and 3-D (say 2.5-D). The additional meshing
in the radial direction means larger data sets to handle and slower computation, while
still not resolving the inertial effects (as is done in a fully 3-D computation). Nevertheless,
with care directed at the computational aspects, the 2.5-D approach of Tardy demonstrably
works well for many cases.

The second option is to retain the 2-D description and to derive expressions that can
express the gap average of the product of concentration and velocity, in a way that
approximates the actual dispersive behaviour. The 2DGA model is compatible with the
idea that dispersion is primarily in the direction of the gap-averaged flow. In Maleki &
Frigaard (2017) this idea is made more explicit in modelling the Taylor dispersion in
turbulent annular flows. However, here the laminar flow is far from the Taylor dispersion
regime. Instead, the flows are characterised as large Péclet number, small aspect ratio
miscible displacement flows on the annulus gap-scale.

These regimes were studied by Yang & Yortsos (1997), who considered asymptotic
solutions to the problem of miscible Newtonian displacement in long channels.
Their leading-order transverse flow equilibrium (TFE) model combines a lubrication
approximation for the velocity, with a convection–diffusion equation for the fluid
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Figure 8. Snapshots of the 3-D displacement flow at different times for case 7, (parameters: e = 0.2; Re = 20;
m = 0.5; b = 10): (a) t̂ = 55 s; (b) t̂ = 65 s; (c) t̂ = 75 s; (d) t̂ = 85 s. Colour map of equally spaced slices
represents dimensional axial velocity. The wide side of the annulus is on the top.

concentration, containing the transverse diffusion only. Using this approach, a first-order
conservation law was derived for the average concentration of displacing fluid (c̄), along
the plane channel,

∂ c̄
∂t

+ ∂

∂x
Fp = 0, (4.1)

where Fp is the flux of displacing fluid along the channel. In the limit of zero diffusion
Fp can be calculated explicitly and expressed as Fp(c̄; m). Solutions of (4.1) exhibit a
range of behaviours, including shocks and dispersive spreading. Similar flow regimes were
analysed later by Lajeunesse et al. (1999) who extended the theory of Yang & Yortsos
(1997) to include buoyancy effects. The propagation is governed again by (4.1), but now
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Figure 9. Azimuthal flow of the interface located at ξ̂ = 3 m at different times for case 7: (a) t̂ = 55 s;
(b) t̂ = 65 s; (c) t̂ = 75 s; (d) t̂ = 85 s. The colour map shows the concentration distribution and yellow lines
represent streamlines. The wide side of the annulus is on the top.

the flux is given by

Fp(c̄, m, U) = c̄
2

[(2m − 3)c̄2 + 3]
[1 + (m − 1)c̄3]

+ c̄2(1 − c̄)3

4U
[(4m − 3)c̄ + 3]
[1 + (m − 1)c̄3]

. (4.2)

The first term is identical to that of Yang & Yortsos (1997). Now Fp depends also on
additional parameter U, as follows:

U = 3μ̂1ŵ0

ĥ2ĝ(ρ̂1 − ρ̂2)
. (4.3)

In the model of Lajeunesse et al. (1999), ĥ represents the channel half-width, and fluid 1 is
displaced by fluid 2. The flow is vertical, in the direction of gravity and U ≥ 0, i.e. density
stable. In Lajeunesse et al. (1999) there is typographical error for (4.2): corrected in
the PhD thesis (Lajeunesse 1999), and above. The expression (4.2) has been analysed
in Lajeunesse (1999), to predict flow regimes, which mostly agree with those observed
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experimentally. The question we now address is whether a similar methodology can be
effectively used in our 2-D flows, where the channel width and buoyancy direction varies,
and where the fluids may also be non-Newtonian.

4.1. The Hele-Shaw setting
If one considers primary cementing in a vertical casing to represent a Hele-Shaw cell of
varying gap, it is tempting to resolve the displacement flow in vertical slices along the
length of the well. On each such slice we might expect the above analysis to be valid and
deliver a good approximation of the gap-scale dynamics. While correct, this neglects the
effects of azimuthal secondary flows which can be significant, as we have seen; fortunately,
there is a better solution.

In the derivation of the 2DGA model, (2.1)–(2.3), the Navier–Stokes equations are made
dimensionless using a different length scale in the radial direction compared with that in
azimuthal and axial directions. This leads to an asymptotic approximation (in terms of the
aspect ratio), which to leading order is a shear flow, i.e.

0 = −∂p
∂y

, (4.4)

0 = − 1
ra

∂p
∂φ

+ ∂

∂y
τφy + ρ sin β sin πφ

F2 , (4.5)

0 = −∂p
∂ξ

+ ∂

∂y
τξy − ρ cos β

F2 , (4.6)

where y ∈ [−H(φ, ξ), H(φ, ξ)] is the scaled radial (gap-)coordinate. These equations have
scaled the pressure gradients in order to balance with the leading-order shear flow. The
density above has been scaled with the density of fluid 1. We deviate slightly from Maleki
& Frigaard (2017) above, since we have chosen to not subtract the static pressure field
of fluid 1 from the pressure before scaling. This is because evaluating buoyancy effects
requires more care. The leading-order strain rate is

γ̇ ∼
[(

∂v

∂y

)2

+
(

∂w
∂y

)2
]1/2

. (4.7)

Thus, to leading order the constitutive laws depend only on the y-derivatives of both v and
w, and on the fluid present. By integrating across the gap, it is found that the motion is
driven in the direction of the modified pressure gradient,

G = (Gφ, Gξ ) ≡
(

− 1
ra

∂p
∂φ

+ ρ sin β sin πφ

F2 , −∂p
∂ξ

− ρ cos β

F2

)
. (4.8)

In other words, the vector of averaged velocities (v̄, w̄) is parallel in the (φ, ξ) plane to G.
The difficulty comes in resolving the averaged velocities. In Bittleston et al. (2002)

and Maleki & Frigaard (2017), the simplification was made that the concentrations were
constant across the annular gap. With this assumption, the density ρ and any rheological
properties should be defined as functions of the (mean) fluid concentrations. For the
density a simple volume average is appropriate. Having specified the rheology of the
mixture, the relevant closure expression can also be derived, based on a plane Poiseuille
flow. However, it is clear that these simplifications negate dispersion that will occur due
to layering of the fluids across the gap during displacement. Equally, buoyancy effects are
limited to gradients of the mean density and not individual fluids.
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Figure 10. Schematic of dispersive Hele-Shaw model setting: (a) narrow annulus, with slice along the local
flow direction s; (b) assumed configuration of fluid 1 (blue) and fluid 2 (red); local concentration c = yi/H.

4.2. Dispersive Hele-Shaw setting
In principle, the same method as Bittleston et al. (2002) and Maleki & Frigaard (2017) can
be employed here, but with different assumptions made regarding the distribution of fluids
across the gap. For simplicity we assume only two fluids: fluid 1 displaced by fluid 2. We
assume that the displacing fluid can disperse (symmetrically) down the centre of the local
annular gap. Given the large Pe we assume that fluid 2 occupies the centre of the channel,
between interfaces at y = ∓yi; fluid 1 occupies the wall layers: [−H, −yi) and ( yi, H] (see
figure 10). The density ρ in (4.5) and (4.6) will now be constant in each fluid layer, again
allowing integration, but now with a jump in fluid properties at y = ∓yi.

The concentration of displacing fluid 2 in the gap we shall denote c̄(φ, ξ, t), which
is given geometrically by c̄ = yi/H. The evolution of c̄ (neglecting diffusive terms), is
governed by

∂

∂t
[Hrac̄] + ∇a · q = 0, (4.9)

where the flux functions are

q = (qφ, qξ ) = ra

(∫ yi

0
v dy,

∫ yi

0
w dy

)
. (4.10)

Note that if (v, w) are approximated by their gap-averaged quantities, then (4.9) is exactly
(2.1). The questions therefore are, how to evaluate the above fluxes and are we able to
specify them in terms of gap-averaged quantities?

The shear stresses in (4.5) and (4.6) are coupled only through the effective viscosity of
each fluid, η1 and η2, which depend on γ̇ . On assuming symmetry about y = 0, integrating
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(4.5) and (4.6) for y ∈ [0, H], and imposing continuity of the shear stresses at y = yi, we
find

∂v

∂y
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y
η2( y)

(
1
ra

∂p
∂φ

− ρ fξ
ra

)
+ y

η2( y)
(H − yi)�ρ fξ

Hra
, y ∈ [0, yi],

y
η1( y)

(
1
ra

∂p
∂φ

− ρ fξ
ra

)
+ (H − y)

η1( y)
yi�ρ fξ

Hra
, y ∈ ( yi, H],

(4.11)

∂w
∂y

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y
η2( y)

(
∂p
∂ξ

+ ρ fφ
ra

)
− y

η2( y)
(H − yi)�ρ fφ

Hra
, y ∈ [0, yi],

y
η1( y)

(
∂p
∂ξ

+ ρ fφ
ra

)
− (H − y)

η1( y)
yi�ρ fφ

Hra
, y ∈ ( yi, H],

(4.12)

where �ρ = ρ1 − ρ2 is the density difference, ρ = (1 − yi/H)ρ1 + ( yi/H)ρ2 is the mean
density and

f = ( fφ, fξ ) =
(

ra cos β

F2 ,
ra sin β sin πφ

F2

)
. (4.13)

Observe that the velocity gradients depend on two terms: a pressure gradient that is
modified with the mean static pressure gradient, cf. (4.8), and then on a buoyancy term
that scales with �ρ. Note also that ρ1 = 1, due to scaling with the density of fluid 1.

These expressions for the velocity gradients can be integrated further, outwards from
the wall at y = H, where the velocity is zero, to give v( y) and w( y). A further integration
over [0, H] produces expressions for (Hv̄, Hw̄). The point of this laborious exercise is to
see that the integral expressions that multiply the modified pressure gradient terms and
those that multiply the buoyancy terms, are identical in the two directions,

(Hv̄, Hw̄) = −I1

(
1
ra

∂p
∂φ

− ρ fξ
ra

,
∂p
∂ξ

+ ρ fφ
ra

)
+ I2

�ρ

Hra
(−fξ , fφ). (4.14)

This is valid for any generalised Newtonian fluid. The expressions for I1 and I2 are defined
as

I1 =
[

yi

∫ H

yi

ỹ
η1(ỹ)

dỹ +
∫ yi

0

∫ yi

y

ỹ
η2(ỹ)

dỹ dy +
∫ H

yi

∫ H

y

ỹ
η1(ỹ)

dỹ dy
]

, (4.15)

I2 =
[
(H − yi)

∫ yi

0

∫ yi

y

ỹ
η2(ỹ)

dỹ dy + y2
i

∫ H

yi

H − ỹ
η1(ỹ)

dỹ + yi

∫ H

yi

∫ H

y

H − ỹ
η1(ỹ)

dỹ dy
]

.

(4.16)

These expressions depend on the constitutive laws for both fluids, as well as yi and H.
For most generalised Newtonian fluids we will not be able to evaluate I1 and I2, except
numerically.

Considering (4.14), in the absence of the buoyancy term, e.g. if �ρ = 0, we can see that
the mean flow follows the direction of the modified pressure gradient, as in Bittleston et al.
(2002), and see (4.8). The mean density is again volumetrically averaged. With a density
difference, however, the flow direction is influenced independently by the buoyancy vector:
the second term on the right-hand side of (4.14). The form of (4.14) has the implication
that the shear flow is a 1-D flow, in the direction of the gap-averaged velocity. Although we
do not know this direction a priori, we may proceed assuming that this direction is known,
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Displacement and dispersion in narrow eccentric annuli

solve the 1-D flow, then effectively calculate I1 and I2 to determine the flow direction
from (4.14).

4.2.1. The 1-D shear flow
We assume that (v̄, w̄) flows locally in direction s = (sφ, sξ ). Taking the dot product of
(4.5) and (4.6) with s we have the following 1-D momentum balance:

∂

∂y
τsy =

⎧⎪⎪⎨
⎪⎪⎩

∂p
∂s

+ ρ

ra
( fφsξ − fξ sφ) − (H − yi)�ρ

Hra
( fφsξ − fξ sφ), y ∈ [0, yi],

∂p
∂s

+ ρ

ra
( fφsξ − fξ sφ) + yi�ρ

Hra
( fφsξ − fξ sφ), y ∈ ( yi, H].

(4.17)

This type of buoyant two-layer flow model can generally be resolved numerically in an
efficient way for two generalised Newtonian fluids. For example, see Zare, Roustaei &
Frigaard (2017) for Bingham fluids, or Taghavi et al. (2009) for a different two-layer model
for Herschel–Bulkley fluids. The problems are tractable due to various monotonicity
results. Here, however, we focus on the case of Newtonian fluids for simplicity.

We first integrate to find the shear stress, which varies linearly in each layer,

τsy =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
∂p
∂s

+ ρ

ra
( fφsξ − fξ sφ)

]
y − (H − yi)y

�ρ

Hra
( fφsξ − fξ sφ), y ∈ [0, yi],[

∂p
∂s

+ ρ

ra
( fφsξ − fξ sφ)

]
y − (H − y)yi

�ρ

Hra
( fφsξ − fξ sφ), y ∈ ( yi, H].

(4.18)
Note that we are not interested (yet) in the actual velocity solution us( y), but in the areal
flux Hūs. This can be evaluated for Newtonian fluids by integrating by parts,

Hūs = −
∫ yi

0
y
∂us

∂y
dy −

∫ H

yi

y
∂us

∂y
dy = −

∫ yi

0
y
τsy

η2
dy −

∫ H

yi

y
τsy

η1
dy

= −
(

y3
i

3η2
+ H3 − y3

i
3η1

)[
∂p
∂s

+ ρ

ra
( fφsξ − fξ sφ)

]

+ �ρ

Hra
( fφsξ − fξ sφ)

[
(H − yi)y3

i
3η2

+ yi(H − yi)
2(H + 2yi)

6η1

]
. (4.19)

We may also evaluate Hūs from (4.14),

Hūs = s · (Hv̄, Hw̄)

= −I1

[
∂p
∂s

+ ρ

ra
( fφsξ − fξ sφ)

]
+ I2

�ρ

Hra
( fφsξ − fξ sφ). (4.20)

Comparing these two expressions, we see that for a Newtonian fluid pair,

I1 =
(

y3
i

3η2
+ H3 − y3

i
3η1

)
, I2 =

[
(H − yi)y3

i
3η2

+ yi(H − yi)
2(H + 2yi)

6η1

]
. (4.21a,b)

Power law and yield-stress fluid pairs will be dealt with in a subsequent study, requiring
computation. Having solved for the 1-D shear flow, we may now go back to (4.14) and
derive the modified 2-D model.
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4.2.2. The D2DGA model
The gap averaged stream function is defined as ∇aΨ = (2Hw̄, −2Hv̄), which can be
substituted into (4.14). To derive the D2DGA model, we rearrange (4.14) to give two
equations for the two pressure gradient components. We then cross-differentiate to
eliminate the pressure,

0 = ∇a ·
[(

ra

2I1

)
∇aΨ

]
+ ∇a ·

[(
ρ − �ρ

H
I2

I1

)
f
]

= ∇a · [S + b]. (4.22)

We observe that (4.22) is an elliptic Poisson problem, of the same form as in Bittleston
et al. (2002) and Maleki & Frigaard (2017). However, the assumption of a layered flow
gives rise to significant differences.

Considering first S, we see that for a Newtonian fluid,

S =
(

ra

2I1

)
∇aΨ = 3ra

2H3
∇aΨ

c̄3

η2
+ (1 − c̄3)

η1

, ⇒ τw = 3
2H2

|∇aΨ |
c̄3

η2
+ (1 − c̄3)

η1

, (4.23)

as opposed to S = [3raη/2H3]∇aΨ for the 2DGA models. If the 2DGA approach were to
yield the same S, we see that a specific form of viscosity interpolation would be needed. In
practice a linear interpolation has been used for 2DGA computations, with the assumption
that the fluids are mixed.

Turning now to the buoyancy vector b, we see that there are two parts in (4.22). Firstly,
if we write ρ = (1 − c̄)ρ1 + c̄ρ2, this helps us to see that the first part of ∇a · b represents
changes in the mean density in the direction f . These buoyancy gradients are exactly those
considered in the models of Bittleston et al. (2002) and Maleki & Frigaard (2017). The
second part results specifically from the layered flow. If we write ρ = ρ2 + (1 − c̄)�ρ,
we see that the buoyancy gradients from the mean density term have similar order of
magnitude as those that result from the second part. In other words, the effect of the layered
flow on buoyancy is significant. In more detail, we have

∇a · b = ∇a ·
[
ρ2 + �ρ

(
(1 − c̄) −

[
mc̄3(1 − c̄) + c̄(1 − c̄)2(0.5 + c̄)

mc̄3 + 1 − c̄3

])]
f . (4.24)

The gradients of f will typically be small as changes in the well orientation occur slowly.
With regard to transport of the fluid concentrations, we need to evaluate the fluxes.

For Newtonian fluids this is straightforward, although algebraically long. The pressure
gradients are eliminated using (4.14) and there is some manipulation using the expressions
I1 and I2. This simplifies to

(qφ, qξ ) = ra

2

(
−∂Ψ

∂ξ
,

1
ra

∂Ψ

∂φ

)
c̄
[

mc̄2 + 1.5(1 − c̄2)

mc̄3 + 1 − c̄3

]
+ �ρH3

6η2
I3(c̄, m)[−fξ , fφ],

(4.25)

I3(c̄, m) = c̄2(1 − c̄)3[4mc̄ + 3(1 − c̄)]
2m[mc̄3 + 1 − c̄3]

. (4.26)

We observe that the first term is very similar to the model of Maleki & Frigaard (2017),
except that the transport term in this model is

ra

2

(
−∂Ψ

∂ξ
,

1
ra

∂Ψ

∂φ

)
c̄. (4.27)
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Displacement and dispersion in narrow eccentric annuli

We see that this is amplified by the concentration dependent flux term,

mc̄2 + 1.5(1 − c̄2)

mc̄3 + 1 − c̄3 . (4.28)

On inspection, we see that this amplification factor is the first term in (4.2), as derived by
Yang & Yortsos (1997). Unlike these earlier studies, in the annulus the gap width and local
mean velocity may now vary.

The second term in (4.25) is also related to (4.2). If for example we simplify to have
a single component of f , e.g. in a vertical well with β = 0, then we see that fξ = 0.
The φ-component of q consists of only the first dispersive term of (4.25), whereas the
ξ -component is augmented by buoyancy. The c̄-dependence of I3(c̄, m) mimics that of the
second term in (4.2) and the expressions are identical if

U = 3mη2F2

�ρH3ra
. (4.29)

If the annulus is uniform and concentric (H = ra = 1), we find that these terms are
identical.

5. Results using the D2DGA model

Including the fluxes of (4.25) and solving (4.22) for the stream function constitutes the
D2DGA model. With the corrected flux terms in the concentration equation, this takes
the dispersion behaviour along the channel into account, but also modifies the effects
of buoyancy and rheology on computing the velocity field. We start our comparisons by
revisiting the computations of the total volume of displacing fluid in the annulus. We
only show the mass conservation properties of cases 6 and 8, since earlier we found
a distinct discrepancy between the 2DGA and 3-D results in terms of the breakthrough
time, i.e. for m > 1 the 3-D results have earlier breakthrough, see figure 4(b). Figure 11
shows the D2DGA model comparison with the 3-D results. The D2DGA model now
also predicts earlier breakthrough times than the piston-like displacement and smaller
volumetric efficiencies, very similar to the 3-D model. The inclusion of gap-scaled
dispersion evidently leads to this improvement. Mass conservation was verified for other
cases, with similar agreement; not shown here for brevity.

We now turn to comparing the concentration fields at successive times. Based on the
previous results, we focus first on the cases with relatively large discrepancy between
2DGA and 3-D models. Figure 12 shows the results of cases 7 and 3. Figure 12(a,c) display
the 3-D results with the 2DGA results in the inset figures. Figure 12(a,c) show the results
of the D2DGA model. We see a significant improvement of the D2DGA model compared
with the 2DGA. Firstly, we observe clear concentration gradients, which represents the
gap-scaled dispersion, which agree much better with the 3-D results. Secondly, we see
instabilities near the displacement front on the narrow side for case 3 in both 3-D and
D2DGA results. The underlying D2DGA model is still a Hele-Shaw-style model, except
now the concentration dependence of b and S is significantly changed, as well as the
transport terms. It seems that these changes allow for fingering-type instabilities to develop
that are analogous to the gap-averaged 3-D instabilities.

Although we cannot dismiss inertial effects, their role in these instabilities appears to
be minor. We state this simply because there is no inertia in the D2DGA model, although
of course the 3-D flows have inertial effects (Re = 20). Instabilities on the narrow side
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Figure 11. Verification of volume conservation for the D2DGA and 3-D models of cases 6 and 8. The black
line represents the total annulus volume. The solid lines with other colours represent the theoretical value based
on the constant flow rate. The D2DGA and 3-D results are marked by different symbols, as indicated.

of the annulus have been observed experimentally (Tehrani, Bittleston & Long 1993),
where the authors attribute them to density driven azimuthal currents. Here they appear to
be fingering-like instabilities, which are usually due to buoyancy and mobility gradients
between the fluids. Certainly azimuthal currents are present in both 2-D models, although
they appear to be more amplified for the D2DGA model.

To pinpoint the origin of these instabilities is not easy. There is a direct influence on
the D2DGA model from the fluxes in the concentration equation, i.e. direct dispersion.
We can see the effect of this in the earlier time subpanels of figure 12(b,d), where the
concentration spreads vertically. Since the annuli are eccentric, this vertical dispersion
results in concentration gradients azimuthally, i.e. because the narrow side moves axially
(and disperses) at a slower speed. We observe that it is not until significant azimuthal
stratification emerges in figure 12(b,d), that instabilities emerge. This suggests that the
onset comes from developing azimuthal flows, as previously postulated (Tehrani et al.
1993). Note that the elliptic equation for the stream function is driven by gradients in
b. In the case that the annulus is vertical these gradients arise from φ-gradients of the
concentration-dependent expression on the right-hand side of (4.24).

As discussed previously, the last two terms on the right-hand side of (4.24) have
comparable size. We note that the first two terms are also present identically in the 2DGA
model, but no such instabilities are observed for these cases. Arguably, however, since
the 2DGA model does not disperse as much as the D2DGA model, in the concentration
equation, the azimuthal gradients needed are simply slower to develop. Indeed Renteria &
Frigaard (2020) do find azimuthal instabilities in the 2DGA model for cases when long
narrow-side channels develop in horizontal wells. Thus, we believe that the instabilities
result from a combination of both enhanced axial dispersion (creating the azimuthal
concentration gradients) and the azimuthal gradients in b, that generate secondary flows
via Ψ .
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Figure 12. Gap-averaged concentration colour maps of (a) case 7 computed by 3-D model; (b) case 7
computed by D2DGA model; (c) case 3 computed by 3-D model; (d) case 3 computed by D2DGA model.
The 2DGA results are in the top left-hand corners as comparisons. Parameters: e = 0.2, Re = 20, m = 0.5,
b = 10 (case 7); and e = 0.6, Re = 20, m = 0.2, b = 10 (case 3).

The only other change with the D2DGA model comes in the stream function equation,
via S. As we have discussed following (4.23), the change in S can be considered as
equivalent to selection of a specific rheological closure for the mixture viscosity. In
the 2DGA model we have used a linear interpolation for the rheology, but in its early
development we had also explored different closure models and found minimal effect.
Therefore, we suspect that the effects of S are not dominant.

The main discrepancy we find from cases 3 and 7 above is that the D2DGA model in
fact gives a slightly more dispersive interface than that in 3-D, see also figure 11. The
difference is more distinct on the wide side, where the 3-D results typically show a long
thin dispersive spike profile, see figure 13 for a snapshot from case 3. At the front of
the spike we observe that the tip becomes diffuse, effectively due to numerical resolution
across the gap. The concentration is gap-averaged to give c̄(φ, ξ̂, t̂) for the 3-D model.
In figure 14 we have taken a slice along the annulus at φ = 0 (wide side) and we plot
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Figure 13. Spike penetration regime in wide channel gap (φ = 0) of case 3 modelled by 3-D.
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Figure 14. Advective gap-averaged concentration in wide channel of case 3 (parameters: e = 0.6; Re = 20;
m = 0.2; b = 10) modelled by (a) 3-D; (b) D2DGA (the 2DGA result is in the top right-hand corner).

c̄(0, ξ̂, t̂) for the three models. The curves are spaced at equal time intervals throughout the
displacement, from which we can infer the front velocity. The 3-D and D2DGA models are
qualitatively similar and quite different from the 2DGA model (see the inset in figure 14b),
again confirming the relevance of gap-scale dispersion. At large c̄ the front velocity is
comparably slow, indicating that residual fluid at the wall is slow to remove. The front
velocities then increase until attaining a plateau value of velocity (at around c̄ = 0.75 in
3-D, and c̄ = 0.65 in D2DGA). This front velocity is constant until low c̄, when it again
increases. This pattern results in the dispersive low concentration regions advancing ahead
of a more substantial front, as we have seen in figure 12.

For the analogous 1-D flows studied by Yang & Yortsos (1997) and Lajeunesse et al.
(1999), i.e. (4.1) and (4.2), show a range of different qualitative behaviours. The profiles in
figure 14 correspond to contact shocks (using the classification of Lajeunesse et al. (1999)),
and indeed if we evaluate m and U for the parameters of case 3, this regime is indicated.
The contact shock profiles have a region of small c̄ that moves fast and ahead of the main
front, i.e. disperses. Then there is a shock, over a range of intermediate concentrations,
see figure 14(a). We adopt the terminology of Lajeunesse et al. in this paper mainly for
simplicity.

Looking at the low c̄ range of figure 14, the speed of the lowest c̄ fronts appear faster
in the 3-D case than the D2DGA, although these represent relatively little volume. We
cannot expect an exact correspondence between the models. The advancing wide side
front is also fed by azimuthal secondary flows in both models, the 3-D model still retains
inertia and other stress gradients. Numerically, for the D2DGA we resolve a model that is
derived by integrating a ‘sharp interface’ on the gap-scale, to give closure expressions for b
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Figure 15. Advective gap-averaged concentration profiles along the narrow side of the annulus, modelled by
D2DGA for (a) case 7 (parameters: e = 0.2; Re = 20; m = 0.5; b = 10); (b) case 6 (parameters: e = 0.4;
Re = 20; m = 5.0; b = 100).

and S. This is compared with the 3-D model where we gap-average the result,
e.g. figure 13, which becomes diffuse as it advances and thins to the thickness of mesh
used across the gap.

As well as contact shocks (spike), Lajeunesse et al. (1999) also identify characteristic
behaviours termed no shock (fully dispersive) and frontal shock (shock), found in
well-defined regions of the (m–U) plane. We can find also these other characteristic
behaviours in our results. Figure 15(a) shows the concentration c̄(1, ξ̂, t̂), along the narrow
side of case 7 (m = 0.5), which has no shock (dispersive). Figure 15(b) shows c̄(1, ξ̂, t̂) for
case 6 (m = 5), which has a frontal shock. These regime shifts are quite sensitive to the
viscosity ratio m at fixed U (i.e. b). For other parameters we can also find contact shocks
on the narrow side, as well as experimentally (Etrati & Frigaard 2019). We have focused
on wide and narrow side here, where the 2-D models have velocity only along the annulus
(due to the imposition of symmetry).

Finally we present the concentration colour map of cases where there is little instability.
Case 6 in figure 16 displays a typical frontal shock behaviour. The D2DGA result
agrees remarkably with the averaged 3-D concentrations. Both models predict a much
less dispersive interface compared with the previous cases shown. The flow exhibits a
consistent degree of dispersion as the front propagates steadily along the annulus, with a
modest gradient from wide side to narrow side, which is not captured at all in the 2DGA
model.

Case 4 is a buoyancy-dominated flow that showed similar steady front speeds between
2DGA and 3-D results (see figure 5). It can be seen from figure 17(b) that the D2DGA
result also exhibits a stable/steady front with little dispersion on the wide side. A similar
degree of narrow side dispersion in predicted to the 3-D result. In both cases 6 and
4, we can discern some faint wave-like patterns in the averaged 3-D solution at later
times. As with our earlier detailed examination of case 7, these waves arise from a loss
of azimuthal symmetry behind the front. This asymmetry is prevented in the D2DGA
model as implemented, since we have imposed a symmetry condition on Ψ at the wide
and narrow sides. However, relaxing this constraint (replacing with periodicity) would
allow for the asymmetry and is a small change computationally. The 2.5-D model of Tardy
(2018) does appear well able to represent azimuthal asymmetry and at its foundation this
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Figure 16. Gap-averaged concentration colour maps of case 6 (parameters: e = 0.4; Re = 20; m = 5.0; b =
100) computed by (a) 3-D model; (b) D2DGA model. The 2DGA result is in the top left-hand corner as a
comparison.
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Figure 17. Gap-averaged concentration colour maps of case 4 (parameters: e = 0.6; Re = 20; m = 0.2; b =
1000) computed by (a) 3-D model; (b) D2DGA model. The 2DGA result is in the top left-hand corner as
comparison.

model is also non-inertial. We cannot, however, discount that there may also be an inertial
component to the symmetry breaking in the 3-D case.

Taking into account that the dispersion behaviour appears to improve the 2DGA
significantly. In particular, we may now use this model to predict the breakthrough
time as well as the displacement efficiency more accurately than before, and also less
time-consuming compared with 3-D models. This allows us to explore the effects of
different dimensionless parameters in a more intuitive way through these two factors. We
define a dimensionless breakthrough time as tbr = t̂br × ŵ0/L̂annu, and the displacement
efficiency as ηE which is calculated by dividing the fraction of the annulus displaced at a
specific time (1.2 × L̂annu/ŵ0) by the annulus volume.
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Cases e Re m b tbr (D2DGA) tbr (3-D) ηE (D2DGA) ηE (3-D)

1 0.8 20 0.2 −50 0.44 0.33 0.66 0.61
2 0.8 20 0.2 100 0.95 0.95 0.95 0.95
3 0.6 20 0.2 10 0.79 0.67 0.92 0.91
4 0.6 20 0.2 1000 0.99 0.98 1.00 0.98
5 0.4 20 0.2 100 0.95 0.93 0.97 0.95
6 0.4 20 5.0 100 0.93 0.94 0.93 0.96
7 0.2 20 0.5 10 0.78 0.70 0.90 0.90
8 0.2 20 2.0 10 0.78 0.70 0.84 0.86
9 0.1 100 0.2 100 0.97 0.96 0.97 0.95
10 0.1 1000 0.2 100 0.97 0.96 0.97 0.95

Table 3. Breakthrough time and displacement efficiency of cases 1–10.

Table 3 shows tbr and ηE as calculated by the D2DGA and 3-D models. The buoyancy
number is the dominant parameter, as demonstrated by a later breakthrough time and
higher efficiency with increasing b. We verify again via the poor efficiency of case 1 that
b < 0 should be strictly avoided. In addition, it seems that we find an earlier breakthrough
time predicted by the 3-D model, when b is small (b ≤ 10), which corresponds to the
long thin spike profile observed in figure 12(a,c). Note that the displacement efficiency
predicted by both models are pretty similar for these cases. The effect of eccentricity is not
very apparent through comparison between cases 2, 5 and 9, since the buoyancy number is
large enough to compete against the geometry influence. However, it is worth noting that a
small residual layer on the narrow side can result in extremely ineffective cementing, from
the perspective of well integrity/leakage, even when ηE is large. Thus, we should always
combine ηE with examination of the fluid placement to better determine the quality of a
displacement. We can also use the D2DGA model to calculate for example a narrow side
efficiency ηN , which focuses only on the most problematic section of the annulus and often
gives a better representation of the efficacy of the displacement. There are various ways
to do this (Guillot, Desroches & Frigaard 2007; Maleki & Frigaard 2018; Jung & Frigaard
2022).

The effect of the viscosity ratio becomes apparent via comparison between cases 5
and 6, and cases 7 and 8, computed by the D2DGA model. Increasing the viscosity
ratio causes more dispersion along the annulus and leads to lower efficiency, especially
for cases with smaller buoyancy number (b = 10). Hence, using fluid pairs with smaller
viscosity ratio (displaced/displacing) is beneficial for complete and efficient displacement,
as is recommended in industrial practice (Nelson & Guillot 2006). Interestingly, focusing
on cases 5 and 6, we found that the viscosity ratio does not much affect the efficiency
predicted by the 3-D model, unlike that of the D2DGA model. We suppose that 3-D
effects, e.g. flow in radial direction, could compensate the severe dispersion caused by
large viscosity ratio, specifically when the buoyancy force is strong. Finally, it seems that
the Reynolds number also plays a less important role regarding the scale of dispersion
and the displacement efficiency, (compare cases 5, 9 and 10). This observation is confined
to the laminar regime flows studied. If turbulent displacements are considered then the
dispersive picture changes substantially (Maleki & Frigaard 2017, 2018, 2019).

6. Summary

This paper has studied primary cementing displacement flows in vertical eccentric annuli.
These flows are challenging to compute, due to the excessively long length scales of typical
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wells (∼103 m), compared with the annular gap (∼10−2 m). Ensuring a mesh size needed
for accuracy, both in representing the interface and on the scale of the annular gap, while
also integrating in time long enough for the displacement front to travel the length of the
well, makes 3-D non-Newtonian computations unfeasible at present. Nevertheless, it is
important to understand the effectiveness of the full displacement process for engineering
design purposes. By design we mean selection of the annulus eccentricity, the fluid
densities and rheologies, the volumes and flow rates pumped. Each of these may only be
varied within operational constraints. Because of this need, 2DGA models have become
popular over the past 20 years.

In this paper we have used 3-D transient computations in annuli of length equal to ∼103

annular gap widths, to represent the full complexity of the displacement flow, and compare
these with 2DGA results. While 2DGA models can predict many qualitative phenomena
well, (e.g. steady/unsteady, stable/unstable, residual narrow side channel or not), there
are also quantitative discrepancies in most cases. Computed 3-D simulations predict fluid
concentrations that are clearly dispersive and that result in lower displacement efficiencies
than 2DGA flows.

To account for gap-scale dispersion in the 2DGA framework, we rederive the model,
starting from the reduced shear flow equations. We assume that the displacing fluid can
symmetrically displace down the centre of the local annular gap, instead of assuming a
fully mixed concentration across the gap (Bittleston et al. 2002; Maleki & Frigaard 2017).
This leads to a buoyant two-layer flow model for the 1-D shear flow. The D2DGA model is
obtained after solving the shear flow equations and eliminating the pressure components.
This model derivation is presented for any two generalised Newtonian fluids. However,
for many of these a numerical solution on the gap-scale would be needed. On the other
hand, for the two Newtonian fluids that are used in our examples, the model can be found
analytically.

The D2DGA equation for the stream function is an elliptic Poisson problem, just as
in the 2DGA model. However, there are differences in closure expressions for both the
wall shear stress and buoyancy. With regard to the mass transport equation, we obtain a
newly defined gap-averaged flux that can approximate the actual dispersive behaviour. An
additional term representing buoyancy effects in the layered flow also arises, compared
with the 2DGA model. As the underlying mathematical structure of the 2DGA and
D2DGA models is the same, computational times are similar, with some additional cost
from evaluating the new closure functions.

Of course, the D2DGA model is not the first study of dispersive effects in duct-like
displacements. In the classical study of Saffman & Taylor (1958) the authors explore
viscosity (mobility) ratio effects on instabilities in immiscible Hele-Shaw displacements:
viscous fingering. Much of this paper concerns viscous fingering in the case in which there
is a single fluid present in the through-thickness direction. However, the Appendix contains
a modified analysis of the situation with incomplete displacement, i.e. the displacing
fluid has a multilayer structure. As here, this renders the mean velocity concentration
dependent. Secondly, multiphase porous media flow models applied in oil recovery often
employ flux functions that describe the wetting of different phases, dating from Buckley
& Leverett (1942). These expressions are either empirically derived or rely on simplified
models, such as the Hele-Shaw cell or tube bundles, in order to develop mathematical
closure expressions. The wetting closures are then applied to rather complex actual pore
geometries. Thus, our approach is certainly related to these larger application areas.

Perhaps we are fortunate in that the narrow eccentric annulus of primary cementing
forms a prototype that has systematic and understandable geometry variation (effectively
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the permeability), allowing for the modelling approach to be effective. As displacement
flows in cementing are also (predominantly) miscible and large Péclet number, our
extension of Yang & Yortsos (1997) and Lajeunesse et al. (1999) seems the appropriate
modelling approach. For uniform, vertical concentric annuli, the new closure expressions
we derive are identical with those of Yang & Yortsos (1997) and Lajeunesse et al.
(1999), who considered high Péclet number miscible Newtonian displacement flows in
long vertical channels.

Through detailed comparisons between the D2DGA model and the 3-D model, we
find significant improvement of the D2DGA model in capturing gap-scale dispersion.
Moreover, some instabilities are predicted by D2DGA model, similar to those in the
3-D model. The D2DGA model remains computationally efficient and appears able to
represent the different scales of dispersion, consistent with (averaging of) 3-D simulation
results. The one deficiency is in modelling density-unstable displacement flows. Although
the D2DGA prediction may be an improvement, quantitative prediction remains poor, as
might be expected.

Finally, the effects of the dimensionless parameters have been explored, in terms of
breakthrough times and displacement efficiency. The buoyancy number is the key factor
in vertical primary cementing, once the eccentricity is fixed. Negative buoyancy number
should be strictly avoided to prevent highly ineffective cementing and compromised
well integrity. A large enough buoyancy number can be effective for Newtonian fluids,
even if the annulus is highly eccentric. It helps with displacing the fluids on the
narrow side and reducing residual layers caused by eccentricity. Small viscosity ratio
(displaced/displacing) is also advisable. In the D2DGA model this directly decreases the
dispersion between displacing and displaced fluids, essentially by acting on the drainage
layers adjacent to the walls. Especially when the buoyancy number is small, the viscosity
ratio affects dispersion more significantly, i.e. large viscosity ratio m will lead to higher
dispersion and less efficiency. Eccentricity affects the secondary flow and thus contributes
to uniform/non-uniform distribution in the azimuthal direction. Large eccentricity is not
beneficial for complete and efficient displacement. Here we only studied Newtonian fluids,
but for yield stress fluids it is also well known that these fluids can become stuck on the
narrow side for large e, (McLean et al. 1967; Couturier et al. 1990). As for the effect
of Reynolds number, we did not find that it plays an essential role and especially with
large b. Although operationally speaking, this simply affirms an old story (Couturier
et al. 1990; Frigaard & Pelipenko 2003; Pelipenko & Frigaard 2004c; Nelson & Guillot
2006), this paper gives far greater detail. The real novelty is in being able to access
predictions of the dispersive behaviour that agree well with the more expensive 3-D
models.

The next step in our study is to consider how effective the D2DGA model is in predicting
experimental results from our flow loop. Thereafter, the model will be applied to inclined
and horizontal annuli, which can be achieved easily by changing the direction of the
buoyancy force (β /= 0). Here we already have the recent studies of Renteria & Frigaard
(2020) and Sarmadi et al. (2021) to compare with. The next step is to develop the model
targeting non-Newtonian fluids, as are more common in field situations with laminar flows.
Although a more complicated computation is needed to resolve the gap-scale flow, e.g. for
Herschel–Bulkley fluids, the basic principle is applicable as outlined in this paper. Another
interesting question is whether the new buoyancy, wall shear stress and flux closures can be
analysed in a similar way to Pelipenko & Frigaard (2004c) and Maleki & Frigaard (2020),
to rapidly classify cementing displacements in a way that is suitable for machine learning
approaches.
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Figure 18. Gap-averaged concentration colour maps of case 2 (parameters: e = 0.8; Re = 20; m = 0.2;
b = 100) computed by (a) 2DGA model; (b) 3-D model.
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Appendix. Further examples of the 2DGA model

Here we explore some other features of the 2DGA model. We start with case 2 which
has high eccentricity (e = 0.8) but also larger buoyancy number (b = 100; figure 18). The
large eccentricity slows displacement in the narrow side and we see in the 2DGA model
that there is a thin residual channel. The 3-D simulations also show gradients of displaced
fluid extending far around the annulus. What is more, instabilities/waves are observed
extending all along the narrow side in figure 18(b), the cause of which is unclear. The front
shape on the wide side and over much of the annulus is very similar between models and
advances steadily, notwithstanding the narrow side residual fluid behaviour. Dispersion
ahead of the front is less visible, but occurs in both models.

We explore the flow structure of case 2 in figure 19 which shows cross-sections of the
annular gap near the interface in axial and horizontal directions. On the narrow side in
figure 19(a) we can see the displacing fluid moving ahead in the centre of the gap, with
displaced fluid at the wall. This dispersive stream has long wavelength variations (long
relative to the annular gap), that are linked to the waves seen in figure 18(b). The wide
side of the annulus has a velocity distribution that is clearly Poiseuille-like, with very thin
residual layers of displaced fluid visible only in the enlarged image of the wall. The slowly
removed wall layers are a key cause of the dispersion behind the main front and will lead
to significantly longer time scales for complete displacement than predicted by the 2DGA
model.
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Figure 19. Concentration distribution in annulus gap in ξ̂ = 1.5 m at t̂ = 50 s for case 2, (parameters: e = 0.8;
Re = 20; m = 0.2; b = 100): (a) axial slice; (b) azimuthal slice. Black arrows in wide channel (φ = 0) of
panel (a) represent the velocity vector in annulus gap.

We now present comparisons of axial and azimuthal (gap-averaged) velocity
components. The velocities are shown scaled by the inflow velocity ŵ0. Figure 20 shows
qualitatively similar axial velocity in both models. The axial velocities are larger than the
mean velocity on the wide side, but are close to zero on the narrow side, except close to
the interface. There are two main differences between the model results. Firstly, the range
of gap-averaged velocities is larger in the 3-D model, due to resolution of the gap-scale
velocity, i.e. in a plane channel flow of a Newtonian fluid, the maximal velocity is 1.5×
the mean velocity. Secondly, and similarly, the near-static region on the narrow side is
larger and wider in the 3-D model than in the 2DGA model. We suppose that flows
in the radial direction affect the axial velocity and contribute to this difference between
3-D and 2-D results. It is interesting that the vertical extent of the frontal region appears
to show two effects. First, there is simply an adaptation to the (parallel) flows upstream
and downstream. Looking at the earlier subpanels in figure 20(a,b), we see a comparable
vertical length. As the flow advances the 2DGA simulation maintains a similar frontal
adaption length, largely advected downstream. However, dispersion is very evident in
extending this length for the 3-D results.

For the azimuthal velocity (figure 21), both models show secondary flows from wide
side to narrow side below the interface, and the reverse direction above the interface. The
magnitude predicted by both models is almost the same. This phenomenon has been found
and discussed in experiments as well. The strength of the secondary flow increases with
the eccentricity (Malekmohammadi et al. 2010). This is the main reason causing slow flow
below and above the interface on the narrow side, when the interface itself moves faster.
It is interesting to note the azimuthal velocity magnitude behind the front is stronger than
that ahead of the front in both models. Also notable is that in the region of the flow where
instabilities were observed in figure 18(b), there is barely any azimuthal flow noticeable.

Case 3 is an example with smaller buoyancy number and eccentricity compared with
case 2. We now see a more inclined interface from wide to narrow side, computed by
both models (figure 22). Both models have residual fluid on the narrow side. In the
context of using 2DGA models for design purposes, the previous cases have been steady
displacements and case 3 is an example of an unsteady displacement, see Frigaard &
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Figure 20. Gap-averaged axial velocity distributions of case 2 (parameters: e = 0.8; Re = 20; m = 0.2;
b = 100) computed by (a) 2DGA model; (b) 3-D model.
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Figure 21. Gap-averaged azimuthal velocity distributions of case 2 (parameters: e = 0.8; Re = 20; m = 0.2;
b = 100) computed by (a) 2DGA model; (b) 3-D model.

Pelipenko (2003) and Pelipenko & Frigaard (2004c). For the 3-D model, dispersive effects
and narrow side instabilities spread far around the annulus, whereas for the 2DGA model
there are no instabilities. Although we see O(1) differences in the dispersion, the 2DGA
model represents the behaviour of the wide side interface well and is predictive of the
narrow side fluid residual.

Instabilities on the narrow side have been observed previously in experiments (Tehrani
et al. 1993). Partly they are associated with a symmetry breaking, which has been
eliminated from the 2DGA simulations here. When no symmetry condition is imposed,
2-D models are able to exhibit similar instabilities (Tardy & Bittleston 2015; Renteria
et al. 2022). However, the extent of the dispersive regions is still more limited than in
3-D models. Additionally, there is no direct time evolution in these Hele-Shaw models,
which restricts the growth mechanisms; see Moyers-Gonzalez et al. (2007) for the study
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Figure 22. Gap-averaged concentration colour maps of case 3 (parameters: e = 0.6; Re = 20; m = 0.2;
b = 10) computed by (a) 2DGA model; (b) 3-D model.
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Figure 23. Gap-averaged concentration colour maps of case 1 (parameters: e = 0.8; Re = 20; m = 0.2;
b = −50) computed by (a) 2DGA model; (b) 3-D model.

of time dependent Hele-Shaw cementing models. In terms of the cause of the instabilities,
there are many observations of instability in parallel miscible fluid–fluid flows of differing
viscosity, e.g. d’Olce et al. (2008, 2009). Such instabilities may be related, but we do not
believe that the viscosity ratio m has a dominant effect: case 8 previously had m > 1 and
here we have m < 1. Also whether the gap-scale dispersion is causal or simply amplifies
the effects in 3-D is unclear. Lower down, away from the displacement front, the narrow
side velocities are very small and later evolution of the waves is slow.

In the cases shown so far, we have explored the interplay between eccentricity and
(positive) buoyancy, which is a dominant feature of vertical annular displacements.
Recommended best practices frequently suggest a density difference of at least 10 % for
vertical well cementing (surface casing). Lastly, we show a density unstable example
(case 1), see figure 23. We observe a severely unsteady/unstable displacement process. The
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fluids in the narrow side hardly move for both models. For the 3-D model the displacing
fluid mixes significantly with the displaced fluid in an irregular pattern on the wide side
and the mixture channels through in the faster flowing part of the annulus. For the 2-D
model, the displacing fluid also mixes and channels, but this is significantly limited by the
2DGA model constraints (no inertia and limited dispersion).

In general density-unstable conditions are avoided in primary cementing of vertical
casings. An exception is where a wash fluid is used ahead of the cement, with the intention
that the low viscous fluid will be turbulent and clean around the well. This has been
questioned as even in turbulent flow the wash tends to channel along the wide side (Guillot
et al. 2007; Maleki & Frigaard 2018). Here the flows are laminar but we see that the effects
are similar in figure 23(b). Such unstable flows are likely to be more sensitive to details of
mesh size, interfacial resolution and mixing laws (2.10) and (2.11), than their density stable
counterparts, i.e. unbounded instabilities advect and amplify small differences. Therefore,
in computing very unstable flows like this, implications of the results should be interpreted
mostly qualitatively. Nevertheless, there is a practical design value if, for example, the
2DGA model predicts instability that is also present in the 3-D simulations.
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