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Solvability by Real Radicals
and Fermat Primes

C. U. Jensen

Abstract. We give a survey of old and new results concerning the expressibility of the real roots of a

solvable polynomial over a real number field by real radicals. A characterization of Fermat primes is

obtained in terms of solvability by real radicals for certain ploynomials.

1 Introduction

In recent years there has been growing interest in the old question about explicit

solutions of solvable equations. It is a famous result from classical Galois theory that

the roots of a polynomial can be expressed by radicals if and only if the Galois group

of the polynomial is solvable. However, if the base field is real and the polynomial

has real roots it may happen that these roots can be expressed by radicals of complex

numbers, but not by radicals inside the field of real numbers. For instance, if K is a

real field and f (x) a cubic irreducible polynomial in K[x] with three real roots, none

of these can be expressed in terms of real radicals. Lately, a detailed treatment of these

questions has been given in [1], [2], [5] and [6].

In this paper we shall give a survey of classical and recent results in this area as

well as some new results for polynomials of prime degree. To make the paper self-

contained we also present proofs of some of the known results.

2 Terminology and Preliminary Results

All fields in this paper are number fields.

A field extension L/K is called a simple radical extension if L = K(α), where α
is an element in L \ K for which αp ∈ K for some prime number p. If L is a real

number field L/K is called a real simple radical extension. If in this case αp
= a we

write α = p
√

a. (If p is odd and a is real p
√

a thus means the unique real p-th root of a

and if p = 2 the element a should be real and positive and
√

a should be the positive

element α with α2
= a.)

A field extension L/K is called a radical extension if there is chain of fields between

L and K such that each field in the chain is a simple radical extension of the preceding

field. If L is a real number field and a radical extension of K, we call L/K a real

radical extension. A real number is said to be expressible by real radicals over K if it is

contained in a real radical extension of K.

The first result goes back to Loewy [8].
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Theorem 1 If K is a real field and f (x) an irreducible polynomial in K[x] of odd degree

n, then f (x) has at most one real root expressible by real radicals; in that case all other

roots of f (x) are non-real.

For the proof we need a classical lemma, which, for instance, can be found in [7]

or [9]:

Lemma 1 (Abel) Let K be a field and p a prime number. Then for a in K the polyno-

mial xp − a is either irreducible in K[x] or has a root in K.

We are now able to prove Loewy’s theorem.

Writing the degree n of f (x) as a product p1 · · · pt of (not necessarily distinct) odd

prime numbers we proceed by induction on t .

We first consider the case t = 1. Let f (x) be an irreducible polynomial in K[x] of

odd prime degree p having a root α in some real radical extension L of K. We have

to prove that α is the only real root of f (x).

Let M( q
√

a)/M, M a real field, a ∈ M, q a prime number, be the first simple radical

subextension of L for which f (x) is irreducible in M[x] but reducible in M( q
√

a)[x]. If
q
√

a were not in M(α), Abel’s lemma implies that xq −a would be irreducible in M(α)

and then the degree [M(α, q
√

a) : M] would be pq, which is impossible, f (x) being

reducible in M( q
√

a)[x]. Since the degree of α with respect to M is p and p is a prime

number, the inclusion M ⊂ M( q
√

a) ⊆ M(α) implies p = q and M(α) = M( p
√

a).

Thus there is a polynomial ψ(x) ∈ M[x] for which α = ψ( p
√

a). If ζp denotes a

primitive p-th root of unity the polynomial

P(x) =

p−1
∏

j=0

[x − ψ( p
√

aζ
j
p)]

has coefficients in M. Since P(x) and f (x) have the same degree and α is a root of

both of them it follows that P(x) = f (x). (Here we have tacitly assumed that f (x)

is monic.) None of the roots ψ( p
√

aζ
j
p), 1 ≤ j ≤ p − 1 are real. Indeed, if ψ( p

√
aζ

j
p)

were real for some j, 1 ≤ j ≤ p − 1, it would be equal to its complex conjugate

ψ( p
√

aζ
p− j
p ) and consequently f (x) would have a multiple root.

Thus α is the only real root of f (x).

Next, let f (x) be an irreducible polynomial in K[x] of odd degree n = p1 · · · pt ,

t > 1, having a rootα expressible by real radicals over K. By the induction hypothesis

we assume the theorem has been proved for polynomials whose degree contains less

than t prime divisors.

Let L/K be a real radical extension of K containingα and let M( q
√

a)/M be the first

simple radical subextension of L for which f (x) is irreducible in M[x] but reducible

in M( q
√

a)[x]. As before we conclude that M ⊂ M( q
√

a) ⊆ M(α). Hence q divides n

and the degree of the minimal polynomial g(x) of α with respect to M( q
√

a) is n/q.

Here q must be one of the primes pi , 1 5 i 5 t , and the degree n/q thus a product

of t − 1 prime numbers. For a suitable polynomial G(x, y) ∈ M[x, y] of degree n/q

with respect to x, we can write g(x) = G(x, p
√

a).
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For a primitive p-th root of unity ζp, the product

P(x) = g(x)

q−1
∏

j=1

G(x, q
√

aζ
j
p) =

q−1
∏

j=0

G(x, q
√

aζ
j
p)

has coefficients in M and degree q·n/q = n. As before we get P(x) = f (x). Moreover,

by passage to complex conjugates, it follows that the product
∏q−1

j=1 G(x, q
√

aζ
j
p) has

no real roots.

Now, α is expressible by real radicals over M and is a root of the irreducible poly-

nomial g(x) ∈ M[x], whose degree contains t − 1 prime factors. By the induction

assumption, α is the only real root of g(x), and in view of the above observation also

the only real root of f (x).

3 Polynomials of Prime Degree

3.1 Sufficient Conditions for Solvability by Real Radicals

Let f (x) be an irreducible polynomial over a real field K of degree an odd prime

number p. If the Galois group over K is solvable, by a classical theorem of Galois

f (x) has either one real root or p real roots. If f (x) has any real root expressible by

real radicals Loewy’s theorem implies that the remaining p − 1 roots are non-real.

The following theorem says that in certain cases the above necessary condition for

the existence of a root expressible by real radicals is sufficient.

Theorem 2 Let f (x) be an irreducible polynomial with solvable Galois group over a real

field K of degree p, p being an odd prime number and let M be the splitting field of f (x)

over K. If the degree [M(ζp) : K] is p · (a power of 2), ζp being a primitive p-th root of

unity, and f (x) has exactly one real root, then this root is expressible by real radicals.

Proof Let α be the unique real root of f (x). The Galois group of M/K is a Frobenius

group Fp`, where ` is a divisor of p − 1 and a power of 2. Since f (x) has just one

real root, Gal(M/K) cannot be cyclic, so ` is at least 2. The maximal 2-subextension

N of M(ζp)/K has an abelian Galois group over K, and clearly M(ζp) = N(α) and

[N(α) : N] = p. We now consider the maximal real subfields of these two fields:

M(ζp) ∩ R and N ∩ R.

We have the following diagram:

M(ζp) ∩ R
2

p

M(ζp) = N(α)

p

N ∩ R
2

N

Here [M(ζp) : N] =
[

(M(ζp) ∩ R) : (N ∩ R)
]

= p and since the unique real root α
of f (x) lies in M(ζp) ∩ R, the extension (M(ζp) ∩ R)/(N ∩ R) is not Galois. Hence
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the Galois group of M(ζp)/(N ∩ R), which has order 2p, must be the dihedral group

Dp.

Since Gal(M(ζp)/N) is cyclic of order p and N contains the p-th roots of unity,

M(ζp)/N is a Kummer extension, so that M(ζp) = N( p
√
β) for some β ∈ N . Let σ,

defined by σ( p
√
β) = ( p

√
β)ζp, be a generating automorphism of Gal(M(ζp)/N).

Now Gal
(

M(ζp)/(N ∩ R)
)

is generated by σ and complex conjugation τ , subject

to the relations σp
= τ 2

= (στ )2
= e. Since N( p

√
β) is a Galois extension of N ∩ R,

it follows that τβ = βtγ p for some t, 1 5 t 5 p − 1, and some γ ∈ N . Thus

(τ p
√
β) = ( p

√
β)t γ̃, where γ̃ p

= γ p . Moreover, τ 2( p
√
β) = ( p

√
β)t2

γ̃τ γ̃. Since τ 2 is the

identity, we conclude that t2 ≡ 1 mod p and hence t ≡ 1 or ≡ −1 mod p.

If t ≡ −1 mod p, then σ and τ would commute:

στ p
√

β = σ( p
√

β)t γ̃ = ( p
√

β)tζt
pγ̃

τσ p
√

β = τ ( p
√

βζp) = ( p
√

β)tζ−1
p γ̃

Hence t ≡ 1 mod p and w.l.o.g. we may assume t = 1 so that τβ = βγ p. Then

βτβ = β2γ p is a real number in N , hence in N ∩ R, and is not in (N ∩ R)p, since p

is odd.

Any root of xp − βτβ lies in M(ζp); in particular, the real value of p
√
βτβ lies

in M ∩ R. By Abel’s lemma we see that for this real value we have M(ζp) ∩ R =

(N ∩ R)( p
√
βτβ). Now N ∩ R is a real Galois extension of K of degree a power of 2

and therefore a real radical extension. Since the real root α of f (x) lies in M(ζp) ∩ R

it follows that α is expressible by real radicals over K.

Corollary 1 Let p be an odd prime number and f (x) an irreducible polynomial over a

real field K with the dihedral group Dp as Galois group. If f (x) has exactly one real root

and if the degree [K(ζp) : K] is a power of 2, this real root is expressible by real radicals

over K.

Corollary 2 (cf. [5]) Let f (x) be an irreducible polynomial over a real field K of degree

p having exactly one real root. If the Galois group of f (x) over K is solvable and p is a

Fermat prime, then the unique real root is expressible by real radicals over K.

3.2 Necessary Conditions for Solvability by Real Radicals

In this section we show that the results in 3.1 are in some sense best possible. For this

we need the following:

Descent Theorem (cf. [2]) Let L/K be an extension of degree p with M the Galois

closure of L/K and let ζp denote a primitive p-th root of unity.

Assume there exists an extension Λ/K for which M(ζp) ∩ Λ = K and LΛ/Λ is a

simple radical extension of degree p, then L/K is a simple radical extension of degree p.
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Proof The position of the fields is described in the following diagram:

M(ζp) ΛM(ζp)

L ΛL

K Λ

By assumption ΛL = Λ( p
√

a) for a suitable a in Λ. Any automorphism ρ in

Gal(M(ζp)/K) extends uniquely to an automorphism ρ̄ in Gal(ΛM(ζp)/Λ).

We define a crossed homomorphism v from Gal(M(ζp)/K) to the multiplicative

group M(ζp)? of the non-zero elements in M(ζp) by v(ρ) = ρ̄( p
√

a)/ p
√

a.

The crossed homorphism v is principal, since the cohomology group

H1
(

Gal(M(ζp)/K),M(ζp)?
)

is trivial. Thus v(ρ) = ρ(α)/α for a suitable α in

M(ζp). Since the values of v are p-th roots of unity we have ρ(αp) = αp for ev-

ery ρ. Thus αp lies in K. Because v is a non-trivial crossed homomorphism α is not

in K. Consequently L = K(α) and hence is a simple radical extension of K.

We shall also need the following lemmas which are well known and just easy exer-

cises in Galois theory. (A proof of Lemma 3 may be found in [3].)

Lemma 2 If L/K is a simple radical extension of prime degree p such that L/K is Galois,

then Gal(L/K) is cyclic and the base field K contains the p-th roots of unity.

Lemma 3 Let K be a field containing the p-th roots of unity. Two simple radical exten-

sions K( p
√

a1) and K( p
√

a2), a1, a2 ∈ K, coincide if and only if there exists an integer r,

not divisible by p, such that ar
1 = a2γ

p for some γ ∈ K.

We are now able to prove

Theorem 3 Let p be an odd prime and f (x) be an irreducible polynomial of degree p

over a real field K having exactly one real root α. If the Galois group of f (x) over K is

the dihedral group Dp and the unique real root α is expressible by real radicals over K,

then the degree [K(ζp) : K] is a power of 2.

Proof We write [K(ζp) : K] as 2su where u is an odd number dividing p−1. We shall

show that u = 1. Assume u > 1. Let M be the splitting field of f (x) over K and N

the maximal 2-extension of K inside M(ζp). The assumption u > 1 implies that N

does not contain ζp.

M is cyclic of degree p over a quadratic extension of K, hence MN = N(α) is

cyclic of degree p over N .

M(ζp) is a Galois extension of the maximal real subextension N ∩ R of N , and

Gal
(

M(ζp)/(N ∩ R)
)

is isomorphic to Dp × Cu, where Cu is the cyclic group of

order u. The fixed field of complex conjugation is the compositum of (N ∩ R)(α)
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(which has degree p over N ∩ R) and N(ζp) ∩ R (which has degree u over N ∩ R).

We shall need the following observation: Any real extension of N ∩ R inside M(ζp),

which does not contain α must be contained in N(ζp) ∩ R.

If the root α were expressible by real radicals over K it would a fortiori be express-

ible by real radicals over N ∩ R.

Let Λ0 $ Λ1 $ · · · $ Λn be a tower of simple real radical extensions of N ∩ R

such that α lies in Λn but not in Λn−1.

In view of the above observation Λn−1 ∩ M(ζp) is contained in N(ζp) ∩ R. The

latter is an abelian extension of N ∩ R of a degree dividing the odd number u. By

Theorem 1, this degree must be 1. We can therefore use the Descent Theorem with

Λ = Λn−1, K = N ∩R, L = (N ∩R)(α), showing that (N ∩R)(α) would be a simple

radical extension of N ∩ R. Then N(α) = MN would be a simple radical extension

of N . However, MN/N is cyclic, in particular, Galois. In view of Lemma 2 this gives

the desired contradiction since N does not contain the p-th roots of unity.

Theorem 4 An odd prime number p is a Fermat prime if the following holds. Every

real algebraic number α which is the only real root in an irreducible polynomial f (x) in

Q[X] of degree p having the Frobenius group Fp(p−1) as Galois group is expressible by

real radicals.

Proof Assume that p is not a Fermat prime, i.e. p−1 = 2su, where u is an odd num-

ber > 1. We have to construct an irreducible polynomial f (x) in Q[x] of degree p

whose Galois group is Fp(p−1), such that f (x) has exactly one real root and this root

is not expressible by real radicals.

If g is a primitive root modulo p the automorphism ρ of Q(ζp) defined by

ρ(ζp) = ζ
g
p generates the Galois group Gal(Q(ζp)/Q). The proof goes in three steps.

(I) For any integer t not divisible by p there exists a number β ∈ Q(ζp) such

that β is not the p-th power of a number in Q(ζp) and ρ(β) = βtγ p for a suitable

γ ∈ Q(ζp).

(II) For the β constructed in (I) the field M = Q(ζp)( p
√
β) is Galois over Q . If

t = g2 the Galois group is the Frobenius group Fp(p−1).

(III) M (i.e. the above field with t = g2 in (II)) is the splitting field of an irre-

ducible polynomial f (x) in Q[x] of degree p having exactly one real root and this

root is not expressible by real radicals.

Ad (I): For any η ∈ Q(ζp) the number

β =

p−2
∏

i=0

ρiηt p−i−2

satisfies ρβ = βγt for some γ ∈ Q(ζp). To see that we can choose η such that β is

not the p-th power of a number in Q(ζp) we may use Hilbert’s irreducibility theorem.

We consider the polynomial

h(x, y) = xp −
p−2
∏

i=0

(y + ρiζp)t p−i−2
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which is irreducible in Q(ζp)[x, y]. By (the generalized version of) Hilbert’s irre-

ducibility theorem (cf. [4, Corollary 11.7]) there exists a rational number q (actually

infinitely many) such that h(x, q) is irreducible in Q(ζp)[x]. Thus

β =

p−2
∏

i=0

(q + ρiζp)t p−i−2

has the desired property.

Ad (II): M = Q(ζp)( p
√
β) is the splitting field over Q of the polynomial

p−2
∏

i=0

(xp − ρiβ),

which has rational coefficients. Hence M is Galois over Q . Clearly the order of

Gal(M/Q) is p(p − 1).

The automorphism ρ ∈ Gal(Q(ζp)/Q) can be prolonged to an automorphism in

Gal(M/Q) of order p − 1. By abuse of language we also denote this prolongation by

ρ.

Let σ be the automorphism in Gal(M/Q(ζp)) ⊂ Gal(M/Q) defined by σ( p
√
β) =

p
√
βζp. (Here p

√
β denotes some fixed root of xp − β.) σ has order p.

Now let t = g2 and let c be the integer defined by cg2 ≡ g (mod p). Then c is also

a primitive root modulo p and a straightforward calculation shows that

(∗) ρσρ−1
= σc

Now (∗) together with the relations ρp−1
= σp

= e are defining relations for the

Frobenius group Fp(p−1) since c is a primitive root modulo p.

Ad (III): Gal(M/Q) has p subgroups of index p, which are mutually conjugate.

Every subgroup of index divisible by p is contained in one of the subgroups of in-

dex p. Hence M has exactly p subfields of degree p over Q and every subfield of M

whose degree over Q is divisible by p contains one of these p fields. The compositum

of these is M. Since M * R exactly one of these fields is real, say L = Q(α). Here

α is root of an irreducible polynomial f (x) in Q[X]. We claim that this α and f (x)

have the desired properties.

M is the splitting field of f (x) over Q . If N is the maximal 2-subextension of

Q(ζp), the degree [N : Q] is 2s and [N ∩ R : Q] = 2s−1. M ∩ R is the compositum

of N(α), which has degree p over N ∩ R, and of Q(ζp) ∩ R, which has degree u over

N ∩ R. The latter extension is cyclic over N ∩ R. We shall need the following: If F is

a field such that N ∩ R ⊆ F ⊆ M ∩ R and α /∈ F, then F ⊆ Q(ζp) ∩ R.

We now proceed as in Theorem 3. If α were expressible by real radicals over Q it

would a fortiori be expressible by real radicals over N ∩ R.

Let Λ0 $ Λ1 $ · · · $ Λn be a tower of simple real radical extensions of N∩R such

that α lies in Λn \ Λn−1. In view of the above observation Λn−1 ∩ M is contained in

Q(ζp)∩R. Since Q(ζp)∩R is an abelian extension of N∩R of degree dividing the odd

integer u, by Theorem 1 this degree must be 1. As in Theorem 3 the Descent Theorem
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implies that (N ∩ R)(α) is a simple radical extension of N ∩ R of degree p, i.e. of the

form (N ∩R)( p
√

a) for some a ∈ N ∩R. This implies that Q(ζp)( p
√
β) = Q(ζp)( p

√
a).

By Lemma 3 we conclude that ar
= βγ p for some integer r, not divisible by p, and

some γ ∈ Q(ζp). Since a is invariant under the automorphism ρ2s−1

, the numbers β

and ρ2s−1

(β) are in the same p-power class, i.e. coincide up to a factor in (Q(ζp)∗)p .

Because ρ2s−1

(β) = βt2s−1

γ̃ p for some γ̃ ∈ Q(ζp), the numbers β and βt2s−1

are in

the same p-power class, so that t2s−1 ≡ 1 mod p. This gives the desired contradiction

since the order of t(= g2) modulo p is (p − 1)/2 = u2s−1 modulo p and u > 1.

Finally, the following theorem summarizes the results from 3.1 and 3.2. (As for

(iv) note that any quadratic number field can be embedded into a Dp-extension for

every p. (cf. e.g. [4, Proposition 24.47].))

Theorem 5 For an odd prime number p the following conditions are equivalent:

(i) p is a Fermat prime.

(ii) If f (x) is any irreducible polynomial of degree p over a real field K with solvable

Galois group and exactly one real root, then this unique real root is expressible by

real radicals over K.

(iii) If f (x) is any irreducible polynomial in Q[x] of degree p with the Frobenius group

Fp(p−1) as Galois group and exactly one real root, then this unique real root is

expressible by real radicals.

(iv) There exists an irreducible polynomial in Q[x] with the dihedral group Dp as Ga-

lois group having exactly one real root expressible by real radicals.
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[8] A. Loewy, Über die Reduktion algebraischer Gleichungen durch Adjunktion insbesondere reeller

Radikale. Math. Z. 15(1922), 261–273.
[9] B. L. van der Waerden, Algebra I. Springer, 1976.

Department of Mathematics

University of Copenhagen

Universitetsparken 5

DK-2100 Copenhagen

Denmark

e-mail: cujensen@math.ku.dk

https://doi.org/10.4153/CMB-2004-022-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-022-9

